5. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "5. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton"

Átírás

1 Adatbányászat: Osztályozás További módszerek 5. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton

2 Logók és támogatás A tananyag a TÁMOP /1/A számú Kelet-magyarországi Informatika Tananyag Tárház projekt keretében készült. A tananyagfejlesztés az Európai Unió támogatásával és az Európai Szociális Alap társfinanszírozásával valósult meg.

3 Osztályozási szabályok,,ha akkor szabályok összességével osztályozzuk a rekordokat Szabály: ahol (Feltétel) y Feltétel attributumok konjunkciója y osztály címke Baloldal: a szabály feltétele, előzménye Jobboldal: a szabály következménye Példák oszályozási szabályokra: (Vértípus=Meleg) (Tojásrakás=Igen) Madarak (Adózott jövedelem < 50K) (Visszatérítés=Igen) Adóelkerülés=Nem

4 Példa osztályozási szabályra Name Blood Type Give Birth Can Fly Live in Water Class human warm yes no no mammals python cold no no no reptiles salmon cold no no yes fishes whale warm yes no yes mammals frog cold no no sometimes amphibians komodo cold no no no reptiles bat warm yes yes no mammals pigeon warm no yes no birds cat warm yes no no mammals leopard shark cold yes no yes fishes turtle cold no no sometimes reptiles penguin warm no no sometimes birds porcupine warm yes no no mammals eel cold no no yes fishes salamander cold no no sometimes amphibians gila monster cold no no no reptiles platypus warm no no no mammals owl warm no yes no birds dolphin warm yes no yes mammals eagle warm no yes no birds R1: (Élveszülő = nem) (Tud repülni = igen) Madár R2: (Élveszülő = nem) (Vízben él = igen) Hal R3: (Élveszülő = igen) (Vér = meleg) Emlős R4: (Élveszülő = nem) (Tud repülni = nem) Hüllő R5: (Vízben él = néha) Kétéltű

5 Osztályozási szabályok alkalmazása Az r szabály lefedi az x esetet ha az eset attributumai kielégítik a szabály feltételeit. R1: (Élveszülő = nem) (Tud repülni = igen) Madár R2: (Élveszülő = nem) (Vízben él = igen) Hal R3: (Élveszülő = igen) (Vér = meleg) Emlős R4: (Élveszülő = nem) (Tud repülni = nem) Hüllő R5: (Vízben él = néha) Kétéltű Name Blood Type Give Birth Can Fly Live in Water Class hawk warm no yes no? grizzly bear warm yes no no? Az R1 szabály lefedi a sólyom => madár szabályt Az R3 szabály lefedi a grizzly => emlős szabályt

6 10 Lefedettség és pontosság Egy szabály lefedettsége: Azon rekordok aránya, amelyek kielégítik a szabály feltételét. Egy szabály pontossága: Azon rekordok aránya, amelyek egyaránt kielégítik a szabály feltételét és következményét. Családi állapot Tid Visszatérités Jövedelem Osztály 1 Igen Nőtlen 125K Nem 2 Nem Házas 100K Nem 3 Nem Nőtlen 70K Nem 4 Igen Házas 120K Nem 5 Nem Elvált 95K Igen 6 Nem Házas 60K Nem 7 Ygen Elvált 220K Nem 8 Nem Nőtlen 85K Igen 9 Nem Házas 75K Nem 10 Nem Nőtlen 90K Igen (Állapot=Nőtlen) Nem Lefedettség = 40%, Pontosság = 50%

7 Hogy működnek az osztályozási szabályok? R1: (Élveszülő = nem) (Tud repülni = igen) Madár R2: (Élveszülő = nem) (Vízben él = igen) Hal R3: (Élveszülő = igen) (Vér = meleg) Emlős R4: (Élveszülő = nem) (Tud repülni = nem) Hüllő R5: (Vízben él = néha) Kétéltű Name Blood Type Give Birth Can Fly Live in Water Class lemur warm yes no no? turtle cold no no sometimes? dogfish shark cold yes no yes? A lemur kiváltja az R3 szabályt, így emlősnek osztályozzuk. A teknős egyaránt kiváltja az R4 és R5 szabályokat. A kutyahal cápa egyik szabályt sem váltja ki.

8 Osztályozási szabályok jellemzése Teljesen kizáró szabályok Egy osztályozó teljesen kizáró szabályokból áll, ha a szabályok függetlenek egymástól (a feltételek metszete üres). Minden rekordot legfeljebb egy szabály fed le. Kimerítő szabályok Egy osztályozó kimerítő lefedés, ha az attributum értékek minden lehetséges kombinációját tartalmazza a feltételekben. Minden rekordot lefed legalább egy szabály.

9 Döntési fáktól a szabályokig Classification Rules Yes NO Refund {Single, Divorced} Taxable Income No Marital Status < 80K > 80K {Married} NO (Refund=Yes) ==> No (Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No (Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes (Refund=No, Marital Status={Married}) ==> No NO YES A szabályok teljesen kizáróak és kimerítőek. A szabály halmaz pontosan annyi információt tartalmaz mint a a fa.

10 10 Szabályok egyszerűsítése Yes NO NO Refund {Single, Divorced} Taxable Income No Marital Status < 80K > 80K YES {Married} NO Tid Visszatérítés Családi állapot Jövedelem Csalás 1 Igen Nőtlen 125K Nem 2 Nem Házas 100K Nem 3 Nem Nőtlen 70K Nem 4 Igen Házas 120K Nem 5 Nem Elvált 95K Igen 6 Nem Házas 60K Nem 7 Igen Elvált 220K Nem 8 Nem Nőtlen 85K Igen 9 Nem Házas 75K Nem 10 Nem Nőtlen 90K Igen Kezdeti szabály: (Visszatérítés=Nem) (Állapot=Házas) Nem Egyszerűsített szabály: (Állapot=Házas) Nem

11 Az egyszerűsítés hatása A szabályok már nem lesznek teljesen kizáróak. Egy rekord egynél több szabályt is kiválthat. Megoldás? Szabályok rendezése Rendezetlen szabályok használjunk szavazási sémákat A szabályok már nem lesznek kimerítőek. Egy rekord egyetlen szabályt sem vált ki. Megoldás? Használjunk egy alapértelmezett osztályt.

12 Rendezett szabály halmazok A szabályokat prioritásuk szerint sorba rendezzük. Egy rendezett szabályhalmazt döntési listának nevezünk. Egy teszt rekordot inputként kap az osztályozó. A legelső osztályhoz rendeljük, amelyet kivált. Ha egyetlen szabályt sem vált ki, akkor az alapértelmezett osztályba kerül. R1: (Élveszülő = nem) (Tud repülni = igen) Madár R2: (Élveszülő = nem) (Vízben él = igen) Hal R3: (Élveszülő = igen) (Vér = meleg) Emlős R4: (Élveszülő = nem) (Tud repülni = nem) Hüllő R5: (Vízben él = sometimes) Kétéltű Name Blood Type Give Birth Can Fly Live in Water Class turtle cold no no sometimes?

