3) Mit fejez ki az B T DBdV kifejezés, és mi a fizikai tartalma a benne szereplő mennyiségeknek?

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "3) Mit fejez ki az B T DBdV kifejezés, és mi a fizikai tartalma a benne szereplő mennyiségeknek?"

Átírás

1 1) Értelmezze az u=nd kifejezést! Hogyan lehet felírni egy elem tetszőleges belső pontjának elmozdulásait az elem csomóponti elmozdulásainak ismeretében? 3) Mit fejez ki az B T DBdV kifejezés, és mi a fizikai tartalma a benne szereplő mennyiségeknek?

2 4) Értelmezze az ε=dnd=bd kifejezést! Milyen mennyiségeket tartalmaz és mi azok fizikai tartalma? A nyúlást leíró egyenletrendszer 5) Értelmezze a σ=d(ε-ε 0)+σ 0 kifejezést! Milyen mennyiségeket tartalmaz és mi azok fizikai tartalma? 6) Mit fejez ki a δ(u+w)=0 variációs egyenlet? Értelmezze a benne szerepelő mennyiségeket! 7) Mit fejez ki Kd-F=0 egyenlet és hogyan oldható meg?

3 8) Ábrával magyarázza meg egy-egy húzott és hajlított szelvény feszültségeinek alakulását a rugalmas feszültségektől a képlékeny határállapotig. Húzott: Hajlított: 9) Ábrával magyarázza meg a helyi képlékeny zóna terjedését egy diszkontinuitás környezetében. 10) Rajzolja fel egy húzott próbatest rugalmas-képlékeny szakítódiagramját és értelmezze a jellegzetes pontokat.

4 11) Milyen idealizált anyagtörvényeket ismer? Válaszát ábrákkal is illusztrálja. lineárisan rugalmas merev-ideálisan képlékeny, merev-felkeményedő rugalmas- ideálisan képlékeny, rugalmas-felkeményedő

5 12) Miben különbözik a rugalmas-ideálisan képlékeny és a rugalmas-felkeményedő anyagtörvény? Válaszát ábrákkal is illusztrálja. A K-keményedési tényező értékében rugalmas- ideálisan képlékeny, rugalmas-felkeményedő 13) Értelmezze a maradó nyúlást és a maradó feszültséget rugalmas-ideálisan képlékeny anyagtörvény esetén. Válaszát ábrával is illusztrálja Maradó nyúlások és feszültségek rugalmas-ideálisan képlékeny anyagtörvény esetén 14) A mutassa be és magyarázza a folyási felület viselke dését ideálisan képlékeny esetben, valamint izotróp és kinematikai felkeményedés esetén. A folyási felület viselkedése ideálisan képlékeny esetben, valamint izotróp és kinematikai felkeményedés esetén

6 15) Mi a különbség az izotróp és a kinematikai felkeményedés között? Válaszát ábrákkal is illusztrálja. 16) Egy kéttámaszú tartó példáján keresztül mutassa be a képlékeny csukló kialakulásának folyamatát egy hajlított tartóban. Mi a teherbíró képesség határa? A hajlított tartó szelvényében M<M r feszültségen csak rugalmas feszültségek vannak. Elérve a rugalmassági határt (M=M r ) a szélső szál megfolyik, de a szelvény még rugalmas marad. Rugalmas viselkedést mutat a φ=φ(m) szögelfordulás-nyomaték függvény is. A rugalmassági határ felett (M r <M<M t ) egyre kiterjedtebb képlékeny zóna alakul ki a szelvény húzott és nyomott zónájában, a- melynek következtében a φ=φ(m) függvény is elveszti a linearitását. Az M=M t képlékeny teherbírási határon a képlékeny zónák összeérnek, a szelvény elveszti a hajlítással szembeni ellenállását, a további szögelfordulás- hoz nem szükséges többlet-nyomaték, tehát a szelvény a nyomaték szempontjából csuklóssá válik és kialakul az un. képlékeny csukló. 17) Egy bemetszett tartó példáján keresztül mutassa be a kisciklusú kifáradás jelenségét egy hajlított tartóban. Mi a kisciklusú kifáradás oka? A gép egy ingás ütőmű, amely bemetszett próbatestet tör el. Az ingát, amely jól csapágyazott tengely körül elfordítható rúdból és annak végén elhelyezett nagy tömegű (15 vagy 30 kg) ütőfejből áll, meghatározott magasságról indítják. Amikor az ingát elengedik, lefelé indul, felgyorsul, és a legnagyobb sebességét a pálya alsó pontján éri el, ahol a kezdeti helyzeti energia mozgási energiává alakul. Ide helyezik a bemetszett próbadarabot, amelyre az ütőfej ütést mér és eltöri. A töréshez szükséges munka csökkenti a mozgási energiát, így amikor az inga felfelé mozdul, felső holtpontjának magassága nem éri el az indítási magasságot. A két véghelyzet magasságának (h és h) különbségéből kiszámítható az ütőfej helyzeti energiáinak különbsége K=mg(h -h), amely a próbatest eltöréséhez szükséges munka Jouleban.

