Helyi tanterv Matematika évfolyam Felnőttoktatási tagozat

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Helyi tanterv Matematika 9 12. évfolyam Felnőttoktatási tagozat"

Átírás

1 MATEMATIKA Iskolánk felnőttoktatási tagozatán kétféle munkarend szerint tanítjuk a matematikát. Az esti munkarend szerint heti három órában minden évfolyamon. Ez évente összesen 111/96 órát jelent, ami lehetővé teszi a szükséges fogalmak alapos, precíz kialakítása mellett azok begyakorlását, elmélyítését is. A levelező munkarend első sorban a tanulók önálló tanulását támogató oktatási forma. A kialakított konzultációs rendszerrel kívánjuk biztosítani a tananyag optimális tagolását, ezzel biztosítva az otthoni célzott tanulást. A javasolt tankönyvet is azért választottuk, mert szerkezete világos, magyarázata szemléletes. Jól érthető nyelvezete nagyban hozzájárul a fogalmak megértéséhez. A konzultációkon az alapvető fogalmak, eljárások magyarázatán túl, a témakör minimális ismereteit is megkapják a diákok. Lehetőség van arra is, hogy az otthon felmerült kérdésekre, problémára választ kapjanak. A felnőttoktatás tanórai keretei között csak a középszintű követelményeket tanítjuk. A NAT bevezetőjében felsorolt célok, értékek és kompetenciák a matematika tantárgy oktatásában a következő területeken jelennek meg: Célok és feladatok A középfokú felnőttoktatási intézményekbe jelentkezők különböző körülmények között, különböző színvonalon, különböző időpontokban szerezték meg az alapfokú végzettséget, így nagyon különböző felkészültségűek. Ezért a középiskola első évfolyama az általános iskolai tananyag alapos, konkrét feladatokhoz kapcsolódó ismétlésével kell, hogy kezdődjön. Az ismétlés során megmutatjuk a tanult matematikai ismeretek rendszerét, az egyes fogalmak kialakulásának és fejlődésének útját, és azt a folyamatot, amely a probléma felvetésétől a megoldásig vezet. A középiskolai matematika tanítása-tanulása a felnőtt diákok matematikai ismereteinek bővítése mellett, a logikus gondolkodás, a modellalkotó képesség, a bizonyítási igény, a szintetizáló képesség, a deduktív gondolkodásmód fejlesztését szolgálja. A matematika belső szépségeinek felvillantása mellett a tanultak alkalmazására fektetjük a nagy hangsúlyt. A matematika a maga eszközeivel segíti a természettudományok, az informatika, a humán műveltségterületek, a szakmai ismeretek tanulmányozását, segítséget ad a mindennapi élet apróbb-nagyobb problémáinak megértéséhez, értelmezéséhez, helyes kezeléséhez, jó megoldásához. Ezért matematikatanításunk alkalmazásközpontú. Oktató-nevelő munkánkat a mindennapok gyakorlatára való hivatkozás jellemzi. Használjuk a rendelkezésre álló tanulást segítő eszközöket, és elsajátítatjuk azok helyes használatát. Nagy hangsúlyt fektetünk a tantárggyal szemben esetlegesen kialakult negatív érzelmek megszüntetésére, ezért munkánkban sokféle motivációs eszközt alkalmazunk, és nagy hangsúlyt fektetünk az alapvető matematikai fogalmak, eljárások elsajátíttatására, begyakoroltatására. Az esti-, és levelező munkarendben tanulók számára is ugyanazok a kimeneti követelmények, így a tantervi követelményeket a középszintű érettségi követelményrendszer figyelembevételével

2 terveztük meg. Figyelembe vettük a Nemzeti Alaptantervben foglaltakat, és a 4/2001. (I.26.) OM rendelettel módosított 28/2000. (IX.21.) OM rendeletet és 1. sz. mellékletét Fejlesztési követelmények Az elsajátított matematikai fogalmak alkalmazása, a matematikai szemlélet fejlesztése Középiskolai tanulmányok során a fogalmak megerősítésére, definiálására, általánosítására is sor kerül. A megismert eljárások, összefüggések, tételek alkalmazásképes tudása, felhasználása a mindennapok egyszerűbb problémáinak megoldásában segíti a matematika hasznosságának felismerését, megértését. A tanulmányok végére meg kell ismerni a valós számkör fogalmát és benne a műveleteket. Műveleteket értelmezünk az algebra és a vektorok körében is. Célszerű, ha a műveletek gyors és helyénvaló elvégzéséhez - lehetőség szerint - használunk különböző elektronikus eszközöket. A helyes függvényszemlélet kialakítása, elemi függvények ábrázolása, elemzése gyakran segíti a természettudományos tárgyak, gyakorlati problémák leírását, megértését. Az elemi geometriai ismeretek, trigonometriai számítások, tételek-bizonyítások, síkés térgeometriai fogalmak, transzformációk fontosak az analógiás gondolkodás fejlesztésében, bizonyos gyakorlati feladatok megoldásában. A kerület, terület, felszín, térfogat kiszámításával kapcsolatos feladatok segítik a szakmák problémáinak megoldását is. A koordinátageometriai ismeretek megmutatják a matematika különböző ágainak kapcsolatát, komplexitását. A nyelv logikai elemeinek helyes használata (pl.: ha, akkor, akkor és csak akkor ) az élet minden területén hasznos és fontos. Gyakorlottság a matematikai problémák megoldásában, jártasság a logikus gondolkodásban A matematikai tartalmú szövegek önálló értelmezése, elemzése hozzásegít az önálló problémamegoldáshoz. A problémák többféle megközelítése, a feltételek alapos vizsgálata, a többféle megoldás megkeresése fejleszti a logikus gondolkodást, a diszkussziós képességet. A tudományok és a mindennapi problémák megértését szolgálják a különböző számításos feladatok, a leíró statisztika, a valószínűség számítás elemeinek megismerése, alkalmazása. A dolgozók iskoláiban érdemes a tananyag feladatait a tanulók napi munkájához kapcsolni, ezzel is igazolva a matematika gyakorlati hasznosságát, felhasználhatóságát. Az elsajátított megismerési módszerek és gondolkodási műveletek alkalmazása A évfolyamok matematika tanítása-tanulása során fontos szerepet kap az absztrakciós képesség fejlesztése, az induktív módszer mellett a deduktív következtetések határozottabb megjelenése, a bizonyítási igény továbbfejlesztése, bizonyítási módszerek megismerése, fogalmak, szabályok precíz megfogalmazása. A tanult halmazelméleti- és logikai ismeretek, modellek hozzásegítenek a rendszerben való látás kialakulásához, a matematika komplexitásának felismeréséhez. A logikus, fegyelmezett gondolkodás a szokatlan szituációkban ugyanolyan fontos, mint a már ismert algoritmusok használatánál. Az alkalmazásképes tudás fejlesztését szolgálja a jól megválasztott szemléltető ábrák, geometriai modellek, videofilmek, számítógépes animációk, Internet lehetőségek, grafikus zsebszámológépek felhasználása. Helyes tanulási szokások kialakítása, fejlesztése Nagyon fontosnak tartjuk a felnőttek esetében is a személyre szabott tanulási stratégiák kidolgozását. A napi munka mellett általában a szükségesnél kevesebb a tanulásra fordítható idő, így ami van, azt a nagyon intenzíven kell kihasználni. Fontos, hogy a hallgatókat megtanítsuk a lényeg kiemelésére, a probléma megoldásához vezető többféle út kipróbálására. Fejlesszük kezdeményezőképességüket, a bátor - de néha a tévedésektől sem mentes - gondolkodás kialakulását, megerősítését. Ismertessük meg a kerekítés, becslés, közelítő értékekkel való számolás előnyeit, az ellenőrzés, az eredmény realitásvizsgálatának fontosságát. Kívánjuk meg a

3 szövegek értő olvasását, szaknyelv helyénvaló használatát, a jelölésrendszer alkalmazását. Szoktassuk rá a tanulókat a helyes jegyzetelésre, a szakirodalmi könyvek és különböző szövegek tartalmának lényegkiemelésére. Az érvelések, jó kérdések fejlesztik a logikus gondolkodást, a toleranciát, a mások gondolatmenetének megértését, a kulturált és értelmes viták kialakulását. Pozitív motivációt jelenthet a könyvtár, az Internet célszerű használata és a különböző matematikatörténeti érdekességek, matematikai alkalmazások megismerése. A fentiek gyakorlati megvalósítását a házi feladatok mellett önkéntesen vállalt beszámolók, pár perces tájékoztatók tehetik változatossá. Szintrehozás Minden témakör elejére sok egyszerű gyakorlatorientált feladathoz kapcsolva rendszerező ismétlést tervezünk, melynek célja: az előző évfolyamokon tanultak összefoglaló áttekintése; megalapozása az új tananyagnak; a tanulói csoport tagjai számára egy olyan lehetőség felkínálása, melynek során közel azonos tudásszintre juthatnak. A 12. évfolyamon - az érettségi miatt nagy részben rendszerező ismétlés folyik, felkészülés az érettségire. Éppen ezért a tanév elején nem, hanem az új témákhoz kapcsolódva tervezünk ismétlést, hogy hatékonyabb legyen a vizsgára való felkészülés.