13 Szabály rendező sémák Szabály alapú rendezés Az egyedi szabályokat minőségük alapján rendezzük. Osztály alapú rendezés Az egy osztályhoz tartozó szabályok együtt fordulnak elő. Rule-based Ordering (Refund=Yes) ==> No (Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No (Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes (Refund=No, Marital Status={Married}) ==> No Class-based Ordering (Refund=Yes) ==> No (Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No (Refund=No, Marital Status={Married}) ==> No (Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

14 Osztályozási szabályok építése Közvetlen módszerek: Szabály kinyerés közvetlenül az adatokból. Példák: RIPPER, CN2, Holte 1R módszere. Közvetett módszerek: Szabály kinyerés más osztályozási módszerekből (pl. döntési fák, neurális hálók stb.). Példa: C4.5 szabályok.

15 Közvetlen módszer: Szekvenciális lefedés 1. Induljunk ki az üres szabályból. 2. Hozzunk létre egy szabályt a Learn-One-Rule függvény segítségével. 3. Távolítsuk el azokat a tanító rekordokat, amelyeket lefed a szabály. 4. Ismételjük a (2) és (3) lépést ameddig a megállási kritérium nem teljesül.

16 Példa szekvenciális lefedésre (i) Original Data (ii) Step 1

17 Példa szekvenciális lefedésre R1 R1 R2 (iii) Step 2 (iv) Step 3

18 A szekvenciális lefedés szempontjai Szabály építés Eset kizárás Szabály kiértékelés Leállási kritérium Szabály tisztítás

19 Szabály építés Két általános stratégia { } Yes: 3 No: 4 Refund=No, Status=Single, Income=85K (Class=Yes) Refund=No, Status=Single, Income=90K (Class=Yes) Refund= No Yes: 3 No: 4 Status = Single Yes: 2 No: 1 Status = Divorced Yes: 1 No: 0 Status = Married Yes: 0 No: 3... Income > 80K Yes: 3 No: 1 Refund=No, Status = Single (Class = Yes) (a) General-to-specific (b) Specific-to-general

20 Példák szabály építésre CN2 algoritmus: Induljunk ki az üres szabályból: {}. Bővítsük úgy, hogy közben az entrópiát minimalizáljuk: {A}, {A,B}, Határozzuk meg a szabály következményét a szabály által lefedett esetek többségi osztályát véve. RIPPER algoritmus: Induljunk ki az üres szabályból : {} => osztály. Bővítsük úgy, hogy a FOIL-féle információ nyereséget maximalizáljuk: R0: {} => osztály (kezdeti szabály) R1: {A} => osztály (szabály a bővítés után) Nyereség(R0, R1) = t [ log (p1/(p1+n1)) log (p0/(p0 + n0)) ], ahol t: R0 és R1 által lefedett pozitív esetek száma, p0: R0 által lefedett pozitív esetek száma, n0: R0 által lefedett negatív esetek száma, p1: R1 által lefedett pozitív esetek száma, n1: R1 által lefedett negatív esetek száma.

21 Eset kizárás Miért van szükség eset kizárásra? Különben a következő szabály megegyezik az előzővel. Miért töröljünk pozitív eseteket? Biztosítsuk a következő szabály különbözőségét. Miért töröljünk negatív eseteket? Megelőzzük a szabály pontosságának alulbecslését. Hasonlítsuk össze az R2 és R3 szabályokat az ábrán. class = + class = - R1 R3 R

22 Szabály kiértékelés Mérőszámok: Pontosság n c n Laplace M-becslés n 1 c n k n kp c n k n : a szabály által lefedett esetek száma n c : a szabály által lefedett pozitív esetek száma k : osztályok száma p : a pozitív eset apriori valószínűsége

23 Leállási feltétel és szabály tisztítás Leállási feltétel Számoljuk ki a nyereséget. Ha a nyereség nem szignifikáns, akkor dobjuk el az új szabályt. Szabály tisztítás Hasonló döntési fák utó-tisztításához. Hiba csökkentés tisztítással: Hagyjunk el a szabályból egy kifejezést. Hasonlítsuk össze a tisztítás előtti és utáni hibát az ellenőrző adatállományon. Ha a hiba javul, akkor tisztítsunk a kifejezés elhagyásával.

24 A közvetlen módszer vázlata Építsünk egy egyszerű szabályt. Távolítsunk el eseteket a szabály alapján. Egyszerűsítsük a szabályt (ha szükséges). Adjuk hozzá a szabályt az aktuális szabály halmazhoz. Ismételjük a fenti lépéseket.

25 Közvetlen módszer: RIPPER Bináris feladat esetén válasszuk pozitív osztálynak az egyik és negatív osztálynak a másik osztályt. Tanítsunk szabályokat a pozitív osztályra. Legyen a negatív osztály az alapértelmezett osztály. Több osztályos feladat esetén: Rendezzük az osztályokat növekvő osztály gyakoriság szerint (azoknak az eseteknek az aránya, melyek egy osztályhoz tartoznak). Először tanítsunk egy szabály halmazt a legkisebb osztályra, kezeljük a maradékot negatív osztályként. Ismételjük meg a következő legkisebb osztállyal mint pozitív osztály.

26 Közvetlen módszer: RIPPER Szabály építés: Induljunk ki az üres szabályból. Bővítsük addig míg a FOIL információ nyereség javul. Álljunk meg amikor a szabály tovább már nem fedi le a negatív eseteket. Közvetlenül tisztítsuk a szabályt járulékos hiba tisztítással. A tisztítás mérőszáma: v = (p-n)/(p+n) p: a szabály által lefedett pozitív esetek száma az ellenőrző adatállományban, n: a szabály által lefedett negatív esetek száma az ellenőrző adatállományban. Tisztítási módszer: töröljük a feltételek olyan véges sorozatát, amely maximalizálja v-t.

27 Közvetlen módszer: RIPPER Szabály halmaz építése: Használjunk szekvenciálisan lefedő algoritmust. Keressük meg azt a legjobb szabályt, amely lefedi a pozitív esetek aktuális halmazát. Elimináljuk a szabály által lefedett pozitív és negatív eseteket. Mindig mikor egy szabállyal bővítjük a szabály halmazt számoljuk ki az új leíró hosszt. Álljunk le az új szabály hozzáadásával, ha annak leíró hossza d bittel nagyobb mint az eddig kapott legkisebb leíró hossz.