7 Elsőként tekintsük a feszültség ábrát, amely a bemetszés csúcspontjának σ feszültségét ábrázolja a terhelés függvényében! A vizsgált pont σf terhelésig (A-B szakasz) rugalmasan viselkedik, majd a teljes F t =1875N terhelés ráadásáig (B-B ) képlékeny alakváltozást mutat. Ez, az előzetes számítások tükrében egyáltalán nem meglepő. A szokatlan jelenség a leterheléskor tapasztalható, ugyanis a tehermentesítés csak a B -A szakaszon lineáris, utána ismét képlékeny alakváltozást tapasztalunk (A -A ), tehát a vizsgált pontban a leterhelés során, ellentétes előjellel, ismét jelentkezik a folyás. A megismételt felterheléskor az A -B szakasz lineáris, utána egy rövidebb képlékeny alakváltozás következik (B -B ), majd a leterhelés a korábbi B -A egyenes mentén ismét lineáris, a végén egy a B -B szakasszal azonos mértékű megfolyással (A -A ). Látható, hogy a megismételt terhelés során a feszültséggörbe hiszterézist mutat (A -B -B -A -A ), amely többszöri újraterhelés esetén már kis ciklusszám mellett is tönkremenetelt eredményez. A jelenség az un. kisciklusú kifáradás. Hasonló jelenség megy végbe egy drótdarab hajlítgatásakor, amely néhány tucat terhelési ciklus után eltörik. A hajlítgatás közben tapasztalt melegedés forrása a hiszterézis. A kisciklusú kifáradás szempontjából kitűntetett jelentősége van a B pontnak, amelyhez a 2σ F feszültséget létrehozó F t =1428 N terhelés tartozik. Ha a terhelést csak F t-ig működtetnénk (B pont), akkor a leterhelés, hiszterézis nélkül, a B -A egyenes mentén történne. Ebből következik, hogy a kisciklusú kifáradás határterhelése a 2σ F feszültséget létrehozó terhelés. 18) Mutassa be egy belső nyomással terhelt vastag falú cső rugalmas-képlékeny viselkedését. Mi a teherbíró képesség határa? 19) Magyarázza meg az autofrettázs jelenséget.

8 Rugalmas-képlékeny feladatok 20) Mutassa be és magyarázza ábrán a Newton-Raphson iterációt. Melyek a Newton-Raphson iteráció előnyei és hátrányai? Nem a kiinduló állapotból, hanem egy más terhelési szintről indítjuk az új iterálást érintővel. Előny: Nagyon gyors konvergencia Hátrány: K mx-t minden lépésnél újra kell építeni 21) Mutassa be és magyarázza ábrán a módosított Newton -Raphson iterációt. Melyek a módosított Newton-Raphson iteráció el őnyei és hátrányai? A módosított Newton-Raphson iteráció Nem érintővel, hanem párhuzamos egyenessel készítik az új iterálást. Előny: K mx-t csak egyszer kell számítani Hátrány: Lasabban konvergál K bizonyos értékénél divergencia lehet

9 22) Mutassa be és magyarázza ábrán a direkt (Line Search) iterációt. Folyamatos iteráció pontonként K=K(E)=K(E(epszilon)) Az un. direkt (Line Search) iteráció 23) Mi a különbség a Newton-Raphson és a módosított Newton-Raphson iteráció között? Mi a gyakorlaticélja a módosított Newton-Raphson iteráció használatának? A sima N-R esetén minden lépésben új K mx (K1,K2,K3) ot kell kiszámolni. A módosított N-R-nél csak egyet K1 kell az elején, és ezzel számol tovább minden lépésben. A módosított N-R nek kisebb a számítási kapacitás igénye. 24) Milyen célt szolgál a rugalmas-képlékeny végeselemes feladatokban az időlépés (Time Step)? 25) Milyen adatokat kell megadni a rugalmas-képlékeny feladatok mérnöki célú megoldása során? 26) Milyen adatok szükségesek egy rugalmas -felkeményedő anyagtörvény megadásához? F(Szigma,K)=0 folyási feltétel -Szigma: Feszültség -K: Keményedési tényező 28) Foglalja össze a geometriailag nemlineáris megoldást igénylő feladattípusokat. -nagy elmozdulás -nagy alakváltozás - stabilitás vizsgálat -érintkezési problémák

10 31) Foglalja össze az érintkezési (kontakt) feladatok típusait. - Lineáris (gap-elem) - Nem lineáris ű o kontakt elem o geometriai feltétel, egyensúlyi feltétel (erő) 32) Mi a lineáris érintkezési feladatok megoldásának alapelve? Az eljárás egy olyan iterációs algoritmusra épül, ahol az egyensúlyi feltétel az érintkező testek közti hézagmentes érintkezés 33) Mi a nemlineáris érintkezési feladatok megoldásának alapelve? A súrlódás is figyelembe vehető. A geometriai nem linearitás algoritmusokat használja fel. DINAMIKA 36) Írja fel a dinamikai feladatok megoldására szolgáló differenciálegyenletet egytömegű lengő rendszerre. 37) Milyen alapvet ő anyag- és geometriai jellemzők vannak hatással a dinamikai feladatok eredményeire? 38) Írja fel a dinamikai feladatok végeselemes tárgyalásának alapegyenletét és magyarázza az egyenletben szerepl ő mennyiségeket! 39) A vé geselemes dinamikai feladatokban hogyan definiáljuk a tömeg - és a csillapítási mátrixot? Tömeg mátrix: Csillapítási mátrix: 40) Mi a koncentrált tömegmátrix és milyen el őnyökkel jár a használata? 41) Mutassa be ábrán, hogy a csillapításnak hol van jelentősége a dinamikai feladatokban. 42) Mutassa be az Mu +Cu +Ku=F (t) egyensúlyi egyenlet időbeli megoldására szolgáló növekményes technikát. 43) Ismertesse a dinamikai vizsgálat ok kezdeti feltételeit és a számítás elindításának teendőit. 44) Ismertesse dinamikai vizsgálatok direkt integrálási lépéseit. 50) Milyen célt szolgál a nemlineáris, hőtani és dinamikai végeselemes feladatokban az id őlépés (Time Step)? 51) Milyen típusú végeselemes feladatok esetén van szükség un. kezdeti, vagy kiinduló feltételre?