4 ESTI MUNKAREND Felhasználható órák 9. évfolyam 10. évfolyam 11. évfolyam 12. évfolyam Gondolkodási módszerek Számtan, algebra Függvények, sorozatok Geometria Valószínűség, statisztika Év végi ismétlés Összesen ÉVFOLYAM Évi óraszám: 111 Gondolkodási módszerek (6 óra) A szemléletes fogalmak definiálása, tudatosítása. A megismert számhalmazok (természetes számok, egész számok, racionális számok, valós számok), ponthalmazok áttekintése, véges és végtelen halmazok, az intervallum fogalma (nyílt, zárt) A számegyenes mint a valós számok egy modellje, az irracionális számok geometriai szemléltetése. Halmazműveletek: unió, metszet, részhalmaz képzés, két halmaz különbsége Alaphalmaz, üres halmaz fogalma, halmaz komplementere. Egyszerű azonosságok szemléletes bizonyítása (Venn-diagram). Példák véges és végtelen halmazokra. Tájékozottság a racionális számkörben. Részhalmaz, unió, metszet, két halmaz különbsége.

5 Számtan, algebra (39 óra) A fogalom célszerű kiterjesztése, a számok nagyságrendjének tudása. Alapműveletek és zárójelek kezelése a valós számkörben. (folyamatos) Műveletek végzése számokkal és algebrai kifejezésekkel, a szaknyelv használata. A műveleti azonosságok biztos alkalmazása ismeretlent tartalmazó kifejezésekkel A hatványozás értelmezése 0 és negatív egész kitevőre, a hatványozás azonosságai; számok abszolút értéke, normál alakja. Nevezetes azonosságok: kommutativitás, asszociativitás, disztributivitás; (a ± b) 2, a 2 b 2 szorzat alakja. Szorzattá alakítás módszerei: kiemelés, csoportosítás, nevezetes azonosságok alkalmazása, Ezen azonosságok alkalmazása egyszerű algebrai törtekkel végzett műveleteknél (Egyszerűsítés, szorzás, osztás, összevonás.) Algebrai kifejezések értelmezési tartományának vizsgálata. Az értelmezési tartomány megváltozásának tipikus esetei. Egyes változók kifejezése fizikai, kémiai képletekben A lineáris egyenletek megoldásának áttekintése Egyenletek megoldása mérlegelvvel, szorzattá alakítással, értelmezési tartomány és értékkészlet vizsgálatával. Törtes egyenletek. A megoldáshalmaz pontos meghatározása. Azonosság és ellentmondás fogalma. Szöveges feladatok a gyakorlati élet, valamint a fizikai, kémiai alkalmazások területéről. Szöveges feladatok alaptípusai. Százalékszámítás típusfeladatai, számítások arányos osztással. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja A másodfokú azonosságok alkalmazása. A műveleti azonosságok biztos alkalmazása racionális számkörben. A négy alapművelet egyszerű algebrai törtekkel A négyzetes azonosságok és a szorzattá alakítás alkalmazása egyenletekben, a megoldáshalmaz és az értelmezési tartomány összevetése. Szöveges információk rögzítése matematikai jelekkel.

6 A rendszerező képesség fejlesztése. A matematika iránti érdeklődés erősítése az elemi számelmélet alapvető problémáival és matematikatörténeti vonatkozásaival. Induktív gondolkodás fejlesztése (próbálgatás, általánosítás). Elsőfokú két ismeretlenes egyenletrendszer megoldása (behelyettesítő módszer, egyenlő együtthatók módszere, grafikus módszer) Egyenletrendszerre vezető szöveges feladatok, százalékszámítás, kamatszámítás Abszolút értékes egyenletek megoldása algebrai és grafikus úton. Relatív prímek, oszthatósági feladatok (számolás maradékokkal, oszthatósági szabályok. Példa számrendszerekre. Egyszerű egyenletrendszerek biztos megoldása A százalékszámítás alkalmazása a gyakorlatban. Egyenlőtlenség megoldásának ábrázolása számegyenesen. 3-mal, 9-cel való oszthatóság ismerete. Számok prímtényezőkre való bontása. Prímtényezős felbontás, legnagyobb közös osztó, legkisebb közös többszörös. Függvények, sorozatok (18 óra) A függvényszemlélet fejlesztése: a hozzárendelések szabályként való értelmezése A megfelelő modell megkeresése Egyenlet és függvény kapcsolatának megismertetése. A függvény fogalma, elemi tulajdonságai; a lineáris függvény, abszolút érték függvény, másodfokú függvény, a négyzetgyök függvény, gyakorlati példák további függvényekre (egészrész-, törtrész-, előjelfüggvény), a fordított arányosság függvény. Értékkészlet, értelmezési tartomány, zérus hely, monotonitás, paritás, korlátosság, szélsőértékek. Az elemi függvények grafikonjainak geometriai tulajdonságai. Az alapfüggvények ábrázolása értéktáblázat nélkül, tulajdonságainak ismerete Képlettel megadott függvény ábrázolása értéktáblázat segítségével.

7 Célszerű eszközhasználat. Függvény transzformációk Példák változó-, és érték transzformációkra (eltolás az x illetve y tengely mentén, nyújtás és tükrözés az x tengelyre) Másodfokú függvény ábrázolása teljes négyzetté alakítással, elemi racionális törtfüggvény ábrázolása átalakítással. Két ismeretlenes egyenletrendszer grafikus megoldása. Az alapfüggvények transzformációi A teljes négyzetté alakítás módszerének ismerete. Geometria (36 óra) Tájékozottság a megismert síkidomok tulajdonságaiban. Sejtések megfogalmazása, új összefüggések felfedezése, bizonyítási igény kialakítása. Geometriai alapfogalmak (pontok, egyenesek és síkok kölcsönös helyzete), háromszögekkel, négyszögekkel, sokszögekkel kapcsolatos ismeretek kiegészítése, rendszerezése. Nevezetes ponthalmazok a síkban és a térben A háromszög nevezetes vonalai, beírt köre, sugarának meghatározása, körülírt köre, magasságpont, súlypont, a súlyvonal mint területfelező. Thalész tétele és megfordítása, néhány alkalmazás, a kör és érintői, érintősokszög fogalma. Pitagorasz tételének alkalmazása. Speciális háromszögek, négyszögek és szabályos sokszögek tulajdonságainak ismerete. A nevezetes vonalak ismerete, a háromszögbe-, és köré írt kör ismerete, tompaszögű háromszög magasságvonalának meghatározása A körrel kapcsolatos fogalmak és az érintő tulajdonságának ismerete Érintő szerkesztése Thalészkörrel.

8 A transzformációk mint függvények értelmezése, a matematika különböző területei közötti kapcsolatok keresése. Síkbeli tájékozódás, tervezés, a konstrukciós, analizáló képesség és a diszkussziós igény kialakítása, sokoldalú szemléltetés, szerkesztőprogramok megismerése. Valószínűség, statisztika (6 óra) A statisztikai adatok helyes értelmezése. A hétköznapi életben megjelenő statisztikai adatok elemzése. Helyi tanterv Matematika évfolyam A geometriai transzformáció fogalma, példák geometriai transzformációkra A tengelyes és középpontos tükrözés, ezek tulajdonságai, néhány alkalmazása (tengelyes és középpontos szimmetria; a paralelogramma, a háromszög és a trapéz középvonala, a paralelogramma ekvivalens tulajdonságai). Az eltolás áttekintése, rendszerezése, a vektor fogalma. Példa további egybevágósági transzformációra (pont körüli elforgatás, forgásszimmetria). Az alakzatok egybevágósága, sokszögek egybevágóságának, speciális sokszögek egybevágóságának esetei. A forgásszög fogalma, ívmérték, a kör középponti szöge, körív hossza, körcikk kerülete, területe Egyszerű szerkesztési feladatok. Statisztikai adatok és ábrázolásuk (kördiagram, oszlopdiagram stb.), számtani közép, medián, módusz; adatok szóródásának mérése. Év végi ismétlés és rendszerező összefoglalás (6 óra) A megismert transzformációk tulajdonságainak felhasználása egyszerű, konkrét esetekben Háromszögek és speciális négyszögek egybevágósági alapeseteinek ismerete. Az ívmértékre való átváltás elvégzése. Számsokaság számtani közepének kiszámítása, a középső érték (medián) és a leggyakoribb érték (módusz) ismerete Kördiagram, oszlopdiagram adatainak értelmezése.

9 10. ÉVFOLYAM Évi óraszám: 111 Gondolkodási módszerek (6 óra) A köznapi gondolkodás és a matematikai gondolkodás megkülönböztetése A bizonyítási igény további fejlesztése. Számtan algebra (36 óra) A permanencia elve a számfogalom bővítésében. A hatványfogalom további kiterjesztése. A megoldás keresése többféle úton, tanulói felfedezések, önálló eljárások keresése Az algoritmikus gondolkodás fejlesztése. Tétel és megfordítása (folyamatos) Bizonyítási módszerek, jellegzetes gondolatmenetek (indirekt módszer, skatulyaelv konkrét példákon keresztül). Változatos kombinatorikai feladatok a hétköznapi életből. A valós szám szemléletes fogalma, kapcsolata a számegyenessel, a valós számok tizedes tört alakja. Kapcsolat a racionális számok (közönséges) tört és tizedes tört alakja között.. Példák irracionális számokra. A négyzetgyökvonás azonosságai: ismétlés. Az n- edik gyök fogalma, azonosságai. Racionális kitevős hatványok. A másodfokú egyenlet megoldása (teljes négyzetté kiegészítés), a megoldóképlet (a megoldhatóság vizsgálata, a diszkrimináns szerepe), gyöktényezős alak. A másodfokú egyenlet és a másodfokú függvény kapcsolata. Törtes másodfokú egyenletek. Összefüggés két pozitív szám számtani és mértani közepe között. Másodfokúra visszavezethető egyenletek, egyenletrendszerek. A csak kimondott, illetve be is bizonyított összefüggések megkülönböztetése. Egyszerű sorba rendezési és kiválasztási feladatok konkrét elemszám esetén. Tájékozottság a valós számok halmazán, a racionális és irracionális számok tizedes tört alakja, nevezetes irracionális számok ismerete. A négyzetgyökvonás azonosságainak alkalmazása egyszerű esetekben Számolás racionális kitevős hatványokkal. A megoldóképlet biztos ismerete és alkalmazása. A gyökök száma és a diszkrimináns előjele közötti összefüggés ismerete. Másodfokú kifejezés szorzatalakjának felírása. Két pozitív szám számtani és mértani közepének fogalma.