28 Közvetlen módszer: RIPPER Optimalizáljuk a szabályhalmazt: Az R szabályhalmaz minden r szabályára Tekintsünk 2 alternatív szabályt: Helyettesítő szabály (r*): építsünk új szabályt elölről. Módosított szabály (r ): bővítsünk az r kiterjesztésével. Hasonlítsuk össze az r szabályhalmazt az r* és r szabályhalmazokkal. Válasszuk azt a a szabályhalmazt, amely minimális lesz az MDL elv alapján. Ismételjük a szabály generálást és optimalizálást a fennmaradó pozitív esetekre.

29 Közvetett módszerek P Q No Yes R Rule Set No Yes No Yes Q No Yes - + r1: (P=No,Q=No) ==> - r2: (P=No,Q=Yes) ==> + r3: (P=Yes,R=No) ==> + r4: (P=Yes,R=Yes,Q=No) ==> - r5: (P=Yes,R=Yes,Q=Yes) ==> +

30 Közvetett módszerek: C4.5 szabályok Nyerjünk ki szabályokat egy tisztítatlan (teljes) döntési fából. Minden r: A y szabályra Tekintsünk egy r : A y alternatív szabályt, ahol A -t úgy kapjuk, hogy A-ból törlünk egy kifejezést. Hasonlítsuk össze az r és az összes r pesszimista hiba rátáját. Tisztítsunk amennyiben egy r -nek kisebb a pesszimista hiba rátája. Ismételjük amíg már nem tudjuk javítani az általánosítási hibát.

31 Közvetett módszer: C4.5 szabályok A szabályok rendezése helyett rendezzük szabályok részhalmazait (osztály rendezés). Minden részhalmaz szabályoknak egy olyan összessége, melynek következménye ugyanaz (osztály). Számoljuk ki minden részhalmaz leíró hosszát. Leíró hossz = L(error) + g L(model), g egy olyan paraméter, amely figyelembe veszi a szabályhalmazban lévő redundáns attributumokat (alapérték = 0.5).

32 Példa Name Give Birth Lay Eggs Can Fly Live in Water Have Legs Class human yes no no no yes mammals python no yes no no no reptiles salmon no yes no yes no fishes whale yes no no yes no mammals frog no yes no sometimes yes amphibians komodo no yes no no yes reptiles bat yes no yes no yes mammals pigeon no yes yes no yes birds cat yes no no no yes mammals leopard shark yes no no yes no fishes turtle no yes no sometimes yes reptiles penguin no yes no sometimes yes birds porcupine yes no no no yes mammals eel no yes no yes no fishes salamander no yes no sometimes yes amphibians gila monster no yes no no yes reptiles platypus no yes no no yes mammals owl no yes yes no yes birds dolphin yes no no yes no mammals eagle no yes yes no yes birds

33 Összevetés: C4.5, C4.5 szabályok, RIPPER Give Birth? C4.5rules: (Élveszülő=Nem, Tud úszni=igen) Madár Yes No (Élveszülő=Nem, Vízben él=igen) Hal (Élveszülő=Igen) Emlős Mammals Live In Water? (Élveszülő=Nem, Tud repülni=nem, Vízben él=nem) Hüllő ( ) Kétéltű Yes No RIPPER: (Vízben él=igen) Hal Sometimes (Van lába=nem) Hüllő Fishes Amphibians Can Fly? (Élveszülő=Nem, Tud repülni=nem, Vízben él=nem) Hüllő (Tud repülni=igen, Élveszülő=Nem) Madár Yes No () Emlős Birds Reptiles

34 Összevetés: C4.5, C4.5 szabályok, RIPPER C4.5 és C4.5 szabályok: Jósolt osztály Kétéltű Hal Hüllő Madár Emlős Valódi Kétéltű osztály Hal Hüllő Madár RIPPER: Emlős Jósolt osztály Kétéltű Hal Hüllő Madár Emlős Valódi Kétéltű osztály Hal Hüllő Madár Emlős

35 Osztályozási szabályok előnyei Legalább annyira kifejezőek mint a döntési fák. Könnyen interpretálhatóak. Könnyen generálhatóak. Gyorsan osztályozhatóak általuk az új esetek. Hatékonyságuk összevethető a döntési fákéval.

36 Eset alapú osztályozók Set of Stored Cases Atr1... AtrN Class A B B C A C B Letároljuk a tanító rekordokat A tanító rekordokat használjuk az új esetek osztályainak előrejelzésére Unseen Case Atr1... AtrN

37 Eset alapú osztályozók Példák: Rote tanuló algoritmusa A teljes tanító adatállományt memorizálja, és csak akkor hajtja végre az osztályozást, ha az új rekord attributum értékei pontosan illeszkednek egy tanító esetre. Legközelebbi szomszéd Használjuk a k,,legközelebbi pontot (legközelebbi szomszédok) az osztályozás végrehajtására.

38 Legközelebbi szomszéd osztályozók Alapgondolat: Ha valami úgy totyog mint egy kacsa, úgy hápog mint egy kacsa, akkor az valószínűleg egy kacsa. Számoljuk ki a távolságot Teszt rekord Tanító rekordok Válasszuk ki a k,,legközelebbi rekordot

39 Legközelebbi szomszéd osztályozók Unknown record Három dolog szükséges Rekordok egy halmaza A rekordok közötti távolság számolására szolgáló metrika A k szám, a meghatározandó legközelebbi szomszédok száma Egy új rekord osztályozása: Számoljuk ki a távolságot a többi tanító rekordtól. Határozzuk meg a k legközelebbi szomszédot. Hsználjuk a legközelebbi szomszédok osztálycimkéit az új rekord besorolására (pl. többségi szavazást véve).

40 A legközelebbi szomszéd definíciója X X X (a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor Az x rekord k legközelebbi szomszédja azok a rekordok, melyek távolsága x-től a k legkisebb távolság.

41 1 legközelebbi szomszéd Voronoi diagram

42 Legközelebbi szomszéd osztályozók Számoljuk ki két pont távolságát: Euklideszi távolság d( p, q) A legközelebbi szomszédok alapján határozzuk meg az osztályt: Vegyük a többségi osztályt a k szomszéd közül. Súlyozzuk a szavazatokat a távolságnak megfelelően. súly: w = 1/d 2 i ( p q i i ) 2

43 Legközelebbi szomszéd osztályozók A k érték megválasztása: Ha k túl kicsi, akkor a módszer érzékeny a hibás rekordokra. Ha k túl nagy, akkor a szomszédság más osztálybeli pontokat is tartalmazhat. X

44 Legközelebbi szomszéd osztályozók Skálázási szempontok Az attributumokat átskálázhatjuk így előzve meg azt, hogy egy attributum dominálja a távolságot. Példa: Egy személy magassága 1.5m és 1.8m között van. Egy személy súlya 90lb és 300lb között van. Egy személy bevétele $10K és $1M között van.

45 Legközelebbi szomszéd osztályozók Problémák az euklideszi távolsággal: Sok dimenziós adatok dimenzió probléma A természetes szemlélettel ellenkező eredményt is adhat vagy d = d = Megoldás: Normalizáljuk a vektorokat!