Anyagvizsgálatok. Mechanikai vizsgálatok

Anyagvizsgálatok. Mechanikai vizsgálatok Anyagvizsgálatok Mechanikai vizsgálatok Szakítóvizsgálat EN 10002-1:2002 Célja: az anyagok egytengelyű húzó igénybevétellel szembeni ellenállásának meghatározása egy szabványosan kialakított próbatestet

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban)

II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) II. Gyakorlat: Hajlított vasbeton keresztmetszet ellenőrzése (Négyszög és T-alakú keresztmetszetek hajlítási teherbírása III. feszültségi állapotban) Készítették: Dr. Kiss Rita és Klinka Katalin -1- A

Részletesebben

Előadó: Dr. Bukovics Ádám 11. ELŐADÁS

Előadó: Dr. Bukovics Ádám 11. ELŐADÁS SZÉCHNYI ISTVÁN GYTM TARTÓSZRKZTK III. lőadó: Dr. Bukovics Ádám Az ábrák forrása:. LŐADÁS [1] Dr. Németh György: Tartószerkezetek III., Acélszerkezetek méretezésének alapjai [2] Halász Ottó Platthy Pál:

Részletesebben

A szerkezeti anyagok tulajdonságai és azok vizsgálata

A szerkezeti anyagok tulajdonságai és azok vizsgálata A szerkezeti anyagok tulajdonságai és azok vizsgálata 1 Az anyagok tulajdonságai fizikai tulajdonságok, mechanikai, termikus, elektromos, mágneses akusztikai, optikai 2 Minıség, élettartam A termék minısége

Részletesebben

MUNKAGÖDÖR TERVEZÉSE

MUNKAGÖDÖR TERVEZÉSE MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek

Részletesebben

Külpontosan nyomott keresztmetszet számítása

Külpontosan nyomott keresztmetszet számítása Külpontosan nyomott keresztmetszet számítása A TELJES TEHERBÍRÁSI VONAL SZÁMÍTÁSA Az alábbi példa egy asszimmetrikus vasalású keresztmetszet teherbírási görbéjének 9 pontját mutatja be. Az első részben

Részletesebben

MECHANIKA I. rész: Szilárd testek mechanikája

MECHANIKA I. rész: Szilárd testek mechanikája Egészségügyi mérnökképzés MECHNIK I. rész: Szilárd testek mechanikája készítette: Németh Róbert Igénybevételek térben I. z alapelv ugyanaz, mint síkban: a keresztmetszet egyik oldalán levő szerkezetrészre

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás

6. MECHANIKA-STATIKA GYAKORLAT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya, Culmann-szerkesztés, Ritter-számítás ZÉHENYI ITVÁN EGYETE GÉPZERKEZETTN É EHNIK TNZÉK 6. EHNIK-TTIK GYKORLT Kidolgozta: Triesz Péter egy. ts. Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa Egy létrát egy verembe letámasztunk

Részletesebben

1. Ütvehajlító vizsgálat

1. Ütvehajlító vizsgálat 1. Ütvehajlító vizsgálat Ütvehajlító vizsgálat segítségével megvizsgálhatjuk, hogy az adott körülmények között dinamikus igénybevétel hatására hogyan viselkedik az agyagunk. A körülményektől függően egy

Részletesebben

Gyakorlat 03 Keresztmetszetek II.

Gyakorlat 03 Keresztmetszetek II. Gyakorlat 03 Keresztmetszetek II. 1. Feladat Keresztmetszetek osztályzása Végezzük el a keresztmetszet osztályzását tiszta nyomás és hajlítás esetére! Monoszimmetrikus, hegesztett I szelvény (GY02 1. példája)

Részletesebben

A.2. Acélszerkezetek határállapotai

A.2. Acélszerkezetek határállapotai A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)

Részletesebben

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár)

6. MECHANIKA-STATIKA GYAKORLAT (kidolgozta: Triesz Péter, egy. ts.; Tarnai Gábor, mérnöktanár) SZÉHNYI ISTVÁN GYT LKLZOTT HNIK TNSZÉK 6. HNIK-STTIK GYKORLT (kidolgozta: Triesz Péter egy. ts.; Tarnai Gábor mérnöktanár) Négy erő egyensúlya ulmann-szerkesztés Ritter-számítás 6.. Példa gy létrát egy

Részletesebben

Lemez- és gerendaalapok méretezése

Lemez- és gerendaalapok méretezése Lemez- és gerendaalapok méretezése Az alapmerevség hatása az alap hajlékony merev a talpfeszültség egyenletes széleken nagyobb a süllyedés teknıszerő egyenletes Terhelés hatása hajlékony alapok esetén

Részletesebben

Toronymerevítık mechanikai szempontból

Toronymerevítık mechanikai szempontból Andó Mátyás: Toronymerevítık méretezése, 9 Gépész Tuning Kft. Toronymerevítık mechanikai szempontból Mint a neve is mutatja a toronymerevítık használatának célja az, hogy merevebbé tegye az autó karosszériáját

Részletesebben

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat.