10 Diszkussziós igény az algebrai feladatoknál. Az algebrai és grafikus módszerek együttes alkalmazása a problémamegoldásban. Ekvivalens és nem ekvivalens lépések egyenletek átalakításánál, egyszerű négyzetgyökös egyenletek. Az értelmezési tartomány és az értékkészlet vizsgálata. Másodfokú egyenlőtlenség megoldása szozattá bontás és számegyenes segítségével. Egyszerű négyzetgyökös egyenlet megoldása A megoldások ellenőrzése. Megengedett és nem megengedett lépések körének ismerete egyenlőtlenség megoldása során. Függvények, sorozatok (21 óra) Új függvénytulajdonságok megismerése, függvénytranszformációk további alkalmazása A négyjegyű függvénytáblázatok, matematikai összefüggések és a zsebszámológép célszerű használata. Geometria (30 óra) A transzformációs szemlélet fejlesztése. A szögfüggvényfogalom kiterjesztése, a forgásszög szögfüggvényeinek értelmezése, tgx és ctgx szabatos definíciója és értelmezési tartománya. Összefüggések a szög szögfüggvényei között. Az egységkör használata szögvisszakeresésben. Nevezetes szögek felismerése és szögfüggvényeinek meghatározása ívmértékes megadás esetén A trigonometrikus függvények tulajdonságai (értelmezési tartomány, korlátosság, monotonitás, zérushelyek, szélsőértékek, periodicitás, értékkészlet, paritás), a függvények ábrázolása. Egyszerű trigonometrikus egyenletek megoldása. Párhuzamos szelők tétele. A középpontos hasonlósági transzformáció fogalma és tulajdonságai. A hasonlósági transzformáció fogalma, síkidomok hasonlósága. A szögfüggvények definíciójának ismerete, az x a sinx, x a cosx és x a tgx függvények ábrázolása és tulajdonságai. Szögvisszakeresés egységkörrel és/vagy fúggvénnyel. A hasonlóság szemléletes tartalmának ismerete, a középpontos nagyítás és kicsinyítés alkalmazása egyszerű gyakorlati feladatokban.

11 Kreatív problémamegoldás Geometriai ismeretek alkalmazása, biztos számolási készség, zsebszámológép célszerű használata. Tervszerű munkára nevelés Az esztétikai érzék fejlesztése. Valószínűség, statisztika (12 óra) Modellalkotásra nevelés Modell és valóság kapcsolata. Helyi tanterv Matematika évfolyam A háromszögek hasonlóságának alapesetei A hasonlóság alkalmazásai: háromszög súlyvonalai, súlypontja, arányossági tételek a derékszögű háromszögben (befogótétel, magasságtétel) Hasonló síkidomok területének aránya, hasonló testek térfogatának aránya Hegyesszögek szögfüggvényeinek értelmezése, szögfüggvények alkalmazása derékszögű háromszög hiányzó adatainak kiszámítására, gyakorlati feladatok. Síkbeli és térbeli számítások (pl. háromszögek, négyszögek, sokszögek területének meghatározása szögfüggvények segítségével). Nevezetes szögek szögfüggvény-értékeinek kiszámítása. Két vektor skaláris szorzata A skaláris szorzat tulajdonságainak felsorolása Szinusztétel, koszinusztétel Az alkalmazásukhoz szükséges egyszerű trigonometrikus egyenletek A háromszög szinuszos területképlete. Relatív gyakoriság A valószínűség klasszikus modellje. Év végi ismétlés, rendszerező összefoglalás (6 óra) Az alapesetek ismerete A felsorolt tételek ismerete és alkalmazása egy vagy két lépéssel megoldható számítási feladatoknál. A szinusztétel és a koszinusztétel alkalmazása alapfeladatok megoldásában (a háromszög hiányzó adatainak meghatározása). A relatív gyakoriság és a valószínűség közötti szemléletes kapcsolat ismerete, egyszerű valószínűségi feladatok megoldása.

12 11. ÉVFOLYAM Évi óraszám: 111 Gondolkodási módszerek (15 óra) A kombinatív, rendszerezési készség fejlesztése A többféle megoldási mód lehetőségének keresése Előzetes becsléshez szoktatás, a becslés összevetése a számításokkal. A gráf modellként való felhasználása. Véges halmaz permutációi, variációi, kombinációi számának meghatározása egyszerű esetekben Binomiális együtthatók, Pascal-háromszög Véges halmaz részhalmazainak száma Vegyes kombinatorikai feladatok. Gráfelméleti alapfogalmak, alkalmazásuk Feladatok megoldása gráfokkal. Egyszerű kombinatorikai feladatok megoldása. A gráf szemléletes fogalma, egyszerű alkalmazásai. Számtan, algebra (30 óra) A matematikai fogalom célszerű kiterjesztése, a fogalmak általánosításánál a permanencia elv felhasználása. Bizonyítás iránti igény mélyítése Az absztrakciós és szintetizáló képesség fejlesztése Az önellenőrzés igényének fejlesztése. A hatványozás kiterjesztése pozitív alap esetén racionális kitevőkre, a hatványozási azonosságok: ismétlés A logaritmus értelmezése. A logaritmus, mint a hatványozás inverz művelete. A logaritmus azonosságai. Exponenciális és logaritmikus egyenletek. A hatványozás definíciója, műveletek, azonosságok ismerete egész és racionális kitevő esetén. A logaritmus fogalmának ismerete, azonosságainak alkalmazása egyszerűbb esetekben. A definíció és az azonosságok egyszerű alkalmazása exponenciális és logaritmusos egyenlet esetén. Függvények, sorozatok (12 óra) A függvényfogalom fejlesztése Összefüggések felismerése a matematika különböző területei között A bizonyításra való törekvés fejlesztése. A 2 x, a 10 x függvény, az exponenciális függvény vizsgálata, exponenciális folyamatok a természetben A logaritmus függvény, mint az exponenciális függvény inverze.

13 Számítógép használata a függvényvizsgálatokban és a transzformációkban Függvények alkalmazása algebrai feladatokban. A szögfüggvényekről tanultak áttekintése. A tanult függvények tulajdonságai (értelmezésitartomány, értékkészlet, zérus hely, szélsőérték, monotonitás, periodicitás, paritás). A szögfüggvények transzformációi: f(x) + c; f(x + c); c f(x); f(cx). Az alapfüggvények ábrái és legfontosabb tulajdonságainak vizsgálata (értelmezési-tartomány, értékkészlet, zérus hely, szélsőérték). Geometria, mérés (36 óra) A térszemlélet fejlesztése Pontos fogalomalkotásra törekvés Geometriai feladatok megoldása algebrai eszközökkel. A bizonyítási készség fejlesztése. Adott probléma többféle megközelítése. A vektorokról tanultak áttekintése, rendszerezése. A vektorműveletek tulajdonságai Helyvektor. Műveletek koordinátákkal adott vektorokkal Vektor 90 -os elforgatottja koordinátarendszerben. Szakasz osztópontja A háromszög súlypontja. Két pont távolsága, szakasz hossza. A kör egyenlete. Az egyenes irányára jellemző adatok: az irányvektor, a normálvektor, az iránytangens fogalma, kapcsolatuk. Az egyenes egyenlete, különböző alakjai Két egyenes párhuzamosságának, merőlegességének feltétele, két egyenes metszéspontja Kör és egyenes kölcsönös helyzete. A kétismeretlenes másodfokú egyenlet és a kör egyenletének kapcsolata. A kör adott pontbeli érintője. Vektorműveletek és tulajdonságaik (összeadás, kivonás, skalárral való szorzás, skaláris szorzat). Vektorok alkalmazásai. Vektorok koordinátáinak biztos használata. Szakasz felezőpontja koordinátáinak kiszámítása. A kör középponti egyenletének ismerete. Az egyenes egy szabadon választott egyenletének tudása Két egyenes metszéspontjának meghatározása Kör és egyenes kölcsönös helyzetének vizsgálata.