46 Legközelebbi szomszéd osztályozók A legközelebbi szomszéd osztályozók lusta tanuló algoritmusok. Nem építenek explicit modelleket. Mások mint a mohó tanító algoritmusok, ld. döntési fák és osztályozási szabályok. Az új rekordok osztályozása viszonylag költséges.

47 Példa: PEBLS PEBLS: Párhuzamos példa alapú tanuló rendszer (Parallel Examplar-Based Learning System, Cost & Salzberg) Egyaránt működik folytonos és kategórikus változókkal. Kategórikus változóknál két érték távolságát a módosított értékek differenciája metrikával (MVDM) számoljuk. Minden rekordhoz egy súlyt rendel. A legközelebbi szomszédok száma: k = 1.

48 10 Példa: PEBLS Osztály Családi állapot Családi állapot Nőtlen Házas Elvált Igen Csalás 1 Igen Nőtlen 125K Nem 2 Nem Házas 100K Nem 3 Nem Nőtlen 70K Nem 4 Igen Házas 120K Nem 5 Nem Elvált 95K Igen 6 Nem Házas 60K Nem 7 Igen Elvált 220K Nem 8 Nem Nőtlen 85K Igen 9 Nem Házas 75K Nem 10 Nem Nőtlen 90K Igen Tid Visszatérítés Jövedelem Osztály Két kategórikus érték távolsága: d(nőtlen,házas) = 2/4 0/4 + 2/4 4/4 = 1 d(nőtlen,elvált) = 2/4 1/2 + 2/4 1/2 = 0 d(házas,elvált) = 0/4 1/2 + 4/4 1/2 = 1 d(visszatérítés=igen,visszatérítés=nem) = 0/3 3/7 + 3/3 4/7 = 6/7 Visszatérítés Igen Nem Igen 0 3 d( V1, V2 ) n 1i n i 1 n n 2i 2 Nem Nem 3 4

49 10 Példa: PEBLS Családi állapot Tid Visszatérítés Jövedelem Csalás X Igen Nőtlen 125K Nem Y Nem Házas 100K Nem Az X és Y rekordok közötti távolság: ahol: w X ( X, Y ) w X w Y d i1 d( X i, Y Azon esetek száma, ahol X - t használjuk Azon esetek száma, ahol X helyesen prediktál i 2 ) w X 1 ha X az esetek többségében pontos előrejelzést ad w X > 1 ha X nem ad megbízható előrejelzést

50 Bayes osztályozó Egy valószínűségszámítási módszer osztályozási problémák megoldására. Feltételes valószínűség: Bayes tétel: ) ( ) ( ) ( ) ( A P C P C A P A C P ) ( ), ( ) ( ) ( ), ( ) ( C P A C P C A P A P A C P A C P

51 Példa a Bayes tételre Adottak: Az orvosok tudják, hogy az agyhártyagyulladás az esetek 50%-ban nyakfájást okoz. Annak valószínűsége, hogy egy páciensnek agyhártyagyulladása van 1/ Annak valószínűsége, hogy egy páciensnek nyakfájása van 1/20. Ha egy páciensnek nyakfájása van, akkor mi annak a valószínűsége, hogy agyhártyagyulladásban szenved? P( S M ) P( M ) 0.51/ P( M S) P( S) 1/

52 Bayes osztályozók Tekintsük valószínűségi változónak az összes attributumot és a cél (osztály) változót. Legyen adott egy rekord az (A 1, A 2,,A n ) attributumértékekkel A cél a C osztályozó változó előrejelzése. Azt az értékét keressük C-nek, amely maximalizálja P(C A 1, A 2,,A n )-t. Tudjuk-e közvetlenül becsülni P(C A 1, A 2,,A n )-t az adatokból?

53 Bayes osztályozók Megközelítés: Számoljuk ki a P(C A 1, A 2,, A n ) poszteriori valószínűséget minden C értékre a Bayes tétellel. P( C A A 1 2 A ) P( A1 A2 An C) P( C) P( A A A ) Válasszuk azt a C értéket, amely maximalizálja P(C A 1, A 2,, A n )-t. Ekvivalens annak a C értéknek megtalálásával, mely maximalizálja P(A 1, A 2,, A n C) P(C)-t. Hogyan becsüljük P(A 1, A 2,, A n C )-t? n 1 2 n

54 Bayes osztályozók Tételezzünk fel függetlenséget az A i attributumok között ha az osztály adott: P(A 1, A 2,, A n C) = P(A 1 C j ) P(A 2 C j ) P(A n C j ) Az P(A i C j ) valószínűséget becsülhetjük minden A i és C j esetén. Egy új rekord a C j osztályba kerül ha a P(C j ) P(A i C j ) maximális.

55 10 Hogyan becsüljünk valószínűséget? Tid Visszatérítés Családi állapot Adóköteles jövedelem Csalás 1 Igen Nőtlen 125K Nem 2 Nem Házas 100K Nem 3 Nem Nőtlen 70K Nem 4 Igen Házas 120K Nem 5 Nem Elvált 95K Igen 6 Nem Házas 60K Nem 7 Igen Elvált 220K Nem 8 Nem Nőtlen 85K Igen 9 Nem Házas 75K Nem 10 Nem Nőtlen 90K Igen Osztály: P(C) = N c /N Pl. P(Nem) = 7/10 P(Igen) = 3/10 Diszkrét attributumokra: P(A i C k ) = A ik / N c ahol A ik azon esetek száma, ahol az A i attributumérték fordult elő és a C k osztályba tartoznak. Példák: P(Állapot=Házas Nem) = 4/7 P(Visszatérítés=Igen Igen)=0 k

56 Hogyan becsüljünk valószínűséget? Folytonos attributumokra: Diszkretizáljunk résztartományokra osztva: egy sorrendi attributum értéket rendelünk részenként, megsérti a függetlenségi feltételezést. Bináris vágás: (A < v) vagy (A > v) válasszuk a két ág egyikét mint új attributumot. Valószínűségi sűrűségbecslés: Tegyük fel, hogy az attributum normális eloszlású. Használjuk az adatokat az eloszlás paramétereinek becslésére (pl. átlag és szórás). Ha ismert a valószínűségi eloszlás, akkor használhatjuk a P(A i c) feltételes valószínűség becslésére.