Frissítve: Csavarás. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. 1. példa: Az 5 gyakorlat 1. példájához hasonló feladat. Mekkora a nyomatékok hatására ébredő legnagyobb csúsztatófeszültség? Mekkora és milyen irányú az A, B és C keresztmetszet elfordulása? Számítsuk

Részletesebben

Újdonságok 2013 Budapest

Újdonságok 2013 Budapest Újdonságok 2013 Budapest Tartalom 1. Általános 3 2. Szerkesztés 7 3. Elemek 9 4. Terhek 10 5. Számítás 12 6. Eredmények 13 7. Méretezés 14 8. Dokumentáció 15 2. oldal 1. Általános A 64 bites változat lehetőséget

Részletesebben

Vasbeton tartók méretezése hajlításra

Vasbeton tartók méretezése hajlításra Vasbeton tartók méretezése hajlításra Képlékenység-tani méretezés: A vasbeton keresztmetszet teherbírásának számításánál a III. feszültségi állapotot vesszük alapul, amelyre az jellemző, hogy a hajlításból

Részletesebben

Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál!

Tevékenység: Tanulmányozza a ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Tanulmányozza a.3.6. ábrát és a levezetést! Tanulja meg a fajlagos nyúlás mértékének meghatározásának módját hajlításnál! Az alakváltozás mértéke hajlításnál Hajlításnál az alakváltozást mérnöki alakváltozási

Részletesebben

Navier-formula. Frissítve: Egyenes hajlítás

Navier-formula. Frissítve: Egyenes hajlítás Navier-formula Akkor beszélünk egyenes hajlításról, ha a nyomatékvektor egybeesik valamelyik fő-másodrendű nyomatéki tengellyel. A hajlítást mindig súlyponti koordinátarendszerben értelmezzük. Ez még a

Részletesebben

Dr. Márialigeti János egyetemi tanár Járműelemek és Jármű-szerkezet -analízis Tanszék BME Közlekedésmérnöki és Járműmérnöki Kar

Dr. Márialigeti János egyetemi tanár Járműelemek és Jármű-szerkezet -analízis Tanszék BME Közlekedésmérnöki és Járműmérnöki Kar Dr. Márialigeti János egyetemi tanár Járműelemek és Jármű-szerkezet -analízis Tanszék BME Közlekedésmérnöki és Járműmérnöki Kar Élettartam számítás a helyi feszültségnyúlás viszonyok modellezése alapján

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

FERNEZELYI SÁNDOR EGYETEMI TANÁR

FERNEZELYI SÁNDOR EGYETEMI TANÁR MAGASÉPÍTÉSI ACÉLSZERKEZETEK 1. AZ ACÉLÉPÍTÉS FERNEZELYI SÁNDOR EGYETEMI TANÁR A vas felhasználásának felfedezése kultúrtörténeti korszakváltást jelentett. - - Kőkorszak - Bronzkorszak - Vaskorszak - A

Részletesebben

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. IV. Előadás DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II IV. Előadás Rácsos tartók szerkezeti formái, kialakítása, tönkremeneteli módjai. - Rácsos tartók jellemzói - Méretezési kérdések

Részletesebben

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás.

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. KÉSZÜLT FERNEZELYI SÁNDOR EGYETEMI TANÁR ELŐADÁSI JEGYZETEI ÉS AZ INTERNETEN ELÉRHETŐ MÁS ANYAGOK

Részletesebben

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS-

A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- A K É T V É G É N A L Á T Á M A S Z T O T T T A R T Ó S T A T I K A I V IZS- Forgatónyomaték meghatározása G Á L A T A Egy erő forgatónyomatékkal hat egy pontra, ha az az erővel össze van kötve. Például

Részletesebben

Korrodált acélszerkezetek vizsgálata

Korrodált acélszerkezetek vizsgálata Korrodált acélszerkezetek vizsgálata 1. Szerkezeti példák és laboratóriumi alapkutatás Oszvald Katalin Témavezető : Dr. Dunai László Budapest, 2009.12.08. 1 Általános célkitűzések Korrózió miatt károsodott

Részletesebben

TERMÉKSZIMULÁCIÓ I. 9. elıadás

TERMÉKSZIMULÁCIÓ I. 9. elıadás TERMÉKSZIMULÁCIÓ I. 9. elıadás Dr. Kovács Zsolt egyetemi tanár Végeselem típusok Elemtípusok a COSMOSWorks Designer-ben: Lineáris térfogatelem (tetraéder) Kvadratikus térfogatelem (tetraéder) Lineáris

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

Acélszerkezetek. 3. előadás 2012.02.24.

Acélszerkezetek. 3. előadás 2012.02.24. Acélszerkezetek 3. előadás 2012.02.24. Kapcsolatok méretezése Kapcsolatok típusai Mechanikus kapcsolatok: Szegecsek Csavarok Csapok Hegesztett kapcsolatok Tompavarrat Sarokvarrat Coalbrookdale, 1781 Eiffel

Részletesebben

2. E L Ő A D Á S D R. H U S I G É Z A

2. E L Ő A D Á S D R. H U S I G É Z A Mechatronika alapjai 2. E L Ő A D Á S D R. H U S I G É Z A elmozdulás erő nyomaték elmozdulás erő nyomaték Mechanizmusok Mechanizmus: általánosságban: A gép mechanikus elven működő részei Definíció: A