14 Valószínűség, statisztika (12 óra) A körülmények kellő figyelembevétele Előzetes becslés összevetése a számításokkal. A számítógép alkalmazása statisztikai adatok, illetve véletlen jelenségek vizsgálatára A mindennapi problémák értelmezése, a statisztikai zsebkönyvek, a napi sajtó adatainak elemzése. Egyszerű valószínűségszámítási problémák Néhány konkrét eloszlás vizsgálata Műveletek eseményekkel konkrét valószínűségszámítási példák esetén ( és, vagy, nem ). Statisztikai mintavétel (Visszatevéses és visszatevés nélküli mintavétel.) Év végi ismétlés, rendszerező összefoglalás (6 óra)

15 12. ÉVFOLYAM Évi óraszám: 96 Gondolkodási módszerek (6 óra) Az ismeretek rendszerezése: A matematika különböző területei közti összefüggéseinek tudatosítása. A deduktív gondolkodás fejlesztése. Ekvivalencia, implikáció. A halmazelméleti és logikai ismeretek kapcsolata, rendszerezése. A megismert bizonyítási módszerek összefoglalása. Az előző években felsorolt továbbhaladási feltételek. Számtan, algebra (15 óra) Matematikatörténeti ismeretek (könyvtár- és internethasználat). Szám- és műveletfogalom biztos alkalmazása. Tervszerű, pontos és fegyelmezett munkára nevelés Az önellenőrzés fontossága. A kombinatorikai és gráfokkal kapcsolatos ismeretek áttekintése. Rendszerező összefoglalás Számhalmazok Számelméleti összefoglalás. A valós számok és részhalmazai. A műveletek értelmezése, műveleti tulajdonságok. Közelítő értékek. Egyenletek Nevezetes másod- és harmadfokú algebrai azonosságok Az egyenletmegoldás módszerei Az alaphalmaz szerepe (értelmezési tartomány és értékkészlet vizsgálata). Egyenlőtlenségek Egyenlet-, illetve egyenlőtlenségrendszerek Másodfokú kifejezések Másodfokú egyenletek. Négyzetgyökös kifejezések és egyenletek Exponenciális, logaritmikus és trigonometrikus kifejezések, egyszerű egyenletek. Az előző években felsorolt továbbhaladási feltételek.

16 A problémamegoldó Szöveges feladatok gondolkodás, a szövegértés, a szövegelemzés fejlesztése. Függvények, sorozatok (15 óra) A matematika alkalmazása a gyakorlati életben Matematikatörténeti feladatok A legfontosabb közgazdasági és pénzügyi számítások matematikai alapjainak áttekintése. Az absztrakciós készség fejlesztése A függvényszemlélet fejlesztése A függvények alkalmazása a gyakorlatban és a természettudományokban. Geometria, mérés (30 óra) A térszemlélet fejlesztése Az esztétikai érzék fejlesztése. A matematika gyakorlati alkalmazásai a térgeometriában Sík- és térgeometriai ismeretek összekapcsolása, analógiák felismerése. A sorozat fogalma Számtani és mértani sorozat, az n. tag, az első n elem összege Kamatoskamat-számítás Példák egyéb sorozatokra (rekurzió, pl. a Fibonaccisorozat). Rendszerező összefoglalás A függvényekről tanultak áttekintése, rendszerezése Az alapfüggvények ábrázolása Függvénytranszformációk f(x) + c; f(x + c); c f(x); f(cx). Függvényvizsgálat a függvények grafikonjainak segítségével. Térelemek kölcsönös helyzete, távolsága, szöge. A síkra merőleges egyenes tételének ismerete. Egyszerű poliéderek. A terület- és kerületszámítással kapcsolatos ismeretek összefoglalása. A poliéderek felszíne, térfogata. A hengerszerű testek, a henger felszíne és térfogata Kúpszerű testek A kúpszerű testek felszíne és térfogata A csonkagúla, csonkakúp térfogata, felszíne A gömb felszíne, térfogata. Számtani és mértani sorozat esetén az n-edik tag, és az első n elem összegének kiszámítása feladatokban Kamatoskamat-számítás alkalmazása egyszerű gyakorlati feladatokban. Az előző években felsorolt továbbhaladási feltételek. Az előző években felsorolt továbbhaladási feltételeken kívül: térelemek kölcsönös helyzetének, távolságuk, hajlásszögük definíciójának ismerete. A megismert felszín- és térfogat számítási képletek alkalmazása egyszerű feladatokban.

17 A függvényszemlélet fejlesztése A deduktív gondolkodás fejlesztése. A matematika különböző területei közötti összefüggések felhasználása. Rendszerező összefoglalás Geometriai alapfogalmak, ponthalmazok. A geometriai transzformációk áttekintése Háromszögekre vonatkozó tételek és alkalmazásaik Négyszögekre vonatkozó tételek és alkalmazásaik Körre vonatkozó tételek és alkalmazásaik. Vektorok, vektorok koordinátái Vektorműveletek, műveleti tulajdonságok, alkalmazások Derékszögű koordinátarendszer Alakzatok egyenlete Trigonometrikus összefüggések és alkalmazásaik. Valószínűség, statisztika (6 óra) A leíró statisztika és a valószínűségszámítás gyakorlati szerepe, alkalmazása A számítógép felhasználása statisztikai adatok kezelésére, véletlen jelenségek vizsgálatára. Geometriai modell szerepeltetése a valószínűség meghatározására. Felkészülés az érettségire (24 óra) Statisztikai és mintavételi adatok vizsgálata (közvélemény-kutatás, minőség ellenőrzés). A valószínűség meghatározása geometriai mérték segítségével. A geometriai modellre visszavezethető feladatok A véletlen paradoxonai. Összefoglalás: Adathalmazok jellemzői: számtani közép, mértani középsúlyozott közép, medián, módusz, szórás Gyakoriság, relatív gyakoriság. A klasszikus valószínűségi modell. Az előző években felsorolt továbbhaladási feltételek. Egyszerű klasszikus valószínűség-számítási feladatok megoldása.

18 LEVELEZŐ MUNKAREND A konzultációs órákon az adott témakör otthoni, önálló megtanulásához adunk segítséget. A megtanulandó tananyaghoz vázlatot kapnak a diákok, az alapvető fogalmak, eljárások ismertetése, magyarázata mellett. A tanórákon tanári magyarázat folyik. A diákoktól otthoni tanulás keretében a megadott (tankönyvből és példatárból ) kijelölt tananyag megtanulása, begyakorlása a feladat. Minden tanévben, az év során négy házi dolgozat elkészítése az otthoni, önálló gyakorlást szolgálja. Érdemjegyet ezekre a munkákra nem kapnak a diákok, de elkészítésük, beadásuk határidőre kötelező. A házi dolgozatokat kijavítás után visszakapják a tanulók. Arra törekszünk, hogy részletesen javításra kerüljenek a típushibák, ezzel is segítjük az otthoni hibátlan gyakorlást, rögzítést. Az önálló tanuláshoz ajánlott tankönyv: Koller Lászlóné: Matematika érettségire felkészítő tankönyv (rsz.12800), és Koller Balázs: Matematika érettségire felkészítő tankönyv feladatai és azok megoldásai (rsz.81426). Igény esetén arra is teremtünk lehetőséget, hogy tanfolyami keretek között is gyakorolják a matematikát. Érettségi előkészítő tanfolyam indítására is lesz lehetőség. Ezzel is a sikeres felkészüléshez szeretnénk segítséget nyújtani. A számonkérések formája minden vizsgán írásbeli vizsga. A számonkérések, vizsgák követelmény rendszere teljes egészében lefedi a középszintű érettségi követelményeket. Konzultációs témakörök Az alábbiakban megadott témakörök tananyag tartalma minden témakör esetén a fent részletezett tantervben írtakkal azonos. 9. ÉVFOLYAM Összesen 9 konzultáció, konzultációnként 3 óra 1. Az általános iskolai ismeretek rendszerezése 2. Halmazok, oszthatóság az egész számok halmazában 3. Hatványozás egész kitevővel, nevezetes négyzetes azonosságok 4. Műveletek polinomokkal és algebrai törtekkel 5. Elsőfokú egyismeretlenes egyenletek, és elsőfokú kétismeretlenes egyenletrendszerek 6. Függvények 7. Nevezetes ponthalmazok, sokszögek 8. Egybevágósági transzformációk, műveletek vektorokkal 9. Statisztika Megfelelő tájékozottság a racionális számkörben, a tanult műveletek végzésében. Részhalmaz, unió, metszet, különbség két konkrét halmaz esetén. Normálalak. A legfeljebb másodfokú azonosságok ismerete és alkalmazása egyszerű példák esetén. Alapműveletek egyszerű algebrai egészekkel. Százalékszámítás gyakorlati alkalmazásai. Számok prímtényezős alakja. Oszthatóság (3, 9 számokkal). Egyszerű elsőfokú egyenlet, egyenlőtlenség megoldása. A tanult alapfüggvények tulajdonságainak felismerése. Képlettel megadott, tanult függvény ábrázolása

19 (pl.: értéktáblázattal), egy lépéses transzformáció. Speciális három-, négyszögek, szabályos sokszögek (pl.: hatszög) tulajdonságai. Háromszög nevezetes vonalainak, beírt- és köré írt körének ismerete. A kör és a körrel kapcsolatos fogalmak ismerete. A tanult transzformációk tulajdonságainak felhasználása egyszerű, konkrét matematikai és gyakorlati feladatokban. Több szám számtani közepének kiszámítása, medián és módusz ismerete. Kör- és oszlopdiagramok felismerése, értelmezése egyszerű esetekben. 10. ÉVFOLYAM Összesen 9 konzultáció, konzultációnként 3 óra 1. Négyzetgyökvonás és azonosságai, az n-edik gyök fogalma 2. A másodfokú egyenlet 3. A másodfokú függvény, és másodfokú egyenlőtlenség 4. Másodfokúra visszavezethető egyenletek 5. Hasonlóság 6. Szögfüggvények derékszögű háromszögben 7. A szögfüggvény fogalmának kiterjesztése 8. Trigonometrikus egyenletek 9. Kombinatorika, a valószínűség klasszikus fogalma Racionális és irracionális számok tizedes tört alakja. Négyzetgyökvonás azonosságainak alkalmazása egyszerű esetekben. Másodfokú egyenlet megoldó képletének ismerete, alkalmazása. Egyszerű négyzetgyökös egyenletek megoldása. Egyszerű szöveges feladatok. Két pozitív szám számtani és mértani közepének fogalma. Szögfüggvények definíciójának ismerete. A szinusz-, és koszinusz függvények tulajdonságai, ábrázolásuk. Hasonlóság szemléletes fogalma. Nagyítás és kicsinyítés alkalmazása konkrét gyakorlati feladatokban. A tanult geometriai tételek ismerete, felhasználása egyszerű kis számítási feladatokban. Egyszerű sorbarendezésiés kiválasztási feladatok. Valószínűségi feladatok megoldása a klasszikus modell alapján. 11. ÉVFOLYAM Összesen 10 konzultáció, konzultációnként 3 óra 1. Kombinatorika, a gráfelmélet alapfogalmai 2. A hatványozás kiterjesztése, exponenciális egyenletek 3. A logaritmus 4. Logaritmikus egyenletek 5. A szögfüggvényekről tanultak áttekintése 6. Műveletek koordinátákkal adott vektorokkal 7. Az egyenes egyenletei 8. A kör 9. Valószínűség számítás 10. A tanév anyagának rendszerezése Egyszerű kombinatorikai feladatok. A gráf szemléletes fogalma, egyszerű alkalmazásai. A hatványozás definíciója, műveletek, azonosságok ismerete egész kitevők esetén. A logaritmus