57 10 Hogyan becsüljünk valószínűséget? Tid Visszatérítés Családi állapot Adóköteles jövedelem Csalás 1 Igen Nőtlen 125K Nem 2 Nem Házas 100K Nem 3 Nem Nőtlen 70K Nem 4 Igen Házas 120K Nem Normális eloszlás: P( A i c j ) minden (A i,c i ) párra ij e ( A i ) 2 ij 2 ij 2 5 Nem Elvált 95K Igen 6 Nem Házas 60K Nem 7 Igen Elvált 220K Nem 8 Nem Nőtlen 85K Igen 9 Nem Házas 75K Nem 10 Nem Nőtlen 90K Igen (Jövedelem, Osztály=Nem): Ha Osztály=Nem minta átlag = 110 minta variancia = 2975 P( Jövedelem 120 Nem) 1 2 (54.54) e (120110) 2(2975)

58 Példa naív Bayes osztályozóra Adott az alábbi teszt rekord: X ( Visszatérítés Nem, Házas,Jövedelem 120K) naive Bayes Classifier: P(Refund=Yes No) = 3/7 P(Refund=No No) = 4/7 P(Refund=Yes Yes) = 0 P(Refund=No Yes) = 1 P(Marital Status=Single No) = 2/7 P(Marital Status=Divorced No)=1/7 P(Marital Status=Married No) = 4/7 P(Marital Status=Single Yes) = 2/7 P(Marital Status=Divorced Yes)=1/7 P(Marital Status=Married Yes) = 0 P(X Osztály=Nem) = P(Vtér=Nem Osztály=Nem) P(Házas Osztály=Nem) P(Jöv=120K Osztály=Nem) = 4/7 4/ = P(X Osztály=Igen) = P(Vtér=Nem Osztály=Igen) P(Házas Osztály=Igen) P(Jöv=120K Osztály=Igen) = = 0 For taxable income: If class=no: sample mean=110 sample variance=2975 If class=yes: sample mean=90 sample variance=25 Mivel P(X Nem)P(Nem) > P(X Igen)P(Igen) ezért P(Nem X) > P(Igen X) => Osztály = Nem

59 Bayes osztályozó Ha a feltételes valószínűségek egyike 0, akkor az egész kifejezés 0. Valószínűségi becslés: Eredeti : P( A Laplace : P( A i i C) C) m - estimate: P( A i N N ic c N N ic c C) 1 c N N ic c mp m c: osztályok száma p: prior valószínűség m: paraméter

60 Példa naív Bayes osztályozóra Name Give Birth Can Fly Live in Water Have Legs Class human yes no no yes mammals python no no no no non-mammals salmon no no yes no non-mammals whale yes no yes no mammals frog no no sometimes yes non-mammals komodo no no no yes non-mammals bat yes yes no yes mammals pigeon no yes no yes non-mammals cat yes no no yes mammals leopard shark yes no yes no non-mammals turtle no no sometimes yes non-mammals penguin no no sometimes yes non-mammals porcupine yes no no yes mammals eel no no yes no non-mammals salamander no no sometimes yes non-mammals gila monster no no no yes non-mammals platypus no no no yes mammals owl no yes no yes non-mammals dolphin yes no yes no mammals eagle no yes no yes non-mammals Give Birth Can Fly Live in Water Have Legs Class yes no yes no? A: attributumok M: emlősök N: nem emlősök P( A M ) P( A N) P( A M ) P( M ) P( A N) P( N) P(A M)P(M) > P(A N)P(N) => emlős

61 Összegzés: Naív Bayes Robusztus izolált hibás pontokra. Kezeli a hiányzó értékeket a valószínűségek becslésénél ezen esetek figyelmen kívül hagyásával. Robusztus az irreleváns attributumokra. A függetlenségi feltétel nem teljesül egyes attributumokra. Használjunk más módszereket, Bayes hálók (Bayesian Belief Networks, BBN).

62 Mesterséges neurális hálók (ANN) X 1 X 2 X 3 Y Input X 1 X 2 X 3 Black box Output Y Az Y output 1 ha a három input közül legalább kettő 1.

63 Mesterséges neurális hálók (ANN) X 1 X 2 X 3 Y Input nodes X 1 X 2 X 3 Black box t=0.4 Output node Y Y I( 0.3X1 0.3X 2 0.3X ) 1 ha z igaz ahol I( z) 0 egyébként

64 Mesterséges neurális hálók (MNH) A modell egymással összekötött csúcsok és súlyozott élek együttese. Input nodes X 1 Black box w 1 Output node Az output csúcs összegzi az hozzátartozó input értékeket az éleken lévő súlyok szerint. Vessük össze az output csúcsban kapott értéket egy t küszöb számmal. X 2 X 3 Y w 2 w 3 Perceptron modell Y I( w X t) i i sign( w X t) i i i t i Y vagy

65 A MNH általános szerkezete x 1 x 2 x 3 x 4 x 5 Input Layer Input Neuron i Output Hidden Layer I 1 I 2 I 3 w i1 w i2 w i3 S i Activation function g(s i ) O i O i threshold, t Output Layer Egy MNH tanítása a neronjai súlyának meghatározását jelenti. y

66 Algoritmus MNH tanítására Inicializáljuk a (w 0, w 1,, w k ) súlyokat. Módosítsuk úgy a súlyokat, hogy az MNH outputja minél jobban egyezzen meg a tanító esetek osztály címkéivel. Célfüggvény: E Határozzuk meg azon w i súlyokat, amelyek minimalizálják a fenti célfüggvényt. Pl. hiba visszacsatolás algoritmusa. i Y f ( w, X ) 2 i i i

67 Támasz vektorgépek (SVM) Keressünk olyan hipersíkot (döntési határ), amely elválasztja az adatokat.

68 Támasz vektorgépek (SVM) B 1 Egy lehetséges megoldás.

69 Támasz vektorgépek (SVM) B 2 Egy másik lehetséges megoldás.

70 Támasz vektorgépek (SVM) B 2 További lehetséges megoldások.

71 Támasz vektorgépek (SVM) B 1 B 2 Melyik a jobb? B1 vagy B2? Hogyan definiálhatjuk a jobb fogalmát?

72 Támasz vektorgépek (SVM) B 1 B 2 b 21 b 22 margin b 11 Keressük azt a hipersíkot, mely maximalizálja a margót => B1 jobb mint B2. b 12

73 Támasz vektorgépek (SVM) B 1 w x b 0 w x w x b 1 b 1 b 11 1 if w x b 1 ( x) 1 if w x b 1 f 2 b 12 2 Margó w

74 Támasz vektorgépek (SVM) Maximalizálni akarjuk: Margin Ez ekvivalens minimalizálni: 2 w 2 L( w) w 2 2 De eleget kell tenni a következő kényszereknek: 1 if w xi b 1 f ( x i ) 1 if w xi b 1 Ez kényszerfeltétel melletti optimalizációs feladat. Numerikus módszerek (pl. kvadratikus programozás).

75 Támasz vektorgépek (SVM) Mi van ha a feladat nem lineárisan szeparálható?

76 Támasz vektorgépek (SVM) Mi van ha a feladat nem lineárisan szeparálható? Vezessünk be lötyögő változókat Minimalizálni kell: Kényszerfeltételek: i i i i 1 b x w if 1 1- b x w if 1 ) ( x i f N i k i C w w L ) (

77 Nemlineáris támasz vektorgépek Mi van ha a döntési határ nem lineáris?

78 Nemlineáris támasz vektorgépek Transzformáljuk az adatokat egy magasabb dimenziójú térbe (kernel trükk).

79 Együttes módszerek Osztályozók egy halmazát hozzuk létre a tanító állományon. Egy új rekord osztályát úgy jelezzük előre, hogy a sok osztályozó által kapott előrejelzéseket összesítjük.