Részletesebben

EC4 számítási alapok,

EC4 számítási alapok, Öszvérszerkezetek 2. előadás EC4 számítási alapok, beton berepedésének hatása, együttdolgozó szélesség, rövid idejű és tartós terhek, km. osztályozás, képlékeny km. ellenállás készítette: 2016.10.07. EC4

Részletesebben

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék

5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. BME Szilárdságtani és Tartószerkezeti Tanszék MAGASÉPÍTÉSI ACÉLSZERKEZETEK 5. Az acélszerkezetek méretezésének különleges kérdései: rideg törés, fáradás. FERNEZELYI SÁNDOR EGYETEMI TANÁR Az acél szakító diagrammja Lineáris szakasz Arányossági határnak

Részletesebben

Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Tartalom Méretezés az Eurocode szabványrendszer szerint áttekintés Teherbírási határállapotok Húzás Nyomás

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése

Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése Kisciklusú fárasztóvizsgálatok eredményei és energetikai értékelése Tóth László, Rózsahegyi Péter Bay Zoltán Alkalmazott Kutatási Közalapítvány Logisztikai és Gyártástechnikai Intézet Bevezetés A mérnöki

Részletesebben

Hidak Darupályatartók Tornyok, kémények (szélhatás) Tengeri építmények (hullámzás)

Hidak Darupályatartók Tornyok, kémények (szélhatás) Tengeri építmények (hullámzás) Dr. Németh György Szerkezetépítés II. 1 A fáradt törés ismétlődő terhek hatására a statikus törőszilárdság feszültségszintje alatt feszültségcsúcsoknál lokális képlékeny alakváltozásból indul ki általában

Részletesebben

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:

2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma: 2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű

Részletesebben

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22.

TERMÉKSZIMULÁCIÓ. Dr. Kovács Zsolt. Végeselem módszer. Elıadó: egyetemi tanár. Termékszimuláció tantárgy 6. elıadás március 22. TERMÉKZIMULÁCIÓ Végeselem módszer Termékszimuláció tantárgy 6. elıadás 211. március 22. Elıadó: Dr. Kovács Zsolt egyetemi tanár A végeselem módszer lényege A vizsgált, tetszıleges geometriai kialakítású

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Tartószerkezet rekonstrukciós szakmérnök képzés Feszített és előregyártott vasbeton szerkezetek 1. előadás Előregyártott vasbeton szerkezetek kapcsolatai Dr. Sipos András Árpád 2012. november 17. Vázlat

Részletesebben

Kizárólag oktatási célra használható fel!

Kizárólag oktatási célra használható fel! DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II III. Előadás Vékonyfalú keresztmetszetek nyírófeszültségei - Nyírófolyam - Nyírási középpont - Shear lag hatás - Csavarás Összeállította:

Részletesebben

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció)

Tartalom. 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) Tartalom 1. Állapotegyenletek megoldása 2. Állapot visszacsatolás (pólusallokáció) 2015 1 Állapotgyenletek megoldása Tekintsük az ẋ(t) = ax(t), x(0) = 1 differenciálegyenletet. Ismert, hogy a megoldás

Részletesebben

- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági

- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági 1. - Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági vizsgálatát. - Jellemezze a vasbeton három feszültségi

Részletesebben

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet

Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet Vasbetonszerkezetek II. Vasbeton lemezek Rugalmas lemezelmélet 2. előadás A rugalmas lemezelmélet alapfeltevései A lemez anyaga homogén, izotróp, lineárisan rugalmas (Hooke törvény); A terheletlen állapotban

Részletesebben

Tájékoztató. Értékelés Összesen: 60 pont

Tájékoztató. Értékelés Összesen: 60 pont A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre

Részletesebben

Használhatósági határállapotok. Alakváltozások ellenőrzése

Használhatósági határállapotok. Alakváltozások ellenőrzése 1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)

Részletesebben

Hegesztett gerinclemezes tartók

Hegesztett gerinclemezes tartók Hegesztett gerinclemezes tartók Lemezhorpadások kezelése EC szerint dr. Horváth László BME Hidak és Szerkezetek Tanszéke Bevezetés Gerinclemezes tartók vékony lemezekből: Bevezetés Összetett szelvények,

Részletesebben

Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA

Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA Dr. Égert János Dr. Molnár Zoltán Dr. Nagy Zoltán ALKALMAZOTT MECHANIKA UNIVERSITAS-GYŐR Nonprofit Kft. Győr, 2010 SZÉCHENYI ISTVÁN EGYETEM MŰSZAKI TUDOMÁNYI KAR ALKALMAZOTT MECHANIKA TANSZÉK ALKALMAZOTT

Részletesebben

- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági

- Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági 1. - Elemezze a mellékelt szerkezetet, készítse el a háromcsuklós fa fedélszék igénybevételi ábráit, ismertesse a rácsostartó rúdelemeinek szilárdsági vizsgálatát. - Jellemezze a vasbeton három feszültségi

Részletesebben

A szerkezeti anyagok mechanikai tulajdonságai

A szerkezeti anyagok mechanikai tulajdonságai Ez a kép most nem jeleníthető meg. 2012.11.19. Szerkezeti anyagok igénybevételei A szerkezeti anyagok mechanikai tulajdonságai Az elemzés szükséges: A szerkezeti anyagok tulajdonságainak meghatározásához,

Részletesebben

Csuklós szerkezetek reakciói és igénybevételi ábrái. Frissítve: példa: A 12. gyakorlat 1. feladata.