20 fogalmának ismerete, azonosságainak alkalmazása egyszerűbb esetekben. A definíció és a tanult azonosságok egyszerű alkalmazása exponenciális és logaritmusos egyenlet esetén. Az alapfüggvénynek ábrái és legfontosabb tulajdonságainak vizsgálata (értelmezési tartomány, értékkészlet, zérushely, szélsőérték). Vektorműveletek és tulajdonságaik (összeadás, kivonás, skalárral való szorzás). Vektorok alkalmazásai. A szinusztétel és koszinusz tétel alkalmazása alapfeladatok megoldásában (a háromszög hiányzó adatainak meghatározása). Vektorok koordinátáinak biztos használata. Szakasz felezőpontja koordinátáinak kiszámítása. A kör középponti egyenletének ismerete. Az egyenes egy szabadon választott egyenletének tudása. Két egyenes metszéspontjának meghatározása, a kör és egyenes kölcsönös helyzetének vizsgálata. A relatív gyakoriság és a valószínűség közötti szemléletes kapcsolat ismerete, egyszerű valószínűségi feladatok megoldása. 12. ÉVFOLYAM Összesen 9 konzultáció, konzultációnként 3 óra 1. Matematikai logika 2. Algebra összefoglalás (számelmélet, algebrai azonosságok, első-, és másodfokú egyenletek) 3. Algebra összefoglalás (hatvány, gyök, logaritmus) 4. Sorozatok 5. Síkgeometria ismétlés (síkidomok területe, kerülete, nevezetes összefüggések derékszögű háromszögben) 6. Hasábok felszíne, térfogata 7. Gúlák, és a gömb felszíne, térfogata 8. Rendszerező összefoglalás 9. Érettségire készülés, gyakorlás Az előző években felsorolt továbbhaladási feltételeken kívül: A számtani- és mértani sorozat n- edik tagja és az első n elem összegének kiszámítása feladatokban. Kamatos-kamatszámítás alkalmazása egyszerű gyakorlati feladatokban. Térelemek kölcsönös helyzetének, távolságuk, hajlásszögük definíciójának ismerete. A megismert felszín-, és térfogat számítási képletek alkalmazása egyszerű feladatokban.

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804)

Matematika. 9.osztály: Ajánlott tankönyv és feladatgyűjtemény: Matematika I-II. kötet (Apáczai Kiadó; AP-090803 és AP-090804) Matematika A definíciókat és tételeket (bizonyítás nélkül) ki kell mondani, a tananyagrészekhez tartozó alap- és közepes nehézségű feladatokat kell tudni megoldani A javítóvizsga 60 -es írásbeliből áll.

Részletesebben

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú

Részletesebben

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA 1 SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 9. ÉVFOLYAM SZÁMÁRA Heti óraszám: 3 Éves óraszám: 37 x 3 = 111 A tanmenet 101 óra beosztását tartalmazza. A dolgozatok írása és javítása 10 órát foglal

Részletesebben

Az osztályozó vizsgák tematikája matematikából

Az osztályozó vizsgák tematikája matematikából Az osztályozó vizsgák tematikája matematikából Matematikából osztályozó vizsgára kötelezhető az a tanuló, aki magántanuló, vagy akinek a hiányzása eléri az össz óraszám 30%-át. Az írásbeli vizsga időtartama

Részletesebben

Matematika tanmenet 12. osztály (heti 4 óra)

Matematika tanmenet 12. osztály (heti 4 óra) Matematika tanmenet 12. osztály (heti 4 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 12. középszint Példatárak: Fuksz Éva Riener Ferenc: Érettségi feladatgyűjtemény

Részletesebben

9-12. ÉVFOLYAM. Fejlesztési követelmények Az általános fejlesztési követelményeket az alsóbb évfolyamokhoz hasonlóan öt csoportba soroljuk.

9-12. ÉVFOLYAM. Fejlesztési követelmények Az általános fejlesztési követelményeket az alsóbb évfolyamokhoz hasonlóan öt csoportba soroljuk. Esti tagozat 9-12. ÉVFOLYAM Célok és feladatok A felnőttoktatás középiskoláiba valószínűleg két fő ok miatt jelentkeznek a tanulók. Az egyik ok, hogy a pillanatnyi szakterületükön való további megfelelés

Részletesebben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben

17.2. Az egyenes egyenletei síkbeli koordinátarendszerben Tartalom Előszó 13 1. Halmazok; a matematikai logika elemei 15 1.1. A halmaz fogalma; jelölések 15 1.2. Részhalmazok; komplementer halmaz 16 1.3. Halmazműveletek 17 1.4. A halmazok ekvivalenciája 20 1.5.

Részletesebben

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam

Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Az osztályozó vizsgák tematikája matematikából 7-12. évfolyam Matematikából a tanulónak írásbeli és szóbeli osztályozó vizsgán kell részt vennie. Az írásbeli vizsga időtartama 60 perc, a szóbelié 20 perc.

Részletesebben

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA. 9. Nyelvi előkészítő osztály MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 01. 01. kezdete: Oldal/összes: 1/6 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA

Részletesebben

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése.

Célok, feladatok Fejlesztési terület Ismeretanyag. A kilencedik osztályos tananyagra támaszkodva egy nyílt végű feladat megoldása, megbeszélése. Matematika 10. első kötet Témák Az óra témája (tankönyvi 1. Bevezető óra (101. Ismerkedés a tankönyvvel 2. Nyílt végű feladat: Szálloda tervezése (102. 3. Matematikai logika: Igaz vagy hamis (103. 4. Matematikai

Részletesebben

Témakörök Témakör óraszáma Ismeretanyag Kompetenciák, nevelési célok, kapcsolódások 1. Gondolkodási és megismerési módszerek

Témakörök Témakör óraszáma Ismeretanyag Kompetenciák, nevelési célok, kapcsolódások 1. Gondolkodási és megismerési módszerek 11.évfolyam éves óraszáma: 108 óra Témakörök Témakör óraszáma Ismeretanyag Kompetenciák, nevelési célok, kapcsolódások 1. Gondolkodási és megismerési módszerek 12 óra Vegyes kombinatorikai feladatok, kiválasztási

Részletesebben

Matematika tantárgyi tanterv a 9-12. évfolyam számára. A kerettanterv alapján készült helyi tanterv óraterve. Általános profilú osztályokban

Matematika tantárgyi tanterv a 9-12. évfolyam számára. A kerettanterv alapján készült helyi tanterv óraterve. Általános profilú osztályokban MATEMATIKA 1 Matematika tantárgyi tanterv a 9-12. évfolyam számára A kerettanterv alapján készült helyi tanterv óraterve 9. osztály 10. osztály 11. osztály 12. osztály 37 hét 37 hét 37 hét 32 hét Otthoni

Részletesebben

Berzsenyi Dániel Gimnázium. Matematika helyi tanterv Fizika tagozat 9-12. évfolyam

Berzsenyi Dániel Gimnázium. Matematika helyi tanterv Fizika tagozat 9-12. évfolyam Általános szerkezet Berzsenyi Dániel Gimnázium Matematika helyi tanterv Fizika tagozat 9-12. évfolyam Cél: az emelt szintű érettségi követelményekben szereplő tananyag megtanítása, néhány részen kiegészítve

Részletesebben

MATEMATIKA 7. évfolyam

MATEMATIKA 7. évfolyam MATEMATIKA 7. évfolyam 1. Gondolkodási módszerek, halmazok, matematikai logika, kombinatorika Halmazba rendezés több szempont alapján a halmazműveletek alkalmazásával. Két véges halmaz uniója, különbsége,

Részletesebben

MATEMATIKA. 9-10. évfolyam. Célok és feladatok

MATEMATIKA. 9-10. évfolyam. Célok és feladatok MATEMATIKA 9-10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerő, alkalmazásra képes matematikai mőveltségét, biztosítsa a többi tantárgy

Részletesebben

Miskolci Magister Gimnázium

Miskolci Magister Gimnázium Miskolci Magister Gimnázium matematika 12. évfolyam 2013/2014 110/2012./VI.4./Kormányrendelet, és az 51/2012/XII.21./ EMMI kerettanterv alapján Készítette: Literáti Márta Helyi tanterv Jelen helyi tanterv

Részletesebben

Melléklet a Matematika című részhez

Melléklet a Matematika című részhez Melléklet a Matematika című részhez Az arányosság bemutatása Az első könyvsorozatban 7. osztály, Tk-2 és Tk-3-ban 6. osztály, Tk-3b-ben 5. osztály(!), Tk-4-ben ismét 6. osztály, és végül Tk-4b-ben 5-6.