80 Általános ötlet D Original Training data Step 1: Create Multiple Data Sets... D 1 D 2 D t-1 D t Step 2: Build Multiple Classifiers C 1 C 2 C t -1 C t Step 3: Combine Classifiers C *

81 Miért működhet? Tegyük fel, hogy adott 25 egyszerű osztályozónk. Minden osztályozó hibája = Tegyük fel, hogy az osztályozók függetlenek. Annak valószínűsége, hogy az együttes osztályozó hibás döntést hoz: 25 i13 25 i (1 ) i 25 i 0.06

82 Példák együttes módszerekre Hogyan hozhatjuk létre osztályozók együttesét? Bagging (bootstrap aggregating) Boosting (gyorsítás)

83 Bagging Visszatevéses mintavétel Original Data Bagging (Round 1) Bagging (Round 2) Bagging (Round 3) Minden bootstrap mintán építsünk fel egy osztályozót. Minden egyes rekordot (1 1/n) n valószínűséggel választunk ki.

84 Boosting (gyorsítás) Egy olyan iteratív eljárás, amely a tanító rekordok eloszlását adaptívan változtatva a korábban tévesen osztályozott rekordokra fókuszál. Kezdetben mind az összes N rekord egyenlő súlyt kap. A bagging-gel szemben a súlyok változhatnak egy iterációs ciklus befejeztével.

85 Boosting (gyorsítás) A rosszul osztályozott rekordoknak nőni fog a súlya. A helyesen osztályozott rekordoknak csökkenni fog a súlya. Original Data Boosting (Round 1) Boosting (Round 2) Boosting (Round 3) A 4. rekordot nehéz osztályozni A súlya nő, ezért nagyobb eséllyel választjuk ki ismét a következő körökben.

86 Példa: AdaBoost Alap osztályozók: C 1, C 2,, C T Hiba ráta: Az osztályozó fontossága: N j j j i j i y x C w N 1 ) ( 1 i i i 1 ln 2 1

87 Példa: AdaBoost A súlyok frissítése: w ( j1) i ahol Z Ha bármelyik közbenső körben a hiba 50% fölé megy, akkor a súlyok visszaállnak 1/n-re, és a mintavételi folyamat megismétlődik. Osztályozás: j ( j) j w exp ha ( ) i C j xi j Z j exp ha C j ( xi ) egy normalizáló tényezőt C *( x) arg max C y T j1 y y j i i,, j ( x) y

88 Az AdaBoost szemléltetése A minta pontok kezdeti súlyai Tanítási pontok Original Data B Boosting Round =

89 Az AdaBoost szemléltetése Boosting Round Boosting B B Round = = Boosting Round B3 = Overall

5. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton

5. fejezet. Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Adatbányászat: Osztályozás További módszerek 5. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Tan,Steinbach, Kumar Bevezetés az adatbányászatba Fordító:

Részletesebben

Csima Judit április 9.

Csima Judit április 9. Osztályozókról még pár dolog Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. április 9. Csima Judit Osztályozókról még pár dolog 1 / 19 SVM (support vector machine) ez is egy

Részletesebben

Adatbányászat: Osztályozás Alapfogalmak, döntési fák, kiértékelés

Adatbányászat: Osztályozás Alapfogalmak, döntési fák, kiértékelés Adatbányászat: Osztályozás Alapfogalmak, döntési fák, kiértékelés 4. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Tan,Steinbach, Kumar Bevezetés az

Részletesebben

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31. Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert

Részletesebben

Adatbányászat: Osztályozás Alapfogalmak, döntési fák, kiértékelés

Adatbányászat: Osztályozás Alapfogalmak, döntési fák, kiértékelés Adatbányászat: Osztályozás Alapfogalmak, döntési fák, kiértékelés 4. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Logók és támogatás A tananyag a TÁMOP-4.1.2-08/1/A-2009-0046

Részletesebben

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)

Részletesebben

Adatbányászat: Klaszterezés Haladó fogalmak és algoritmusok

Adatbányászat: Klaszterezés Haladó fogalmak és algoritmusok Adatbányászat: Klaszterezés Haladó fogalmak és algoritmusok 9. fejezet Tan, Steinbach, Kumar Bevezetés az adatbányászatba előadás-fóliák fordította Ispány Márton Logók és támogatás A tananyag a TÁMOP-4.1.2-08/1/A-2009-0046

Részletesebben

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló

Részletesebben

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával

Részletesebben

Egy uttes m odszerek Isp any M arton es Jeszenszky P eter okt ober 18.

Egy uttes m odszerek Isp any M arton es Jeszenszky P eter okt ober 18. Együttes módszerek Ispány Márton és Jeszenszky Péter 2016. október 18. Tartalom Bevezetés Zsákolás (bagging) Gyorsítás (boosting) AdaBoost Véletlen erdők (random forests) Hibajavító kimenet kódolás (error-correcting

Részletesebben

Csima Judit február 19.

Csima Judit február 19. Osztályozás Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2018. február 19. Csima Judit Osztályozás 1 / 53 Osztályozás általában Osztályozás, classification adott egy rekordokból

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

angolul: greedy algorithms, románul: algoritmi greedy

angolul: greedy algorithms, románul: algoritmi greedy Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város

Részletesebben

Gépi tanulás a gyakorlatban SVM

Gépi tanulás a gyakorlatban SVM Gépi tanulás a gyakorlatban SVM Klasszifikáció Feladat: előre meghatározott csoportok elkülönítése egymástól Osztályokat elkülönítő felület Osztályokhoz rendelt döntési függvények Klasszifikáció Feladat:

Részletesebben

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton

Osztályozás, regresszió. Nagyméretű adathalmazok kezelése Tatai Márton Osztályozás, regresszió Nagyméretű adathalmazok kezelése Tatai Márton Osztályozási algoritmusok Osztályozás Diszkrét értékkészletű, ismeretlen attribútumok értékének meghatározása ismert attribútumok értéke

Részletesebben

Adatbányászati feladatgyűjtemény tehetséges hallgatók számára

Adatbányászati feladatgyűjtemény tehetséges hallgatók számára Adatbányászati feladatgyűjtemény tehetséges hallgatók számára Buza Krisztián Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalomjegyék Modellek kiértékelése...

Részletesebben

Számítógépes döntéstámogatás. Genetikus algoritmusok

Számítógépes döntéstámogatás. Genetikus algoritmusok BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as

Részletesebben

Csima Judit február 26.