Csuklós szerkezetek reakciói és igénybevételi ábrái. Frissítve: példa: A 12. gyakorlat 1. feladata. 1. példa: A 12. gyakorlat 1. feladata. Számítsuk ki a reakcióerőket! Rajzoljuk meg a nyomatéki ábrát! Megjegyzés: A támaszok vízszintesen egy vonalban vannak. 1 / 20 2. példa: Számítsuk ki a reakcióerőket!

Részletesebben

Molekuláris dinamika. 10. előadás

Molekuláris dinamika. 10. előadás Molekuláris dinamika 10. előadás Mirőlis szól a MD? nagy részecskeszámú rendszerek ismerjük a törvényeket mikroszkópikus szinten? Hogyan tudjuk megérteni a folyadékok, gázok, szilárdtestek makroszkópikus

Részletesebben

FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI

FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI FIZIKA SZÓBELI VIZSGA TÉMAKÖREI ÉS MÉRÉSEI 1. Egyenes vonalú mozgások 2012 Mérje meg Mikola-csőben a buborék sebességét! Mutassa meg az út, és az idő közötti kapcsolatot! Három mérést végezzen, adatait

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2007/08. Károsodás. Témakörök

ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK. Anyagismeret 2007/08. Károsodás. Témakörök ANYAGTUDOMÁNY ÉS TECHNOLÓGIA TANSZÉK Anyagismeret 2007/08 Károsodás Dr. Lovas Jenő jlovas@ eik.bme.hu Dr. Éva András mal.eva@mail.datanet.hu Témakörök Bevezetés Tönkremeneteli módok Fáradás, méretezés

Részletesebben

IGAZI, GEORÁCCSAL ERŐSÍTETT HÍDFŐ ELSŐ MAGYARORSZÁGI ALKALMAZÁSA. Tóth Gergő

IGAZI, GEORÁCCSAL ERŐSÍTETT HÍDFŐ ELSŐ MAGYARORSZÁGI ALKALMAZÁSA. Tóth Gergő IGAZI, GEORÁCCSAL ERŐSÍTETT HÍDFŐ ELSŐ MAGYARORSZÁGI ALKALMAZÁSA Tóth Gergő Gradex Mérnöki és Szolgáltató Kft. 1034 Budapest, Bécsi út 120. Telefon: +36-1/436-0990 www.gradex.hu Pálossy, Scharle, Szalatkay:Tervezési

Részletesebben

időpont? ütemterv számonkérés segédanyagok

időpont? ütemterv számonkérés segédanyagok időpont? ütemterv számonkérés segédanyagok 1. Bevezetés Végeselem-módszer Számítógépek alkalmazása a szerkezettervezésben: 1. a geometria megadása, tervkészítés, 2. műszaki számítások: - analitikus számítások

Részletesebben

54 582 03 1000 00 00 Magasépítő technikus Magasépítő technikus

54 582 03 1000 00 00 Magasépítő technikus Magasépítő technikus Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/20. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra.

Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Tisztelt Hallgatók! Szeretném felhívni figyelmüket a feltett korábbi vizsgapéldák és az azokhoz tartozó megoldások felhasználásával kapcsolatban néhány dologra. Az, hogy valaki egy korábbi vizsga megoldását

Részletesebben

A szerkezeti anyagok mechanikai tulajdonságai

A szerkezeti anyagok mechanikai tulajdonságai A szerkezeti anyagok mechanikai tulajdonságai Szerkezeti anyagok igénybevételei Az elemzés szükséges: A szerkezeti anyagok tulajdonságainak meghatározásához, A károsodási folyamatok megértéséhez, Ahhoz,

Részletesebben

A beton kúszása és ernyedése

A beton kúszása és ernyedése A beton kúszása és ernyedése A kúszás és ernyedés reológiai fogalmak. A reológia görög eredetű szó, és ebben az értelmezésben az anyagoknak az idő folyamán lejátszódó változásait vizsgáló műszaki tudományág

Részletesebben

A befogott tartóvég erőtani vizsgálatához II. rész

A befogott tartóvég erőtani vizsgálatához II. rész A befogott tartóvég erőtani vizsgálatához II. rész A második feladat Az első feladat alapfeltevése az volt, hogy a gerendavég kellően merev, így a terhelések hatására is egyenes marad. A valóságos testek

Részletesebben

GÉPÉSZETI ALAPISMERETEK

GÉPÉSZETI ALAPISMERETEK Gépészeti alapismeretek középszint 0911 ÉRETTSÉGI VIZSGA 009. október 19. GÉPÉSZETI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM

Részletesebben

Termodinamika (Hőtan)

Termodinamika (Hőtan) Termodinamika (Hőtan) Termodinamika A hőtan nagyszámú részecskéből (pl. gázmolekulából) álló makroszkópikus rendszerekkel foglalkozik. A nagy számok miatt érdemes a mólt bevezetni, ami egy Avogadro-számnyi

Részletesebben

Dr. RADNAY László PhD. Főiskolai Docens Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék

Dr. RADNAY László PhD. Főiskolai Docens Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék ACÉLSZERKEZETEK I. - 6. Előadás Dr. RADNAY László PhD. Főiskolai Docens Debreceni Egyetem Műszaki Kar Építőmérnöki Tanszék E-mail: radnaylaszlo@gmail.com Acélszerkezeti kapcsolatok Kapcsolat: az a hely,

Részletesebben

Ellenőrző kérdések Vegyipari Géptan tárgyból a vizsgárakészüléshez

Ellenőrző kérdések Vegyipari Géptan tárgyból a vizsgárakészüléshez 2015. tavaszi/őszi félév A vizsgára hozni kell: 5 db A4-es lap, íróeszköz (ceruza!), radír, zsebszámológép, igazolvány. A vizsgán általában 5 kérdést kapnak, aminek a kidolgozására 90 perc áll rendelkezésükre.