Részletesebben

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára

MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára MATEMATIKA HELYI TANTERV Kéttannyelvű magyar-francia előkészítő év számára Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK

MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY A) KOMPETENCIÁK MATEMATIKA I. RÉSZLETES ÉRETTSÉGIVIZSGA-KÖVETELMÉNY Az érettségi követelményeit két szinten határozzuk meg: középszinten a mai társadalomban tájékozódni és alkotni tudó ember matematikai ismereteit kell

Részletesebben

MAGISTER GIMNÁZIUM MATEMATIKA 9. ÉVFOLYAM

MAGISTER GIMNÁZIUM MATEMATIKA 9. ÉVFOLYAM MAGISTER GIMNÁZIUM MATEMATIKA 9. ÉVFOLYAM Heti 4 óra Készítette: Literáti Márta Ellenőrizte:.. matematika tanár igazgató 1 Alapdokumentumok: EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet

Részletesebben

Érettségi témakörök IRODALOM I. ÉLETMŰVEK: Petőfi Sándor Arany János Ady Endre Babits Mihály Kosztolányi Dezső József Attila

Érettségi témakörök IRODALOM I. ÉLETMŰVEK: Petőfi Sándor Arany János Ady Endre Babits Mihály Kosztolányi Dezső József Attila Érettségi témakörök IRODALOM I. ÉLETMŰVEK: Petőfi Sándor Arany János Ady Endre Babits Mihály Kosztolányi Dezső József Attila II. PORTÉK: Balassi Bálint Berzsenyi Dániel Mikszáth Kálmán Radnóti Miklós III.

Részletesebben

Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Szabadon választható tantárgy: matematika előkészítő 11-12. évfolyam

Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Szabadon választható tantárgy: matematika előkészítő 11-12. évfolyam 1 Apor Vilmos Katolikus Iskolaközpont Helyi tanterv Szabadon választható tantárgy: matematika előkészítő 11-12. évfolyam 2 Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról

Részletesebben

Szakiskolát végzettek szakközépiskolai érettségire történő felkészítésének helyi tanterve /Esti/

Szakiskolát végzettek szakközépiskolai érettségire történő felkészítésének helyi tanterve /Esti/ Ikt.sz: 9/b. számú melléklet Békés Megyei Harruckern János Gimnázium, Szakképző Iskola, Alapfokú Művészetoktatási Iskola, Egységes Gyógypedagógiai Módszertani Intézmény és Kollégium /Gyula Szent István

Részletesebben

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 Évi óraszá: 108 óra Heti óraszá: 3 óra 1. téa: Racionális száok, hatványozás 11 óra 2. téa: Algebrai kifejezések 12 óra 1. téazáró dolgozat 3. téa: Egyenletek,

Részletesebben

MATEMATIKA HELYI TANTERV 9/AJTP évfolyam

MATEMATIKA HELYI TANTERV 9/AJTP évfolyam MATEMATIKA HELYI TANTERV 9/AJTP évfolyam Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi

Részletesebben

MATEMATIKA MOZAIK. 5-8. évfolyam KERETTANTERVRENDSZER AZ ÁLTALÁNOS ISKOLÁK SZÁMÁRA NAT 2003. Készítette: Pintér Klára

MATEMATIKA MOZAIK. 5-8. évfolyam KERETTANTERVRENDSZER AZ ÁLTALÁNOS ISKOLÁK SZÁMÁRA NAT 2003. Készítette: Pintér Klára MOZAIK KERETTANTERVRENDSZER AZ ÁLTALÁNOS ISKOLÁK SZÁMÁRA NAT 2003 MATEMATIKA 5-8. évfolyam Készítette: Pintér Klára A kerettantervrendszert szerkesztette és megjelentette: MOZAIK KIADÓ SZEGED, 2004 TARTALOM

Részletesebben

Helyi tanterv. Szigetszentmiklósi Batthyány Kázmér Gimnázium Matematika alap (1+3+4+4+4 óra/hét) 9-13 évfolyam* Készült: 2014 szeptember

Helyi tanterv. Szigetszentmiklósi Batthyány Kázmér Gimnázium Matematika alap (1+3+4+4+4 óra/hét) 9-13 évfolyam* Készült: 2014 szeptember Helyi tanterv Szigetszentmiklósi Batthyány Kázmér Gimnázium Matematika alap (1+3+4+4+4 óra/hét) 9-13 évfolyam* Készült: 2014 szeptember * Azon évfolyamok számára, akik 2013/14 tanév előtt kezdték az kilencedik

Részletesebben

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot!

Elméleti kérdés minták (3 x 5 pont) 1. Definiálja két halmaz unióját! Készítsen hozzá Venn-diagramot! Elméleti kérdés minták (3 x 5 pont) 1. Deiniálja két halmaz unióját! Készítsen hozzá Venn-diagramot!. Csoportosítsa a négyszögeket az oldalak párhuzamossága, és egyenlősége alapján! 3. Határozza meg a

Részletesebben

MATEMATIKA TANTERV. 5-8. évfolyam

MATEMATIKA TANTERV. 5-8. évfolyam MATEMATIKA TANTERV 5-8. évfolyam Célok és feladatok: A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival,

Részletesebben

ÁLTALÁNOS JELLEMZŐK, FELÉPÍTÉS

ÁLTALÁNOS JELLEMZŐK, FELÉPÍTÉS ÁLTALÁNOS JELLEMZŐK, FELÉPÍTÉS "Az iskola dolga, hogy megtaníttassa velünk, hogyan kell tanulni, hogy felkeltse a tudás iránti étvágyunkat, hogy megtanítson bennünket a jól végzett munka örömére és az

Részletesebben

9-12. ÉVFOLYAM (ESTI TAGOZAT)

9-12. ÉVFOLYAM (ESTI TAGOZAT) 9-12. ÉVFOLYAM (ESTI TAGOZAT) A felnőttek gimnáziumában a matematika oktatásának célja a tanulók matematikai kompetenciájának fejlesztése, amivel természetesen növeljük a tanulóink esélyeit az életben,

Részletesebben

A matematika tantárgy szakiskolai helyi tanterve

A matematika tantárgy szakiskolai helyi tanterve Mohácsi Radnóti Miklós Szakképző Iskola és Kollégium A matematika tantárgy szakiskolai helyi tanterve Készült az 20/2010 (V. 11.) OM rendelettel módosított 17/2004. (V. 20.) OM rendelettel kiadott kerettanterv

Részletesebben

Matematika tanterv (E) a nyelvi előkészítő évfolyama számára

Matematika tanterv (E) a nyelvi előkészítő évfolyama számára Matematika tanterv (E) a nyelvi előkészítő évfolyama számára Ez a tanterv az Országos Közoktatási Intézet tantervi adatbankjában az OKI96PÁLMAT1-12 változat alatt szereplő minősített tanterv alapján a

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek

Részletesebben

TANANYAGBEOSZTÁS. Kompetencia alapú matematika 6. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése

TANANYAGBEOSZTÁS. Kompetencia alapú matematika 6. osztály. A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése TANANYAGBEOSZTÁS TÁMOP 3.1.4. 08/2-2008-0149 A kompetencia alapú oktatás, egyenlő hozzáférés megteremtése Mátészalkán Implementáló pedagógus: Nagy Gusztávné Implementációs terület: Kompetencia alapú matematika

Részletesebben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben

MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti tankönyveiben A Nemzeti Alaptantervhez illeszkedő tankönyv-, taneszköz-, és Nemzeti Közoktatási Portál fejlesztése TÁMOP-3.1.2-B/13-2013-0001 MATEMATIKA 5-6. Motiváció és közelítés a mindennapokhoz az OFI kísérleti

Részletesebben

MATEMATIKA 5-8. évfolyam

MATEMATIKA 5-8. évfolyam MATEMATIKA 5-8. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata: megismertetni a tanulókat az őket körülvevő konkrét környezet mennyiségi és térbeli viszonyaival, megalapozni

Részletesebben

A MATEMATIKA TANTÁRGY NÉGYÉVFOLYAMOS HELYI TANTERVE. Bevezető

A MATEMATIKA TANTÁRGY NÉGYÉVFOLYAMOS HELYI TANTERVE. Bevezető Bevezető Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika tanulása

Részletesebben

Matematika kerettantervek 2012. augusztus 31.

Matematika kerettantervek 2012. augusztus 31. Matematika kerettantervek 2012. augusztus 31. dr. Frigyesi Miklós bizottsági elnök Régi és új a NAT-ban Ami visszaszorul: Írásbeli műveletvégzés Magas szintű algebrai rutin Ötletes egyenletek, egyenlőtlenségek

Részletesebben

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA

MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA MATEMATIKA TANMENET 6.OSZTÁLY KÉSZÍTETTE: KULCSÁRNÉ BALÁZSI ERIKA JELÖLÉSEK: Nem szakrendszerű órák jelölése zöld színnel, számok a programterv A 6. évfolyam tanmenetből valók Infokommunikációs technológia

Részletesebben

209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu, OM: 034 982. Az József Attila Gimnázium. helyi tanterve.