Csima Judit február 26. Osztályozás Csima Judit BME, VIK, Számítástudományi és Információelméleti Tanszék 2014. február 26. Csima Judit Osztályozás 1 / 60 Osztályozás általában Osztályozás, classification adott egy rekordokból

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,

Részletesebben

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet

Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,

Részletesebben

Fodor Gábor március 17. Fodor Gábor Osztályozás március / 39

Fodor Gábor március 17. Fodor Gábor Osztályozás március / 39 Osztályozás Fodor Gábor 2010. március 17. Fodor Gábor (fodgabor@math.bme.hu) Osztályozás 2010. március 17. 1 / 39 Bevezetés 1 Bevezetés 2 Döntési szabályok 3 Döntési fák 4 Bayes-hálók 5 Lineáris szeparálás

Részletesebben

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/

Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/ Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és

Részletesebben

Adatbányászati szemelvények MapReduce környezetben

Adatbányászati szemelvények MapReduce környezetben Adatbányászati szemelvények MapReduce környezetben Salánki Ágnes salanki@mit.bme.hu 2014.11.10. Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs Rendszerek Tanszék Felügyelt

Részletesebben

Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)

Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence) Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló

Részletesebben

Lineáris regressziós modellek 1

Lineáris regressziós modellek 1 Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák

Részletesebben

Random Forests - Véletlen erdők

Random Forests - Véletlen erdők Random Forests - Véletlen erdők Szabó Adrienn Adatbányászat és Webes Keresés Kutatócsoport 2010 Tartalom Fő forrás: Leo Breiman: Random Forests Machine Learning, 45, 5-32, 2001 Alapok Döntési fa Véletlen

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus

Részletesebben

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák

Részletesebben

Gépi tanulás Gregorics Tibor Mesterséges intelligencia

Gépi tanulás Gregorics Tibor Mesterséges intelligencia Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat

Részletesebben

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t

Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. 2018. szeptember 21. 1. Diszkrét matematika 2. 2. előadás Fancsali Szabolcs Levente nudniq@cs.elte.hu www.cs.elte.hu/ nudniq Komputeralgebra Tanszék 2018. szeptember 21. Gráfelmélet

Részletesebben

Az optimális megoldást adó algoritmusok

Az optimális megoldást adó algoritmusok Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.

Részletesebben

11. Előadás. 11. előadás Bevezetés a lineáris programozásba

11. Előadás. 11. előadás Bevezetés a lineáris programozásba 11. Előadás Gondolkodnivalók Sajátérték, Kvadratikus alak 1. Gondolkodnivaló Adjuk meg, hogy az alábbi A mátrixnak mely α értékekre lesz sajátértéke a 5. Ezen α-ák esetén határozzuk meg a 5 sajátértékhez

Részletesebben

A maximum likelihood becslésről

A maximum likelihood becslésről A maximum likelihood becslésről Definíció Parametrikus becsléssel foglalkozunk. Adott egy modell, mellyel elképzeléseink szerint jól leírható a meghatározni kívánt rendszer. (A modell típusának és rendszámának

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79

Részletesebben

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)

Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések) Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),

Részletesebben

Neurális hálózatok.... a gyakorlatban

Neurális hálózatok.... a gyakorlatban Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.

Részletesebben

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses

Részletesebben

Biomatematika 2 Orvosi biometria

Biomatematika 2 Orvosi biometria Biomatematika 2 Orvosi biometria 2017.02.13. Populáció és minta jellemző adatai Hibaszámítás Valószínűség 1 Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza)

Részletesebben

Gépi tanulás a gyakorlatban. Lineáris regresszió

Gépi tanulás a gyakorlatban. Lineáris regresszió Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják

Részletesebben

Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)

Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence) Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Mesterséges Intelligencia I.

Mesterséges Intelligencia I. Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

1. gyakorlat. Mesterséges Intelligencia 2.

1. gyakorlat. Mesterséges Intelligencia 2. 1. gyakorlat Mesterséges Intelligencia. Elérhetőségek web: www.inf.u-szeged.hu/~gulyasg mail: gulyasg@inf.u-szeged.hu Követelmények (nem teljes) gyakorlat látogatása kötelező ZH írása a gyakorlaton elhangzott

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Adatszerkezetek 2. Dr. Iványi Péter

Adatszerkezetek 2. Dr. Iványi Péter Adatszerkezetek 2. Dr. Iványi Péter 1 Fák Fákat akkor használunk, ha az adatok között valamilyen alá- és fölérendeltség van. Pl. könyvtárszerkezet gyökér (root) Nincsennek hurkok!!! 2 Bináris fák Azokat

Részletesebben

Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom.

Példák jellemzőkre: - minden pixelérték egy jellemző pl. neurális hálózat esetében csak kis képekre, nem invariáns sem a megvilágításra, sem a geom. Lépések 1. tanító és teszt halmaz összeállítása / megszerzése 2. jellemzők kinyerése 3. tanító eljárás választása Sok vagy kevés adat áll-e rendelkezésünkre? Mennyi tanítási idő/memória áll rendelkezésre?

Részletesebben

Valószínűségi változók. Várható érték és szórás

Valószínűségi változók. Várható érték és szórás Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :

Részletesebben

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel:

x, x R, x rögzített esetén esemény. : ( ) x Valószínűségi Változó: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Feltételes valószínűség: Teljes valószínűség Tétele: Bayes Tétel: Valószínűségi változó általános fogalma: A : R leképezést valószínűségi változónak nevezzük, ha : ( ) x, x R, x rögzített esetén esemény.

Részletesebben

Eredmények kiértékelése

Eredmények kiértékelése Eredmények kiértékelése Nagyméretű adathalmazok kezelése (2010/2011/2) Katus Kristóf, hallgató Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi és Információelméleti Tanszék 2011. március

Részletesebben

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék

Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása

Részletesebben

Szeleteljük fel úgy a tulajdonságteret, hogy az egyes szeletekbe lehetőleg egyfajta objektumok kerüljenek, de túl sok szelet se legyen.