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek

Részletesebben

Ipari kemencék PID irányítása

Ipari kemencék PID irányítása Ipari kemencék PID irányítása 1. A gyakorlat célja: Az ellenállással melegített ipari kemencék modelljének meghatározása. A Opelt PID tervezési módszer alkalmazása ipari kemencék irányítására. Az ipari

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Statikailag határozatlan tartó vizsgálata

Statikailag határozatlan tartó vizsgálata Statikailag határozatlan tartó vizsgálata Készítette: Hénap Gábor henapg@mm.bme.hu E E P MT A y F D E E d B MT p C x a b c Adatok: a = m, p = 1 N, b = 3 m, F = 5 N, c = 4 m, d = 5 mm. m A kés bbikekben

Részletesebben

A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA

A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA A BP. XIV. ker., KOLOSVÁRY út 48. sz. ALATT (hrsz. 1956/23) ÉPÜLŐ RAKTÁRÉPÜLET FÖDÉMSZERKEZETÉNEK STATIKAI SZÁMÍTÁSA A FÖDÉMSZERKEZET: helyszíni vasbeton gerendákkal alátámasztott PK pallók. STATIKAI VÁZ:

Részletesebben

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló

Georg Cantor (1883) vezette be Henry John Stephen Smith fedezte fel 1875-ben. van struktúrája elemi kis skálákon is önhasonló láttuk, hogy a Lorenz egyenletek megoldásai egy nagyon bonyolult halmazt alkottak a fázistérben végtelenül komplex felület fraktál: komplex geometriai alakzatok, melyeknek elemi kis skálán is van finomszerkezete

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai.

DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK. Acélszerkezetek II. VI. Előadás. Rácsos tartók hegesztett kapcsolatai. DEBRECENI EGYETEM, MŰSZAKI KAR, ÉPÍTŐMÉRNÖKI TANSZÉK Acélszerkezetek II VI. Előadás Rácsos tartók hegesztett kapcsolatai. - Tönkremeneteli módok - Méretezési kérdések - Csomóponti kialakítások Összeállította:

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

Reológia Mérési technikák

Reológia Mérési technikák Reológia Mérési technikák Reológia Testek (és folyadékok) külső erőhatásra bekövetkező deformációját, mozgását írja le. A deformációt irreverzibilisnek nevezzük, ha a az erőhatás megszűnése után a test

Részletesebben

Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése.

Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. Öszvérszerkezetek 4. előadás Öszvér oszlopok kialakítása, THÁ, nyírt kapcsolatok, erőbevezetés környezete. 2. mintapélda - oszlop méretezése. készítette: 2016.11.11. Tartalom Öszvér oszlopok szerkezeti

Részletesebben

AxisVM rácsos tartó GEOMETRIA

AxisVM rácsos tartó GEOMETRIA AxisVM rácsos tartó Feladat Síkbeli rácsos tartó igénybevételeinek meghatározás. A rácsostartó övei legyenek I200 szelvényűek. A rácsrudak legyenek 80x80x4 zártszelvényűek Indítás A program elindításához

Részletesebben

A Maxwell - kerékről. Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is!

A Maxwell - kerékről. Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is! 1 A Maxwell - kerékről Maxwell - ingának is nevezik azt a szerkezetet, melyről most lesz szó. Ehhez tekintsük az 1. ábrát is! 1. ábra forrása: [ 1 ] Itt azt láthatjuk, hogy egy r sugarú kis hengerre felerősítettek

Részletesebben

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL

SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG

Részletesebben

ábra A K visszarugózási tényező a hajlítási sugár lemezvastagság hányados függvényében különböző anyagminőségek esetén

ábra A K visszarugózási tényező a hajlítási sugár lemezvastagság hányados függvényében különböző anyagminőségek esetén Keresse ki és jegyezze meg milyen tényezők befolyásolják a visszarugózás mértékét! Tanulmányozza a 2.3.12. ábrát! Figyelje meg a függvény görbéinek a változását! A visszarugózás mértéke A visszarugózás

Részletesebben

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA

9. évfolyam. Osztályozóvizsga tananyaga FIZIKA 9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni

Részletesebben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben

3 Technology Ltd Budapest, XI. Hengermalom 14 3/24 1117. Végeselem alkalmazások a tűzvédelmi tervezésben 1117 Végeselem alkalmazások a tűzvédelmi tervezésben 1117 NASTRAN végeselem rendszer Általános végeselemes szoftver, ami azt jelenti, hogy nem specializálták, nincsenek kimondottam valamely terület számára

Részletesebben

KIFÁRADÁSI ÉLETTARTAM KISFELADAT

KIFÁRADÁSI ÉLETTARTAM KISFELADAT BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KIFÁRADÁSI ÉLETTARTAM KISFELADAT Járműelemek és Járműszerkezetanalízis Tanszék Ssz.:...... Név:......................................... Neptun kód.:.........

Részletesebben

POLIMERTECHNIKA Laboratóriumi gyakorlat

POLIMERTECHNIKA Laboratóriumi gyakorlat MÉRÉSI JEGYZŐKÖNYV Polimer anyagvizsgálat Név: Neptun kód: Dátum:. Gyakorlat célja: 1. Műanyagok folyóképességének vizsgálata, fontosabb reológiai jellemzők kiszámítása 2. Műanyagok Charpy-féle ütővizsgálata

Részletesebben

Járműelemek. Rugók. 1 / 27 Fólia

Járműelemek. Rugók. 1 / 27 Fólia Rugók 1 / 27 Fólia 1. Rugók funkciója A rugók a gépeknek és szerkezeteknek olyan különleges elemei, amelyek nagy (ill. korlátozott) alakváltozás létrehozására alkalmasak. Az alakváltozás, szemben más szerkezeti

Részletesebben

Szilárdsági számítások. Kazánok és Tüzelőberendezések

Szilárdsági számítások. Kazánok és Tüzelőberendezések Szilárdsági számítások Kazánok és Tüzelőberendezések Tartalom Ellenőrző számítások: Hőtechnikai számítások, sugárzásos és konvektív hőátadó felületek számításai már ismertek Áramlástechnikai számítások

Részletesebben

A szerkezeti anyagok mechanikai tulajdonságai. Kalmár Emília ÓE Kandó MTI

A szerkezeti anyagok mechanikai tulajdonságai. Kalmár Emília ÓE Kandó MTI A szerkezeti anyagok mechanikai tulajdonságai Kalmár Emília ÓE Kandó MTI Szerkezeti anyagok igénybevételei Az elemzés szükséges: A szerkezeti anyagok tulajdonságainak meghatározásához, A károsodási folyamatok

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSÉPÍTŐ ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA KÖZLEKEDÉSÉPÍTŐ ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK KÖZLEKEDÉSÉPÍTŐ ISMERETEK EMELT SZINTŰ SZÓBELI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 1. tétel A altétel Ön egy hídépítő tervező cég műszaki munkatársa. Az alábbi kérdésekre válaszolva mutassa be a tervezéshez

Részletesebben

A mechanika alapjai. A pontszerű testek dinamikája

A mechanika alapjai. A pontszerű testek dinamikája A mechanika alapjai A pontszerű testek dinamikája Horváth András SZE, Fizika Tsz. v 0.6 1 / 26 alapi Bevezetés Newton I. Newton II. Newton III. Newton IV. alapi 2 / 26 Bevezetés alapi Bevezetés Newton

Részletesebben

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS!

Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! Figyelem! Csak belső és saját használatra! Terjesztése és másolása TILOS! 1. példa Vasúti kocsinak a 6. ábrán látható ütközőjébe épített tekercsrugóban 44,5 kn előfeszítő erő ébred. A rugó állandója 0,18

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK január 30. Fizika Nyitray Gergely (PhD) PTE PMMIK 2017. január 30. Tapasztalatok az erővel kapcsolatban: elhajított kő, kilőtt nyílvessző, ásás, favágás Aristoteles: az erő a mozgás fenntartója Galilei: a mozgás

Részletesebben

A vizsgált anyag ellenállása az adott geometriájú szúrószerszám behatolásával szemben, Mérnöki alapismeretek és biztonságtechnika

A vizsgált anyag ellenállása az adott geometriájú szúrószerszám behatolásával szemben, Mérnöki alapismeretek és biztonságtechnika Dunaújvárosi Főiskola Anyagtudományi és Gépészeti Intézet Mérnöki alapismeretek és biztonságtechnika Mechanikai anyagvizsgálat 2. Dr. Palotás Béla palotasb@mail.duf.hu Készült: Dr. Krállics György (BME,

Részletesebben

Szakmai nap Nagypontosságú megmunkálások Nagypontosságú keményesztergálással előállított alkatrészek felület integritása

Szakmai nap Nagypontosságú megmunkálások Nagypontosságú keményesztergálással előállított alkatrészek felület integritása Szakmai nap Nagypontosságú megmunkálások Nagypontosságú keményesztergálással előállított alkatrészek felület integritása Keszenheimer Attila Direct line Kft vendégkutató BME PhD hallgató Felület integritás

Részletesebben

VIZSGAKÉRDÉSEK GÉPGYÁRTÁSTECHNOLÓGIÁBÓL AZ I. ÉVF. ELŐADÁSI ANYAG TERMÉKTERVEZŐ ÉS A II.ÉVF. GÉPÉSZMÉRNÖK HALLGATÓK SZÁMÁRA. - 1 -

VIZSGAKÉRDÉSEK GÉPGYÁRTÁSTECHNOLÓGIÁBÓL AZ I. ÉVF. ELŐADÁSI ANYAG TERMÉKTERVEZŐ ÉS A II.ÉVF. GÉPÉSZMÉRNÖK HALLGATÓK SZÁMÁRA. - 1 - - 1 - VIZSGAKÉRDÉSEK GÉPGYÁRTÁSTECHNOLÓGIÁBÓL AZ I. ÉVF. TERMÉKTERVEZŐ ÉS A II.ÉVF. GÉPÉSZMÉRNÖK HALLGATÓK SZÁMÁRA. ELŐADÁSI ANYAG *2.A gyártmány és technológia sajátosságai. A gyártandó alkatrész geometriai

Részletesebben

Hő- és füstelvezetés, elmélet-gyakorlat

Hő- és füstelvezetés, elmélet-gyakorlat Hő- és füstelvezetés, elmélet-gyakorlat Mérnöki módszerek alkalmazásának lehetőségei Szikra Csaba tudományos munkatárs BME Építészmérnöki Kar Épületenergetikai és Épületgépészeti Tanszék szikra@egt.bme.hu

Részletesebben