209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu, OM: 034 982. Az József Attila Gimnázium. helyi tanterve. Klebelsberg Intézményfenntartó Központ Budapesti XI. Tankerülete Újbudai József Attila Gimnázium 1117 Budapest, Váli u. 1. 209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu,

Részletesebben

A Baktay Ervin Gimnázium emelt szintű matematika tanterve a 11-12. évfolyamok számára

A Baktay Ervin Gimnázium emelt szintű matematika tanterve a 11-12. évfolyamok számára A Baktay Ervin Gimnázium emelt szintű matematika tanterve a 11-12. évfolyamok számára 11. 12. heti óraszám 6 6 éves óraszám 216 180 Ez a szakasz az érettségire felkészítés időszaka is, ezért a fejlesztésnek

Részletesebben

Matematika tanmenet (E) a nyelvi el készít évfolyam számára

Matematika tanmenet (E) a nyelvi el készít évfolyam számára Matematika tanmenet (E) a nyelvi el készít évfolyam számára Ez a tanmenet az OM által jóváhagyott tanterv alapján készült. A tanterv az Országos Közoktatási Intézet tantervi adatbankjában OKI96PÁLMAT1-12

Részletesebben

HELYI TANTERV MATEMATIKA Tantárgy

HELYI TANTERV MATEMATIKA Tantárgy Energetikai Szakközépiskola és Kollégium 7030 Paks, Dózsa Gy. út 95. OM 036396 75/519-300 75/414-282 HELYI TANTERV MATEMATIKA Tantárgy 4 4 4 4 óraszámokra Készítette: Krizsán Árpád munkaközösség-vezető

Részletesebben

Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II.

Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II. Könnyebb-a a középszintű érettségi a régi házi érettségi vizsgánál? II. Írta: dr. Majoros Mária Ebben a tanulmányban a jelenlegi érettségin kitűzött feladatokat olyan szempontból fogom összehasonlítani,

Részletesebben

Helyi tanterv MATEMATIKA

Helyi tanterv MATEMATIKA Helyi tanterv MATEMATIKA 11 12. évfolyam emelt szintű képzés (fakultáció) Ez a szakasz az eddigi matematikatanulás szintézisét adja, és egyben kiteljesíti a kapcsolatokat a többi tantárggyal, valamint

Részletesebben

2013/2014-es tanévben felmenő rendszerben bevezetésre kerülő helyi tanterv

2013/2014-es tanévben felmenő rendszerben bevezetésre kerülő helyi tanterv 2013/2014-es tanévben felmenő rendszerben bevezetésre kerülő helyi tanterv 1. Bevezetés Matematika 1.1. Kerettantervi bevezető Célok és feladatok A matematikatanítás feladata a matematika különböző arculatainak

Részletesebben

Matematika Mozaik Kiadó. 5. osztály

Matematika Mozaik Kiadó. 5. osztály Matematika Mozaik Kiadó 5. osztály Tematikai egység címe órakeret Gondolkodási módszerek, halmazok, matematikai logika, 3+folyamatos kombinatorika, gráfok Számtan, algebra 78 Függvények, az analízis elemei

Részletesebben

MATEMATIKA (4+3+3+4)

MATEMATIKA (4+3+3+4) MATEMATIKA (4+3+3+4) (Írta: Pálffy Zoltán, 2013, Nemzedékek Tudása Tankönyvkiadó Zrt.) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos

Részletesebben

MATEMATIKA B változat

MATEMATIKA B változat MATEMATIKA B változat Ez a kerettanterv heti 4+4+4+3 órára készült. Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

MATEMATIKA. Négy évfolyamos gimnázium

MATEMATIKA. Négy évfolyamos gimnázium MATEMATIKA Négy évfolyamos gimnázium Évfolyam 9. 10. 11. 12. Heti óraszám 4 3 3 4 Éves óraszám 144 108 108 124 Érettségi felkészítés heti óraszáma 2 2 Érettségi felkészítés éves óraszáma 72 62 2014 MATEMATIKA

Részletesebben

Munkaformák Módszerek Eszközök Modul készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek.

Munkaformák Módszerek Eszközök Modul készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek. Idő Óraszám 09. 01. 1. 09. 03. 1. 09. 04. 2. 09.07. 3. 09. 08. 4. 09. 10. 2. 09.11. 5. 09.14. 6 09.15. 7. Tananyag Fejlesztési képességek, Munkaformák Módszerek Eszközök Modul készségek, célok Szervezési

Részletesebben

11. évfolyam. Emelt szintű heti 6+6 óra 11 12. évfolyam. További célok:

11. évfolyam. Emelt szintű heti 6+6 óra 11 12. évfolyam. További célok: Emelt szintű heti 6+6 óra 11 12. évfolyam További célok: Ez a szakasz az eddigi matematikatanulás szintézisét adja, és egyben kiteljesíti a kapcsolatokat a többi tantárggyal, valamint a mindennapi élet

Részletesebben

MATEMATIKA HELYI TANTERV (3+3+3+4)

MATEMATIKA HELYI TANTERV (3+3+3+4) Matematika MATEMATIKA HELYI TANTERV (3+3+3+4) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi

Részletesebben

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2

x = 1 = ı (imaginárius egység), illetve x 12 = 1 ± 1 4 2 Komplex számok A valós számok és a számegyenes pontjai között kölcsönösen egyértelmű megfeleltetés létesíthető. A számfogalom a számegyenes pontjainak körében nem bővíthető tovább. A számfogalom bővítését

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 alapján készült. Helyi tanterv. Matematika 7 8.

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 alapján készült. Helyi tanterv. Matematika 7 8. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet 2.2.03 alapján készült Helyi tanterv Matematika 7 8. évfolyama számára Alapelvek, célok Az iskolai matematikatanítás célja, hogy hiteles

Részletesebben

MATEMATIKA HELYI TANTERV Fóti Népművészeti Szakközép-, Szakiskola és Gimnázium. Szakközépiskola

MATEMATIKA HELYI TANTERV Fóti Népművészeti Szakközép-, Szakiskola és Gimnázium. Szakközépiskola MATEMATIKA HELYI TANTERV Fóti Népművészeti Szakközép-, Szakiskola és Gimnázium Szakközépiskola Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról, mint tudásrendszerről és

Részletesebben

209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu, OM: 034 982. József Attila Gimnázium. helyi tanterve.

209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu, OM: 034 982. József Attila Gimnázium. helyi tanterve. Klebelsberg Intézményfenntartó Központ Budapesti XI. Tankerülete Újbudai József Attila Gimnázium 1117 Budapest, Váli u. 1. 209-1686, fax: 361-4427, web: www.jagbp.hu, e-mail: titkarsag@jagbp.sulinet.hu,

Részletesebben

BEVEZETŐ MATEMATIKA 5-8. Célok, feladatok:

BEVEZETŐ MATEMATIKA 5-8. Célok, feladatok: BEVEZETŐ Célok, feladatok: Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma Helyi tanterv Matematika

Ciszterci Rend Nagy Lajos Gimnáziuma és Kollégiuma Helyi tanterv Matematika 1. oldal Tartalomjegyzék Tartalom Helyi tantervünk kerettantervi háttere... 2 A hatosztályos képzés... 2 A hatosztályos képzés 7-8. osztályainak helyi tanterve... 5 A hatosztályos képzés 9-10. osztályainak

Részletesebben

Add meg az összeadásban szereplő számok elnevezéseit!

Add meg az összeadásban szereplő számok elnevezéseit! 1. 2. 3. 4. Add meg az összeadásban szereplő számok elnevezéseit! Add meg a kivonásban szereplő számok elnevezéseit! Add meg a szorzásban szereplő számok elnevezéseit! Add meg az osztásban szereplő számok

Részletesebben

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

MATEMATIKA C 12. évfolyam 4. modul Még egyszer! MATEMATIKA C 1. évfolyam 4. modul Még egyszer! Készítette: Kovács Károlyné Matematika C 1. évfolyam 4. modul: Még eygszer! Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok

Részletesebben

TOKAJI FERENC GIMNÁZIUM, SZAKKÖZÉPISKOLA ÉS KOLLÉGIUM

TOKAJI FERENC GIMNÁZIUM, SZAKKÖZÉPISKOLA ÉS KOLLÉGIUM TOKAJI FERENC GIMNÁZIUM, SZAKKÖZÉPISKOLA ÉS KOLLÉGIUM Matematika tantárgyi program A bevezetés tanéve: A bevezetés évfolyama: Alkalmazott osztálytípusok: 2013/2014-es tanévben, felmenő rendszerben 9. évfolyam

Részletesebben

Matematika tantárgyi program

Matematika tantárgyi program LOVASSY LÁSZLÓ GIMNÁZIUM Lovassy-László-Gymnasium Pedagógiai Program Matematika tantárgyi program 2010. A TANTÁRGYI PROGRAM RÉSZEI Általános bevezető...1 Matematika 9-13. középszintű tanterv...10 Matematika

Részletesebben

A matematika tantárgy helyi tanterve

A matematika tantárgy helyi tanterve 4024 Debrecen, Liszt Ferenc utca 1. www.ady-debr.sulinet.hu, ady@iskola.debrecen.hu : 52-520-220, : 52-520-221 OM: 031201 A matematika tantárgy helyi tanterve 2013. Készítette: Borsi Erzsébet Szakmailag

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA MATEmATIkA I 6 VI KOmPLEX SZÁmOk 1 A komplex SZÁmOk HALmAZA A komplex számok olyan halmazt alkotnak amelyekben elvégezhető az összeadás és a szorzás azaz két komplex szám összege és szorzata

Részletesebben

Matematika a gimnáziumok 9 12. évfolyama számára. Matematika a szakközépiskolák 9 12. évfolyama számára

Matematika a gimnáziumok 9 12. évfolyama számára. Matematika a szakközépiskolák 9 12. évfolyama számára Matematika a gimnáziumok 9 12. évfolyama számára és Matematika a szakközépiskolák 9 12. évfolyama számára Alapdokumentumok: EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 Matematika

Részletesebben

Matematika helyi tanterv

Matematika helyi tanterv Matematika helyi tanterv 1 Tartalomjegyzék Matematika helyi tanterv... 1 1 Tartalomjegyzék... 1 2 Bevezetés... 1 2.1 Helyi tanterv :4+4+4+4 óra... 4 2.1.1 9. évfolyam... 5 2.1.2 10. évfolyam... 16 2.1.3

Részletesebben

MISKOLCI MAGISTER GIMNÁZIUM TANMENET

MISKOLCI MAGISTER GIMNÁZIUM TANMENET MISKOLCI MAGISTER GIMNÁZIUM TANMENET MATEMATIKA 10. osztály 2013/2014 Készítette: Literáti Márta Kerettantervi ajánlás a helyi tanterv készítéséhez: EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet

Részletesebben

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk)

Geometria. a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) 1. Térelemek Geometria a. Alapfogalmak: pont, egyenes, vonal, sík, tér (Az alapfogalamakat nem definiáljuk) b. Def: félegyenes, szakasz, félsík, féltér. c. Kölcsönös helyzetük: i. pont és (egyenes vagy

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2)

First Prev Next Last Go Back Full Screen Close Quit. Komplex számok (2) 2. előadás Komplex számok (2) 1. A a + bi (a, b) kölcsönösen egyértelmű megfeleltetés lehetővé teszi, hogy a komplex számokat a sík pontjaival, illetve helyvektoraival ábrázoljuk. A derékszögű koordináta

Részletesebben

KOMPETENCIA ALAPÚ OKTATÁS MATEMATIKA TANTERVE AZ APÁCZAI KIADÓ MATEMATIKA TANKÖNYVSOROZATÁHOZ

KOMPETENCIA ALAPÚ OKTATÁS MATEMATIKA TANTERVE AZ APÁCZAI KIADÓ MATEMATIKA TANKÖNYVSOROZATÁHOZ KOMPETENCIA ALAPÚ OKTATÁS MATEMATIKA TANTERVE AZ APÁCZAI KIADÓ MATEMATIKA TANKÖNYVSOROZATÁHOZ Készült a 2012-ben megjelent Nemzeti Alaptanterv és Kerettanterv alapján 5 8. évfolyam Összeállította CSATÁR

Részletesebben

táblázatok, grafikonok értelmezésének megismerése nagyban segítheti a mindennapokban, és különösen a média közleményeiben való reális tájékozódásban.

táblázatok, grafikonok értelmezésének megismerése nagyban segítheti a mindennapokban, és különösen a média közleményeiben való reális tájékozódásban. MATEMATIKA Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről. A matematika

Részletesebben

MATEMATIKA emelt szintű érettségire felkészítő csoport a 11 12. évfolyamon emelt óraszámmal

MATEMATIKA emelt szintű érettségire felkészítő csoport a 11 12. évfolyamon emelt óraszámmal MATEMATIKA emelt szintű érettségire felkészítő csoport a 11 12. évfolyamon emelt óraszámmal (Forrás - Nemzedékek Tudása Tankönyvkiadó) (Átdolgozta: Dr. Rókáné Rózsa Anikó - Andrássy Gyula Gimnázium és

Részletesebben

MATEMATIKA (3+3+3+4)

MATEMATIKA (3+3+3+4) MATEMATIKA (3+3+3+4) (Írta: Pálffy Zoltán, 2013, Nemzedékek Tudása Tankönyvkiadó Zrt.) (Átdolgozta: Dr. Rókáné Rózsa Anikó, Andrássy Gyula Gimnázium és Kollégium) Az iskolai matematikatanítás célja, hogy

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika emelt szint 05 ÉRETTSÉGI VIZSGA 005. május 0. MATEMATIKA EMELT SZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 40 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

HELYI TANTERV MATEMATIKA Tantárgy

HELYI TANTERV MATEMATIKA Tantárgy Energetikai Szakközépiskola és Kollégium 7030 Paks, Dózsa Gy. út 95. OM 036396 75/519-300 75/414-282 HELYI TANTERV MATEMATIKA Tantárgy 4 3 3 3 óraszámokra Készítette: Krizsán Árpád munkaközösség-vezető

Részletesebben

8. melléklet [7. melléklet 7.5. az 51/2012. (XII. 21.) EMMI rendelethez] 7.5. Matematika speciális tagozat kerettanterve

8. melléklet [7. melléklet 7.5. az 51/2012. (XII. 21.) EMMI rendelethez] 7.5. Matematika speciális tagozat kerettanterve 8. melléklet [7. melléklet 7.5. az 51/2012. (XII. 21.) EMMI rendelethez] 7.5. Matematika speciális tagozat kerettanterve Kerettantervek: a négyévfolyamos képzéshez a hatévfolyamos képzéshez MATEMATIKA

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

Matematika 9-12. évfolyam

Matematika 9-12. évfolyam Matematika 9-12. évfolyam Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei

MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei MATEMATIKA 11. évfolyam osztályozóvizsga/javítóvizsga témakörei 1.félév I. Kombinatorika, gráfok Permutációk, variációk Ismétlés nélküli kombinációk Binomiális együtthatók, Pascal-háromszög Gráfok pontok,

Részletesebben

A Baktay Ervin Gimnázium alap matematika tanterve a 4 évfolyamos gimnáziumi osztályok számára

A Baktay Ervin Gimnázium alap matematika tanterve a 4 évfolyamos gimnáziumi osztályok számára A Baktay Ervin Gimnázium alap matematika tanterve a 4 évfolyamos gimnáziumi osztályok számára heti óraszám éves óraszám 9. 10. 11. 12. 3 cs 4 4 4 108 144 144 120 (cs.: csoportbontásban) Témakörök Gondolkodási

Részletesebben

I. Egyenlet fogalma, algebrai megoldása

I. Egyenlet fogalma, algebrai megoldása 11 modul: EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA 6 I Egyenlet fogalma, algebrai megoldása Módszertani megjegyzés: Az egyenletek alaphalmazát, értelmezési tartományát később vezetjük be, a törtes egyenletekkel

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

MATEMATIKA. 5-8. évfolyam

MATEMATIKA. 5-8. évfolyam MATEMATIKA 5-8. évfolyam 1 BEVEZETÉS A matematika kerettanterv az Nemzeti Alaptanterv (NAT) 2012 alapelvei szerint készült. A kerettanterv a hagyományosan igényes oktatáson kívül nagy hangsúlyt fektet

Részletesebben

Helyi tanterv matematika A matematika tanításának célja és feladatai

Helyi tanterv matematika A matematika tanításának célja és feladatai Helyi tanterv matematika A matematika tanításának célja és feladatai Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési,

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 alapján készült. Helyi tanterv. Matematika 9 12.

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 alapján készült. Helyi tanterv. Matematika 9 12. EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 alapján készült Helyi tanterv Matematika 9 12. évfolyama számára Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson

Részletesebben

Választható matematika 5-8. évfolyam

Választható matematika 5-8. évfolyam 1. Tantárgyi címoldal Választható matematika 5-8. évfolyam Helyi tantárgyi tanterv A tantárgy nevelési és fejlesztési célrendszere megvalósításának iskolai keretei: a választható matematika tantárgy oktatása

Részletesebben

MATEMATIKA 5-8. évfolyam

MATEMATIKA 5-8. évfolyam MATEMATIKA 5-8. évfolyam Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

MATEMATIKA HELYI TANTERV

MATEMATIKA HELYI TANTERV MATEMATIKA HELYI TANTERV Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

MATEMATIKA (3+3+3+4 óra)

MATEMATIKA (3+3+3+4 óra) MATEMATIKA (3+3+3+4 óra) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási, szellemi tevékenységről.

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett

Részletesebben

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT. Koordináta-geometria MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT 1) Adott két pont: A 4; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. Koordináta-geometria és B 3 1; Írja fel az AB szakasz 1 3 4

Részletesebben

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 Matematika a gimnáziumok 9 12. évfolyama számára

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 Matematika a gimnáziumok 9 12. évfolyama számára EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 3. sz. melléklet 3.2.04 Matematika a gimnáziumok 9 12. évfolyama számára EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 6. sz. melléklet 6.2.03

Részletesebben

HELYI TANTERV MATEMATIKA ( nem emelt szintű csoportoknak)

HELYI TANTERV MATEMATIKA ( nem emelt szintű csoportoknak) HELYI TANTERV MATEMATIKA ( nem emelt szintű csoportoknak) Az iskolai matematikatanítás célja, hogy hiteles képet nyújtson a matematikáról mint tudásrendszerről és mint sajátos emberi megismerési, gondolkodási,

Részletesebben

Matematika. Tankönyvek, tanulmányi segédletek, taneszközök kiválasztásának elvei:

Matematika. Tankönyvek, tanulmányi segédletek, taneszközök kiválasztásának elvei: Matematika Tankönyvek, tanulmányi segédletek, taneszközök kiválasztásának elvei: Az iskolai oktatásban alkalmazott tankönyveket, tanulmányi segédleteket és taneszközöket a helyi tantervben szereplő ajánlati

Részletesebben

Zipernowsky Károly Általános Iskola

Zipernowsky Károly Általános Iskola KOMPETENCIA ALAPÚ OKTATÁS MATEMATIKA E AZ APÁCZAI KIADÓ MATEMATIKA TANKÖNYVSOROZATÁHOZ Készült a 2012-ben megjelent Nemzeti Alaptanterv és Kerettanterv alapján 5 8. évfolyam 1 BEVEZETÉS A matematika kerettanterv

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I. Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:

Részletesebben