Szeleteljük fel úgy a tulajdonságteret, hogy az egyes szeletekbe lehetőleg egyfajta objektumok kerüljenek, de túl sok szelet se legyen. KEMOMETRIA VIII-1/27 /2013 ősz CART Classification and Regression Trees Osztályozó fák Szeleteljük fel úgy a tulajdonságteret, hogy az egyes szeletekbe lehetőleg egyfajta objektumok kerüljenek, de túl

Részletesebben

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése

STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése 4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision

Részletesebben

Principal Component Analysis

Principal Component Analysis Principal Component Analysis Principal Component Analysis Principal Component Analysis Definíció Ortogonális transzformáció, amely az adatokat egy új koordinátarendszerbe transzformálja úgy, hogy a koordináták

Részletesebben

Kódverifikáció gépi tanulással

Kódverifikáció gépi tanulással Kódverifikáció gépi tanulással Szoftver verifikáció és validáció kiselőadás Hidasi Balázs 2013. 12. 12. Áttekintés Gépi tanuló módszerek áttekintése Kódverifikáció Motiváció Néhány megközelítés Fault Invariant

Részletesebben

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet / Tartalom 3/ kernelek segítségével Felügyelt és félig-felügyelt tanulás felügyelt: D =

Részletesebben

Regressziós vizsgálatok

Regressziós vizsgálatok Regressziós vizsgálatok Regresszió (regression) Általános jelentése: visszaesés, hanyatlás, visszafelé mozgás, visszavezetés. Orvosi területen: visszafejlődés, involúció. A betegség tünetei, vagy maga

Részletesebben

(Independence, dependence, random variables)

(Independence, dependence, random variables) Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Valószínűségi hálók - következtetés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade Következtetés

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Losonczi László Debreceni Egyetem, Közgazdaság- és Gazdaságtudományi Kar Debrecen, 2011/12 tanév, II. félév Losonczi László (DE) A Markowitz modell 2011/12 tanév,

Részletesebben

Diszkrét matematika 2.

Diszkrét matematika 2. Diszkrét matematika 2. Mérai László előadása alapján Készítette: Nagy Krisztián 1. előadás Gráfok halmaza, gráf, ahol a csúcsok halmaza, az élek illesztkedés reláció: illesztkedik az élre, ha ( -él illesztkedik

Részletesebben

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés

Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük

Részletesebben

Algoritmuselmélet 2. előadás

Algoritmuselmélet 2. előadás Algoritmuselmélet 2. előadás Katona Gyula Y. Budapesti Műszaki és Gazdaságtudományi Egyetem Számítástudományi Tsz. I. B. 137/b kiskat@cs.bme.hu 2002 Február 12. ALGORITMUSELMÉLET 2. ELŐADÁS 1 Buborék-rendezés

Részletesebben

Gyakorló feladatok adatbányászati technikák tantárgyhoz

Gyakorló feladatok adatbányászati technikák tantárgyhoz Gyakorló feladatok adatbányászati technikák tantárgyhoz Buza Krisztián Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem Klaszterezés kiértékelése Feladat:

Részletesebben

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék

Programozás alapjai 9. előadás. Wagner György Általános Informatikai Tanszék 9. előadás Wagner György Általános Informatikai Tanszék Leszámoló rendezés Elve: a rendezett listában a j-ik kulcs pontosan j-1 kulcsnál lesz nagyobb. (Ezért ha egy kulcsról tudjuk, hogy 27 másiknál nagyobb,

Részletesebben

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok

Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris

Részletesebben

Support Vector Machines

Support Vector Machines Support Vector Machnes Ormánd Róbert MA-SZE Mest. Int. Kutatócsoport 2009. február 17. Előadás vázlata Rövd bevezetés a gép tanulásba Bevezetés az SVM tanuló módszerbe Alapötlet Nem szeparálható eset Kernel

Részletesebben

Diszkrét matematika 2.C szakirány

Diszkrét matematika 2.C szakirány Diszkrét matematika 2.C szakirány 2017. ősz 1. Diszkrét matematika 2.C szakirány 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék 2017.

Részletesebben

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok

Részletesebben

Algoritmizálás, adatmodellezés tanítása 6. előadás

Algoritmizálás, adatmodellezés tanítása 6. előadás Algoritmizálás, adatmodellezés tanítása 6. előadás Tesztelési módszerek statikus tesztelés kódellenőrzés szintaktikus ellenőrzés szemantikus ellenőrzés dinamikus tesztelés fekete doboz módszerek fehér

Részletesebben

[1000 ; 0] 7 [1000 ; 3000]

[1000 ; 0] 7 [1000 ; 3000] Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított

Részletesebben

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat.

A következő feladat célja az, hogy egyszerű módon konstruáljunk Poisson folyamatokat. Poisson folyamatok, exponenciális eloszlások Azt mondjuk, hogy a ξ valószínűségi változó Poisson eloszlású λ, 0 < λ

Részletesebben

Mesterséges intelligencia 2. laborgyakorlat

Mesterséges intelligencia 2. laborgyakorlat Mesterséges intelligencia 2. laborgyakorlat Keresési módszerek A legtöbb feladatot meg lehet határozni keresési feladatként: egy ún. állapottérben, amely tartalmazza az összes lehetséges állapotot fogjuk

Részletesebben

A szimplex algoritmus

A szimplex algoritmus A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

Közösség detektálás gráfokban

Közösség detektálás gráfokban Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a

Részletesebben

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék

Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm

Részletesebben

TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...

TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése... TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő

Részletesebben

Intelligens adatelemzés

Intelligens adatelemzés Antal Péter, Antos András, Horváth Gábor, Hullám Gábor, Kocsis Imre, Marx Péter, Millinghoffer András, Pataricza András, Salánki Ágnes Intelligens adatelemzés Szerkesztette: Antal Péter A jegyzetben az

Részletesebben

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév

Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,

Részletesebben

A Markowitz modell: kvadratikus programozás

A Markowitz modell: kvadratikus programozás A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Konjugált gradiens módszer

Konjugált gradiens módszer Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK

Részletesebben

Szomszédság alapú ajánló rendszerek

Szomszédság alapú ajánló rendszerek Nagyméretű adathalmazok kezelése Szomszédság alapú ajánló rendszerek Készítette: Szabó Máté A rendelkezésre álló adatmennyiség növelésével egyre nehezebb kiválogatni a hasznos információkat Megoldás: ajánló

Részletesebben

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1

Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1 Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában

Részletesebben

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására

Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására VÉGZŐS KONFERENCIA 2009 2009. május 20, Budapest Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására Hidasi Balázs hidasi@tmit.bme.hu Konzulens: Gáspár-Papanek Csaba Budapesti

Részletesebben

I. LABOR -Mesterséges neuron

I. LABOR -Mesterséges neuron I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell

y ij = µ + α i + e ij STATISZTIKA Sir Ronald Aylmer Fisher Példa Elmélet A variancia-analízis alkalmazásának feltételei Lineáris modell Példa STATISZTIKA Egy gazdálkodó k kukorica hibrid termesztése között választhat. Jelöljük a fajtákat A, B, C, D-vel. Döntsük el, hogy a hibridek termesztése esetén azonos terméseredményre számíthatunk-e.

Részletesebben

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363 1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 206/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák

Részletesebben

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév

Részletesebben

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA

VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA VALÓSZÍNŰSÉG, STATISZTIKA TANÍTÁSA A VALÓSZÍNŰSÉGI SZEMLÉLET ALAPOZÁSA 1-6. OSZTÁLY A biztos, a lehetetlen és a lehet, de nem biztos események megkülünböztetése Valószínűségi játékok, kísérletek események

Részletesebben

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,

Részletesebben

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása

Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása 1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben