Ajánlott irodalom: Uray Vilmos Dr. Szabó Szilárd: Elektrotechnika. Előadó: Szabó Norbert mérnöktanár

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Ajánlott irodalom: Uray Vilmos Dr. Szabó Szilárd: Elektrotechnika. Előadó: Szabó Norbert mérnöktanár"

Átírás

1 Villamos alaplaboratórium GEVEE506B(L), GEVEE006B(L) Ajánlott irodalom: Uray Vilmos Dr. Szabó Szilárd: Elektrotechnika Előadó: Szabó Norbert mérnöktanár

2 Mérés Információszerzés, a megismerés eszköze; egy fizikai (kémiai, stb.) mennyiség összehasonlítása a mértékegység egységnyi mennyiségével.

3 SI-prefixumok Előtag Jele hatvánnyal Szorzó számnévvel yotta- Y kvadrillió zetta- Z trilliárd exa- E trillió peta- P billiárd tera- T billió giga- G 10 9 milliárd mega- M 10 6 millió kilo- k 10 3 ezer hekto- h 10 2 száz deka- da (dk) 10 1 tíz 10 0 egy deci- d 10 1 tized centi- c 10 2 század milli- m 10 3 ezred mikro- µ 10 6 milliomod nano- n 10 9 milliárdod piko- p billiomod femto- f billiárdod atto- a trilliomod zepto- z trilliárdod yokto- y qadrilliomod

4 Fizikai mennyiség SI egység neve SI egység szimbóluma Kifejezése SIalapegységekkel elektromos töltés (q) coulomb C As elektromos feszültség, (U), elektromos potenciálkülönbség volt V J/C kg m 2 A s 2 3 áram erősség (I) amper A C/s elektromos ellenállás (R) ohm Ω V/A reaktancia (X) ohm Ω impedancia (Z) ohm Ω kapacitás (C) farad F As/V induktivitás (L) henry H Vs/A teljesítmény, hőáramlás (P) watt W J/s meddő teljesítmény (Q) var VAr kg m 3 s A s 2 kg m kg m 2 A s 2 kg m 3 A s 2 2 látszólagos teljesítmény (S) voltamper VA frekvencia (f) hertz Hz 1/s Elektromos térerősség (E) V/m N/C munka (W) joule J

5

6 Villamos jelek mérése Közvetlen (kétkarú mérleg, tolómérő) Közvetett (hőellenállás, gyorsulásmérő) 1. Analóg (mutatós műszerek) 2. Digitális (számkijelzős s műszerek) Mérési módszer (elv) Mérési eljárás (módszer, eszköz, személy)

7 Villamos jelek csoportosítása

8 Mérési hibák csoportosítása: Rendszeres hiba: Nagysága és előjele meghatározható, így ezzel a mérési eredményt pontosítani lehet (Pl.: egy mérőműszer csak pozitív irányban téved.) Véletlen hiba: nem ismerjük sem a nagyságát, sem az előjelét, de meghatározható egy bizonyos bizonytalansági (konfidencia) intervallummal a maximális értéke. Durva hiba: Erős környezeti hatás, vagy személyi tévedés következtében fellépő olyan hibákat nevezzük, amelyben a relatív hiba %-ot is elérhet. (Pl.: tömegmérésnél figyelmetlenségből a 0,5 kg-os és 1 kg-os súlyokat összecseréljük.)

9 Véletlen hiba A konfidencia intervallumot méréssorozat segítségével határozhatjuk meg. Mérési sorozatról akkor beszélünk, amikor ugyanazt a mérendő mennyiséget ugyanazzal a műszerrel azonos külső körülmények között ugyanazon megfigyelő többször egymásután megméri.

10 Véletlen hiba

11 Fontos fogalmak Mérési hibák helyett gyakran a mérés pontosságáról beszélünk. A pontosság a hiba ellentétes (inverz) fogalma. Azt mutatja meg, hogy a mért érték mennyire van közel a valódi értékhez. Minél nagyobb a hiba, annál kisebb a pontosság. Hasonlóan gyakran használt fogalom a mérés bizonytalansága, ami nem más, mint a ±σ intervallum.

12 Analóg műszerek véletlen hibájának meghatározása Ezen hibák lehetnek pozitív vagy negatív előjelűek is! Abszolút hiba: H i x i x 0 x i x 0 a mért érték a pontos érték Relatív hiba: h H x Amit százalékban szoktunk megadni 0 i x i h x x 0 0 H x i % 0 [ ] 100 % Végkitérésre vonatkoztatott relatív hiba: h v H x v i [ ] 100 % x v a végkitéréshez tartozó pontos érték

13 Osztálypontosság Osztálypontosság a műszer pontossági jellemzője, amellyel a gyártó a végkitérésre vonatkoztatott relatív hiba határértékét adja meg. A gyártó az osztálypontosságot úgy határozza meg, hogy a műszer hitelesítésekor mért hibahatárt felkerekíti egy a legközelebbi szabványos értékre. Szabványos osztálypontossági értékek: labor műszerek: 0,05; 0,1; 0,2; 0,5 próbatermi, tábla műszerek: 1; 1,5; 2,5; 5.

14 Osztálypontosság, Op Méréshatárra vonatkoztatott relatív hiba (katalógus adat) h v H i 100 [% ] x v a végkitéréshez tartozó pontos érték x v Mivel a méréshatárra vonatkoztatott relatív hiba állandó érték, így H h x 100 v v az abszolút hiba a méréstartomány teljes terjedelmén változatlan.

15 A műszerek abszolút hibája a skála teljes szélességén azonos: H O p x 100 v [% ] A mérés relatív hibája a műszer mutatójának kitérése függvényében: h( α ) O p x x v i

16 A mérés relatív hibája a műszer mutatójának kitérése függvényében h α [% ] h v αv α Ezért a relatív hiba a mérési tartomány felső részéhez közeledve csökken. A végkitérésnél minimális.

17 Relatív hiba változása a mért érték függvényében Amennyiben nem mutatós műszerről van szó, akkor is célszerű a rendelkezésre álló mérési tartomány felső részében mérni. Rendkívül fontos szerepe van egy mérés során a mérési tartomány helyes megválasztásának! A hibahatárban a méréseket kerülni kell! h % hv x x m v

18 Példa: Egy áramérzékelő méréstartománya 5 A. A mérési tartományra vonatkoztatott relatív mérési hiba: < ± 0,35%. Mekkora a mérés relatív hibája, ha a., 4,5A áramot mérünk b., 0,5A áramot mérünk A mérés abszolút hibája: H h x 100 0, v v 17,5mA A mérés relatív hibája: a., b., h h H x H x m m 100% 100% 0,0175 4,5 0,0175 0,5 100% 0,38% 100% 3,5%

19 Példa: Egy műszer méréshatár a 200V, osztályjel 1,5. A mutatott érték 50V. Mekkora a relatív és abszolút hiba és a mért érték relatív hibája? A relatív hiba: 200V±1,5% Az abszolút hiba végkitérésnél: 200V±3V H h x 100 1, v v A ±3V a skála minden részén állandó! A mért érték relatív hibája: 3V H h% 100 6% ± 6% x 50 m

20 Analóg műszerek ellenőrzése A műszer ellenőrzés (hitelesítés) minimum feltételei: O 3 O p 0 p O p0 ahol a hitelesítő műszer osztálypontossága x v x v0 x v0 ahol a hitelesítő műszer végkitérése h v A relatív hibák különbségéből készítjük a hibagörbét: - h H xv H x 100% x x 100% A relatív hibák különbségeit, amennyiben ábrázoljuk az analóg műszer kitérésének függvényében, akkor kapjuk a hibagörbét: - x x x x x 0 i H i0 H i i0 v 0 v v xv xv 0 100%

21 Hibagörbe 1. A műszer biztosan megfelel az osztálypontosságának. 2. Nem lehet eldönteni az adott ellenőrző műszerrel, hogy megfelel-e a mért műszer az osztálypontosságának. Egy kisebb osztálypontosságú (pontosabb) ellenőrző műszerrel meg kell ismételni a mérést. 3. A műszer biztosan nem felel meg a gyárilag megadott osztálypontosságnak. A csak pozitív (vagy negatív) előjelű hibák rendszeres hibára is utalhatnak.

22 MÉRÉSI SOROZATOK KIÉRTÉKELÉSE

23 Mérési sorozatok véletlen hibájának becslése Egy mérési sorozat álljon n darab olyan mérésből, amelyeket úgy végeztünk el, hogy minden általunk befolyásolható feltétel a mérések alatt változatlan maradt. A mérési sorozat elemei: x 1,x 2,x 3,x 4,...x i,... x n Állítható, hogy a várható érték legjobb becslése, a mérési sorozat átlaga x 1 1 [ x1, x2,.. x ] n x i n n i 1 n (igazolhatóan a mérési sorozat legvalószínűbb értéke)

24 Mérési sorozatok véletlen hibájának becslése: Így viszont sok információt elvesztenénk ezért meg szoktuk adni az átlagtól való eltérést is: x ±δ δ azt az információt tartalmazza, amely megmutatja, hogy a mért adatok milyen mértében szóródnak az átlag körül. X Mért értékek Várható érték + X X A mérések sorszáma

25 1. Terjedelem (Range R) R x max x min L1 xmax L x A gyakorlatban így használjuk: x 2 x min R X + L L Átlagos abszolút eltérés (E)(Average of Absolute Deviation) n 1 E δ i ahol: δ i x i x n i 1 δ i a sorozat elemeinek átlagtól való eltérése (Az abszolút érték nagyon lényeges, mert a nélkül az egyenlet 0-val is egyenlő lehetne speciális esetben.)

26 3. Szórás, vagy standard eltérés (s) (Standard deviation) Def: s 1 n 1 n i 1 δ 2 i A méréselméletben gyakran használt a szórásnégyzet (variancia), kifejezés ami értelemszerűen az s 2 1 n 1 n i 1 δ 2 i Ha n >> 1, ami a méréssorozatok nagy számát tekintve legtöbbször fennáll, az összefüggés jó közelítéssel úgy írható fel, hogy: s ± 1 n ami nem más mint az átlagtól vett eltérések négyzetének középértéke. n i 1 δ 2 i

27 4. Valószínű hiba (P s ) Néha szokás a szóródást egy olyan P számmal jellemezni, amely azt mutatja meg, hogy a nagyság szerint sorba rendezett sorozat s százalékánál mekkora a sorozat elemének az értéke. Ezt a P számot az irodalomban, (nem túl szerencsésen) valószínű hibának szokták nevezni. A P s mindig szűkebb intervallumot jellemez, mint a ± L terjedelem. Nevezetes P értékek: P 5 és P 95 : A P 5 egy elméleti minimumértéket, míg a P 95 egy elméleti maximumértéket határoz meg úgy, hogy a mérési sorozatban kis valószínűséggel előforduló értékeket egyszerűen nem veszi figyelembe. Azaz a két érték meghatározása után egy adott mérési sorozat alsó és felső határértékét határozzuk meg. A meghatározásukhoz a sorozat sorba rendezésére van szükség.

28 Def: A P 5 a mérési sorozatnak egy olyan elméleti minimumértéke (alsó határa), amely alatt az elemek csupán 5 %-a fordul elő. (Azaz ezen érték felett, a mérési sorozat elemeinek 95 %-a található meg.) A P 95 a mérési sorozatnak egy olyan elméleti 95 maximumértéke (felső határa), amely alatt az elemek 95 %-a fordul elő. (P 95 érték felett a mérési sorozatban csak az elemek 5 %-a található csak meg.) A P 5 és P 95 tehát a mérési sorozat egy olyan tartományát határozza meg, amely felett és alatt csak az elemek 5-5 %- a fordul elő. Ezzel kiszűrhetőek az átlagtól nagyon eltérő (gyakran) kiugró érték a mérési sorozatból!

29 Példa: U U Kevés pont f Megfelelõ számú pont f

30 1. példa Egy rezgésmérő műszerrel mért érték 67 ± 3Hz. Mekkora a műszer osztálypontossága,ha a végkitérése 150Hz? Az osztálypontosság a végkitérésre vonatkoztatott hiba maximális értéke, felkerekítve a legközelebbi szabványos értékre. A mérés bizonytalansága a mérés abszolút hibájával azaz ± 3Hz. A végkitérésre vonatkoztatott relatív hiba: Hi 3Hz hv 100 % x 150Hz v [ ] 100 2% Szabványos osztálypontossági értékek: 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 5. A számított értéket fel kell kerekíteni a legközelebbi szabványos értékre, azaz 2,5-re.

31 2. példa

32 3. példa

33 4. példa Mérjük egy ellenálláson átfolyó áramot. Az ellenállás R10Ω, az ampermérő belső ellenállása R 1 0, 1Ω, a méréshatárra vonatkoztatott maximális relatív hibája 1,5. A végkitérése 1 A, ekkor a műszer 0,65 A-t mutat. a) Mekkora a mérés rendszeres hibája? b) Mekkora a mérés véletlen hibája? Határozza meg a hibákat abszolút és Relatív értékben is! U U A rendszeres hibát a műszer 1 1 R + RI R h ,1 10 0,0099 0,99% belsőellenállása okozza. Relatív értékben: U 1 R 10 A rendszeres hibát abszolút értékben kifejezve: ,1 H 0,65 0,65 0,0065A 10 A véletlen hiba a műszer osztálypontosságából határozható meg! A kapott abszolút hiba: Relatív hiba: h I h I 1,5 1 0,65 v v m 2,3% H h I 100 1, v v ± 0,015A

34 δ 2 5. példa Egy mérési sorozat az alábbi táblázatba foglalt elemeket tartalmazza: Számítsa ki a: a) terjedelmet b) átlagos abszolút eltérést Sorszá R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 Σ m Ω 100,2 99,9 100,1 100,1 100,2 100,6 100,4 99,7 99,8 100, c) szórást. A sorozat átlaga: 99 7, + 99,8 + 99, , , , , ,6 x x0 100, 1Ω 10 R x - x 100,6-99,7 0,9Ω L L 1 2 x max max x - x - x 100,6-100,1 0,5Ω min min 100,1-99,7 0,4Ω A terjedelem: + 0,5 100,1 0,4 Ω Sorszám R 1 R 2 R 3 R 4 R 5 R 6 R 7 R 8 R 9 R 10 Σ Ω 100,2 99,9 100,1 100,1 100,2 100,6 100,4 99,7 99,8 100, ,1 0, ,1 0,5 0,3 0,4 0,3 0,1 2,0 0,01 0, ,01 0,25 0,09 0,16 0,09 0,01 0,66 Átlagos abszolút eltérés: E 1 n n i 1 δ i 2,0 10 0,2Ω 100,1 ± 0, 2Ω Szórás: n 1 s n 1 2 δ i i ,66 0,271Ω 100,1 ± 0, 271Ω

35 ÖSSZEFOGLALÁS A relatív hiba minden esetben a vizsgált vagy kapott eredmény használhatóságát mutatja meg! 5% feletti hibával nem mérünk! saciméter Mérési gyakorlatokon a maximum 1-3%-os hiba megengedhető, amelyet a műszerek bizonytalansága, a felhasznált alkatrészek szórása indokolhat. A 3% feletti hiba esetén viszont gyanakodni kell valamilyen hibára Számítógépes méréseknél 1% alatti relatív hibával dolgozunk

36 Egy periodikusjel paraméterei

37 Összetett villamos jel időfüggvénye Legnagyobb érték Legkisebb érték Csúcstól-csúcsig Csúcsérték Középérték Fázisszög Periódusidő

38 Szinuszos feszültség és jellemzői

39 Az és Periodikus jelek Nem szinuszos periodikus jelek felbontása Fourier analízis segítségével: f 1 t) A0 + A1 cosωt + A2 cos 2ωt B1 sin ωt + B sin 2ωt ( 2 f ( t) 1 2 A ω 2 π f A B n n 0 + An cos( nωt) + Bn sin( nωt) n 1 n 1 A körfrekvencia ismeretében a periódusidő az alábbi módon számítható 2π T T 2π ω ω 2π / ω 2 f ( t) cos( nωt) dt π 0 T ω 2π / ω 2 f ( t)sin( nωt) dt π 0 T T 0 T 0 ω π 2πnt f ( t) cos T f ( t)sin 2πnt T 2 T dt dt

40 Lineáris (elektronikus) középérték Mean Value: a jel kémiai egyenértéke Matematikailag a függvénygörbe előjelhelyes területével számolható. U e 1 T T 0 u( t ) dt Def.: Fizikailag a váltakozó áram lineáris középértéke, egy olyan egyenárammal egyezik meg, amely egy bontócellában ugyanannyi idő alatt, ugyanannyi anyagot választ ki (azaz egységnyi idő alatt egységnyi tömegű anyagot választ ki). Mekkora a lineáris középérték egy ideális szinuszos jel esetén? U e 0V

41 Abszolút középérték Average Value : egy jel egyenáramú középértéke Q I t Def.: Váltakozó áram/feszültség abszolút középértékén azt az egyenáramot/feszültséget értjük, amely ugyanannyi idő alatt ugyanannyi töltést szállít. U a 1 T T 0 u( t ) dt

42 Négyzetes középérték (RMS) Root Mean Square: U eff, U RMS A villamos áram effektív értéke (négyzetes középértéke, hőáram egyenértéke) az áram hőhatására ad útmutatást. U eff 1 T T 0 u 2 ( t ) dt Def.: Az effektív érték annak az egyenáramnak az értékével egyenlő, amely azonos idő alatt ugyanakkora munkát végez (hőt termel), mint a váltakozó áram. Megállapodás szerint a szinuszos váltakozó feszültség/ áram értékeként az effektív értéket szokták megadni. A szinuszos feszültséget/ áramot mérő műszerek is a jel effektív értéket mutatják. U I I eff U eff 1 T T 0 i 2 csúcs 2 ( t ) dt I eff csúcs 2

43 MÉRŐMŰSZEREK A mérendő mennyiség lehet: Villamos mennyiség: feszültség, áram, ellenállás, frekvencia stb. Egyéb nem villamos mennyiség: hőmérséklet, erő, nyomás, áramló gázmennyiség stb., melyeket leggyakrabban villamos jellé alakítjuk, és így közvetett módon mérjük.

44 Érzékelő A mérőműszernek az a része, amely kölcsönhatásba lép a mért mennyiséggel és azzal arányos jelet állít elő Hegesztési pont + Lágyvas F x Rugalma falú csõ p U Hevítés É D F Tekercs Nyomás, hõmérséklet és áramerõsség érzékelõ

45 Mérőhálózat alap egységei Mérőműszerek: feszültségmérő árammérő Generátorok és műszerek összekapcsolása:

46 A mérőműszerek általános jellemzői Érzékenység - Sensitivity Stabilitás (rövid- és hosszúidejű) - Stability (short and long) Pontosság - Accurancy Reagálási sebesség - Speed of response Felbontóképesség - Resolution Túlterhelhetőségi jellemzők - Overload characteristics Linearitás - Linearity Érzéketlenségi sáv - Dead band Kimeneti jelforma - Output format Hiszterézis - Hysteresis Műveleti idő - Operating time Költség, méret, súly - Cost, size, weight Szelektivitás - Selectivity Környezeti jellemzők - Enviromental conditions

47 Műszer érzékenysége, műszerállandó Egy műszer annál érzékenyebb, minél kisebb mérendő mennyiség minél nagyobb mutatókitérést hoz létre. A műszer érzékenysége (E) a kimenő jel megváltozásának [ α] ás a bemenő jel megváltozásának [x] a hányadosa: α E x Az érzékenység reciproka a műszerállandó: C 1 E Az érzékenység helyett gyakran annak reciprok értékét, a műszer állandóját (konstansát) adják meg. A műszerállandó megmutatja, hogy a mérendő mennyiség milyen nagyságú értéke szükséges a kijelző 1 osztásnyi kitéréséhez.

48 Műszer stabilitása A műszer terheletlen (terhelt) állapotában észlelt jel állandósága. A mérőeszköznek az a tulajdonsága, hogy metrológiai jellemzőit időben tartósan állandó értéken megőrzi. A műszer stabilitása és ismételhetősége (repeatability) szoros összefüggésben állnak egymással. Mennyiségi jellemezése: a jellemző meghatározott időtartam alatt bekövetkező megváltozásával. A stabilitást a műszer driftje befolyásolja. A drift a mérőrendszer értékmutatásának általában lassú és folyamatos változása, amely nem kapcsolható sem a mérendő mennyiség, sem valamely befolyásoló mennyiség megváltozásához. Egy műszernek lehet hőmérséklet driftje, frekvencia driftje, stb.

49 Mérés ismételhetőségesége A mérőrendszernek az a tulajdonsága, hogy ugyanazon mérendő mennyiséget megismételhetőségi feltételek mellett ismételten megmérve közel azonos értékmutatásokat ad. Az ismétlőképesség mennyiségileg a mérőrendszer értékmutatásai szóródásának paramétereivel fejezhető ki.

50 Válaszidő (t v ) Az az időtartam, amely a mérőrendszer bemenetén a mennyiségérték két előírt állandó érték közötti ugrásszerű változásának pillanatától kezdve eltelik addig, amíg a megfelelő értékmutatás eléri és előírt határokon belüli végső állandósult értékét. Azon idő, amely alatt a kimenő jel a bemenő x 0 ugrásjel 99%-át eléri. Általában: x(t) x 1- t τ 0 e ahol x(t): x 0 : a műszer által mutatott érték a mért paraméter valódi értéke, így t v 4,6τ

51 Műszer felbontása Két egymás mellett lévő, még éppen megkülönböztethető x jel távolsága Általánosan: a műszerrel megadható legkisebb mérőszám különbség ( x). Példa: Digitális műszernél az utolsó értékes jegy egységnyi megváltozásának megfelelő változás az értékmutatásban. Analóg Digitális kwh

52 Műszer linearitása Linearitási hibát akkor lehet értelmezni, ha a mérőeszköz által szolgáltatott adat (kimenőjel) rendeltetésszerűen egyenes arányban áll a mért jellemzővel (bemenőjellel). Ebben az esetben, ideális mérőeszköz esetén a bemenő jel függvényében felvett kimenő jel karakterisztika egy egyenes. Az elvi egyenestől való eltérés mértékét adja meg a linearitási hiba. Holtsáv Az a legnagyobb tartomány, amelyen belül a bemenőjel mindkét irányban változhat anélkül, hogy a mérőeszköz kimenőjelében változást okozna. A holtsáv nagysága függhet a bemenőjel változásának mértékétől is. A holtsávot néha szándékosan növelik meg azért, hogy csökkentsék a bemenőjel kis változásai következtében fellépő kimenőjel ingadozásokat.

53 Környezeti jellemzők Klimatikus hatások földrajzi környezet üzemi beépítés szabad tér belsőtér hőmérséklet, napsugárzás por- és vízártalom, páratartalom robbanásveszély légszennyezés (korrozív közegek) biológia és mechanikai hatások (rezgés)

54 A Műszerek Csoportosíthatósága A mért mennyiség szerint: egyenáramú mérések váltakozóáramú mérések A kijelzésük módjuk szerint: Analóg digitális A műszer működtetése (áramellátása) szerint: hideg műszer (energiáját a mérőáramkörből nyeri) elektronikus m. (saját tápellátása van; telep/hálózati)

55 Áram és feszültség mérése Árammérési tartományok DC-elektrométerek 10 aa-1 A DC DMM 100 pa-10 A AC DMM 1 na-10 A Elektromechnikus árammérők 10 pa-100 A Söntök, mérőtrafók 10 ma-100 ka (disszipációs problémák) Feszültségmérési tartományok DC nanovoltmérők 10nV-1kV DC DMM 100nV-1kV AC DMM 1nV-1kV Elektromechanikus 10nV-1MV Osztók, mérőtrafók 1V-1MV

56 Elektromechanikus műszerek jellemzői Mutatós műszerek Legegyszerűbbek Közvetlenül leolvasható a mért mennyiség

57 Alapfogalmak A műszer mozgó részére 3 féle nyomaték hat. kitérítő nyomaték: a mérendő villamos mennyiséggel arányos visszatérítő nyomaték: kitérítő nyomaték ellen hat, a mozgó rész nyugalmi állapotáért felelős (rugók) csillapító nyomaték: a mozgórész egy lengőrendszert alkot, a kitérítő és visszatérítő nyomaték miatt. A keletkező rezgések csillapítására szolgál. (örvényáram- és légcsillapítás)

58 Alapfogalmak A csillapítás szempontjából a műszerek lehetnek: csillapítatlan műszerek: a mutató több lengés után nyugszik meg a végállásban (a) túlcsíllapított műszerek: lassan kúszik a végálláshoz - bizonytalan leolvasás (d) Kitérés Kicsit csillapított Aperiódikus Mért érték Túlcsillapított t

59 Mutatós műszerek Állandó mágnesű (Deprez-) műszer (ampermérő, voltmérő, galvanométer) Elektrodinamikus műszer Lágyvasas műszerek Hányadosmérő

60 Amper- és voltmérő Működés elv: mágneses tér és az áram által létrehozott mágneses tér kölcsönhatásán alapszik (1) Acélmágnes (2) Lágyvas saruk (3) Lágyvas dugó (4) Al keretes lengőtekercs (5) Rúgók

61 Amper- és voltmérő Ha légrésindukció állandó, akkor a kitérítő nyomaték az áramerősségtől függ M kitérítő F D (Nm) F B l N I ( N ) M k k Ellennyomaték I M c rugó r α

62 Amper Amper- és voltmér és voltmérő I K I k c I k M M r r k α α I K I c l r α lengőtekercs elfordulása arányos a tekercs áramával skálája egyenletes (lineáris) műszer csakis egyenáram mérésére alkalmas

63 Amper- és voltmérő Egy ellenállást sorba kötünk a lengő tekerccsel. U I R α K I U R K U U

64 Amper- és voltmérő Csillapító nyomaték (Al-keretben keletkező örvényáramokból ered) Indukált feszültség u i BlD dαα dt keletkező áram (Ohm-törvény felhasználása) i BlD R d α dt

65 Amper- és voltmérő Csillapító nyomaték M cs M cs F cs D 2 ) ( BlD) R N d α dt A csillapítónyomaték arányos a keret szögsebességével.

66 Deprez- műszerek mérőkörei (a) Volframacél (b) Krómacél (c) Kobaltacél műszermágnes (d) és (e) AlNiCo mágnes (f) Ferrit anyagú

67 Deprez műszer Felépítése

68 Műszereken található jelölések Pontossági osztály jelölése Használati helyzet

69 Villamos műszerek egyéb jelölései

70 Műszeren található jelölések értelmezése

71 Analóg műszer kezelőszervei

72 Milyen mennyiséget milyen műszerrel érdemes mérni:

73 Gyakori periodikus jelek jellemzői

74 Nem szinuszos jelek korrekciós tényezői

75 Belső mágnesű műszer (1) Állvány (2) Henger alakú állandó mágnes (3) Lágyvas serleg (4) Lengőtekercs (5) Alsó feszítő szál (6) Felső feszítő szál (7) Feszítők

76 Műszer jellemzők Alapérzékenységen azt az áramerősséget értjük, amelyik a műszer mutatóját a mérce utolsó osztásáig lendíti ki. Ez az áramérzékenység. Jele: I m általában mA közötti érték Áramerősségnek és a belső ellenállásnak a szorzata a feszültségérzékenység. jele: U m szokásos értékei: 30, 45, 60, 75,100mV Egy műszer jellemezhető az áram- és feszültségérzékenységgel. pl. : 60mV, 2mA. Ennek műszernek a belső ellenállása 30 Ω. Jellemezhető a műszer a feszültségérzékenységgel és belső ellenállással is. pl. : 75mV, 3Ω. Áramérzékenysége 25 ma.

77 Mérési határ kibővítése Áramérzékenység növelés Lesöntölés R R s s ( I I ) m Im I I m R R b b I m Feszültségérzékenység növelés Előtét- ellenállás használata Re U I m R b

78 Galvanométer Az igen kicsiny áramerősségek mérésére alkalmas Deprez - műszert nagy érzékenységű műszerek annál érzékenyebbek, minél kisebb áram hatására minél nagyobb a lengőtekercs elfordulással Fénymutatós GM Feszített szálas GM

79 Mutatós műszerek Elektrodinamikus műszer Ampermérő Voltmérő Wattmérő Különleges műszerek Asztatikus műszer Vasárnyékolású műszer Ferrodinamikus műszer Bot Késél Lándzsa Ernyõ skálával Vetített fényfolt az optikai szál képével

80 Az észlelési hiba okai Nem kielégítő az éleslátásunk Nem tudjuk a két osztásvonal közötti értéket pontosan megbecsülni Parallaxis: A skálát nem merőlegesen olvassuk le Hibás érték Osztásvonal Helyes érték Mutató Skálalap Távolság Nagyon rossz leolvasási irány Helyes leolvasási irány Hibás leolvasási irány

81 Elektromechanikus műszerek mért értékei

82 Elektrodinamikus műszerek Amper- és voltmérő Működési elv: Deprez műszerhez hasonlít Állótekercs árama gerjeszti a mágneses teret Lengőtekercs elmozdulás közben derékszögben metszi az indukcióvonalakat M k B I lengő B k' I álló M K I lengő I álló

83 Elektrodinamikus műszerek Amper- és voltmérő Álló- és lengőtekercsben egyszerre változik meg az áram iránya > egyen és váltakozó áram mérésére egyaránt alkalmas lengőtekercs árama: i leng ő 2I leng ő sin ωt Állótekercs árama: i álló 2I álló sin( ωt ϕ ) Kitérítő nyomaték: M kitérit ő K I lengő I álló cos ϕ A műszer mérőműjére ható átlagos nyomaték arányos a két tekercs áramának és a két áram közti szög koszinuszának szorzatával egyenlő.

84 Elektrodinamikus műszerek Ampermérő Mérőműre ható nyomaték M K 2 ' I a Rugó ellennyomatéka M r c r α Egyenlővé téve a két nyomatékot α K c r ' I 2 a K I Az ampermérő skálája négyzetes! I 2 a

85 Elektrodinamikus műszerek Voltmérő Kitérítő nyomaték M KI 2 I á I l I Mutató szögelfordulása α K U U 2 A voltmérő skálája négyzetes!

86 Elektrodinamikus műszerek Wattmérő Lengőtekercset a fogyasztó kapcsaira kötve a lengőtekercs árama I l U R Kitérítőnyomaték M K R U I R R l + R e á cos ϕ A mutató szögelfordulása K α U I á cos ϕ c R K p r U I á cos ϕ K A wattmérő skálája lineáris (egyenletes)! p P

87 Teljesítménymérés 3 féle villamos teljesítményről beszélhetünk Hatásos teljesítmény P UI cosϕ ( W ) Meddő teljesítmény Q UIsin ϕ (var) Látszólagos teljesítmény 2 S P 2 + Q (VA) p( t) u( t) i( t)

88 Teljesítménymérés Teljesítménymérés Egyfázisú teljesítménymérés Hatásos teljesítmény a 2 F W F 2 A W A R I P P R U P P + R U P P R I P P 2 F W F a 2 A W A + Áramforrás teljesítménye Fogyasztó teljesítménye

89 Teljesítménymérés Teljesítménymérés Egyfázisú teljesítménymérés Meddő teljesítmény Kitérítőnyomaték ϕ ϕ sin I U K ) 90 cos( I I K M o A mutató szögelfordulása ϕ ϕ sin I X K ) 90 cos( I I K M a a l Q K sin I U K sin I X c U K Q a Q a r ϕ ϕ α

90 Teljesítménymérés Hatásos teljesítmény mérése 3 fázisú rendszerben N vezetékes többfázisú rendszer P P P Pn 4 vezetékes rendszer

91 Teljesítménymérés Hatásos teljesítménymérés 3 fázisú rendszerben 3 vezetékes rendszer U U v v BA I I A I U C BC P P1 + P2 3U v I v cosϕ

92 Teljesítménymérés Meddő teljesítménymérés 3 fázisú rendszerben Qm 3 Q 3 (QA + QB + Q C ) A mért meddő teljesítmény a tényleges meddőtől -szor nagyobb. 3

93 Különleges elektrodinamikus műszerek Külső mágneses tér befolyásoló hatásának kiküszöbölésére Asztatikus műszer 2 lengőtekercs + 2 állótekercs Állótekercseket úgy kapcsolják, hogy ellentétesen folyik az áram Az alsó és felső tekercs nyomatéka azonos irányú. A külső mágneses tér ellenkező irányba hat a mérőművekre, így hatásuk nulla.

94 Különleges elektrodinamikus műszerek Vasárnyékolású műszer árnyékolás Álló- és forgótekercseket berakják egy vashengerbe

95 Különleges elektrodinamikus műszerek Ferrodinamukis műszer Erős mágneses tér Kis hatással vannak rá a külső mágneses terek Egyen és váltakozó mennyiségek mérésére egyaránt alkalmas

96 Mutatós műszerek Lágyvasas műszer Lapos tekercsű műszerek Kerek tekercsű műszerek

97 Lágyvasas műszer Működési elv:mágneses vonzáson és taszításon alapszik 1. Lapos tekercsű műszerek Mágneses vonzáson alapszik működésük A mérendő árammal gerjesztett tekercs mágneses tere a tengelyre erősített lágyvas darabkára vonzó hatást fejt ki és elfordul. A visszatérítő nyomatékot rugó adja. A csillapító nyomatékot a légkamrában mozgó dugattyú biztosítja.

98 Lágyvasas műszer 2. Kerek tekerccsel műszerek Mágneses taszításon alapuló műszerek. A csévetest belsejéhez rögzítjük az állóvasat, a műszer tengelyéhez a mozgóvasat. A vasak megfelelő kialakításával jóformán tetszőleges skálamenetet lehet elérni.

99 Lágyvasas műszer A műszer nyomatéka Mozgó vas elmozdulása közben végzett elemi munka Ha a vas körív mentén mozdul el Nyomaték: dw Fdx F dw / dx dx r dα M F r Tekercs energiája: Nyomatékegyenlet: dw/d W M α LI A műszer skálája négyzetes! A lágyvasas műszer egyaránt használható egyen- és váltakozó áram mérésére is! 1 2 K I 2 2

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz Villamos mérések Analóg (mutatós) műszerek Készítette: Füvesi Viktor doktorandusz rodalom UrayVilmos Dr. Szabó Szilárd: Elektrotechnika o.61-79 1 Alapfogalmak Mutatós műszerek Legegyszerűbbek Közvetlenül

Részletesebben

Méréselmélet és mérőrendszerek

Méréselmélet és mérőrendszerek Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o

Részletesebben

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)

Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba

Részletesebben

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1

Méréstechnika. Rezgésmérés. Készítette: Ángyán Béla. Iszak Gábor. Seidl Áron. Veszprém. [Ide írhatja a szöveget] oldal 1 Méréstechnika Rezgésmérés Készítette: Ángyán Béla Iszak Gábor Seidl Áron Veszprém 2014 [Ide írhatja a szöveget] oldal 1 A rezgésekkel kapcsolatos alapfogalmak A rezgés a Magyar Értelmező Szótár megfogalmazása

Részletesebben

Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem

Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Alapinformációk a tantárgyról a tárgy oktatója: Dr. Berta Miklós Fizika és

Részletesebben

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv

A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési

Részletesebben

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású

Részletesebben

A klasszikus mechanika alapjai

A klasszikus mechanika alapjai A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM VILLAMOSMÉRÖKI ÉS IFORMATIKAI KAR VILLAMOS EERGETIKA TASZÉK Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók vizsgálata

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1

MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1 MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi

Részletesebben

VILLAMOS MÉRÉSEK. oktatási segédlet. (villamosmérnök és mechatronikai mérnökhallgatók részére) 2012.

VILLAMOS MÉRÉSEK. oktatási segédlet. (villamosmérnök és mechatronikai mérnökhallgatók részére) 2012. VILLAMOS MÉRÉSEK oktatási segédlet (villamosmérnök és mechatronikai mérnökhallgatók részére) 2012. BEVEZETÉS Mérés: Információszerzés - a megismerés eszköze. Fizikai mennyiség összehasonlítása a mértékegységgel

Részletesebben

Összefüggő szakmai gyakorlat témakörei

Összefüggő szakmai gyakorlat témakörei Összefüggő szakmai gyakorlat témakörei Villamosipar és elektronika ágazat Elektrotechnika gyakorlat 10. évfolyam 10 óra Sorszám Tananyag Óraszám Forrasztási gyakorlat 1 1.. 3.. Forrasztott kötés típusai:

Részletesebben

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.

BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell

A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési

Részletesebben

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c)

MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) MÉRÉSI GYAKORLATOK (ELEKTROTECHNIKA) 10. évfolyam (10.a, b, c) 1. - Mérőtermi szabályzat, a mérések rendje - Balesetvédelem - Tűzvédelem - A villamos áram élettani hatásai - Áramütés elleni védelem - Szigetelési

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI

MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

Minden mérésre vonatkozó minimumkérdések

Minden mérésre vonatkozó minimumkérdések Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a

Részletesebben

MUNKAANYAG. Juhász Róbert. Méréstechnika alapjai. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása

MUNKAANYAG. Juhász Róbert. Méréstechnika alapjai. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása Juhász Róbert Méréstechnika alapjai A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja: SzT-021-50

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet

Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet A hallgatói útmutatóban vázolt program a csoport felkészültsége

Részletesebben

Számítási feladatok megoldással a 6. fejezethez

Számítási feladatok megoldással a 6. fejezethez Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Méréstechnikai alapfogalmak

Méréstechnikai alapfogalmak Méréstechnikai alapfogalmak 1 Áttekintés Tulajdonság, mennyiség Mérés célja, feladata Metrológia fogalma Mérıeszközök Mérési hibák Mérımőszerek metrológiai jellemzıi Nemzetközi mértékegységrendszer Munka

Részletesebben

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A

Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.

Részletesebben

Áramköri elemek mérése ipari módszerekkel

Áramköri elemek mérése ipari módszerekkel 3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek

Részletesebben

Általános Géptan I. SI mértékegységek és jelölésük

Általános Géptan I. SI mértékegységek és jelölésük Általános Géptan I. 1. Előadás Dr. Fazekas Lajos SI mértékegységek és jelölésük Alapmennyiségek Jele Mértékegysége Jele hosszúság l méter m tömeg m kilogramm kg idő t másodperc s elektromos áramerősség

Részletesebben

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel.

Ohm törvénye. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. A mérés célkitűzései: Ohm törvényének igazolása mérésekkel. Eszközszükséglet: Elektromos áramkör készlet (kapcsolótábla, áramköri elemek) Digitális multiméter Vezetékek, krokodilcsipeszek Tanulói tápegység

Részletesebben

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.

Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011. Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

Áramerősség, feszültség és ellenállásmérés eszközei

Áramerősség, feszültség és ellenállásmérés eszközei Áramerősség, feszültség és ellenállásmérés eszközei (áramerősség, feszültség, ellenállás, fáziseltolás, teljesítmény) A villamos mérőműszereket működésük elve alapján az alábbi csoportokba oszthatjuk.

Részletesebben

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése.

A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. A kísérlet, mérés megnevezése célkitűzései: Váltakozó áramú körök vizsgálata, induktív ellenállás mérése, induktivitás értelmezése. Eszközszükséglet: tanulói tápegység funkcionál generátor tekercsek digitális

Részletesebben

VILLAMOS FORGÓGÉPEK. Forgó mozgás létesítése

VILLAMOS FORGÓGÉPEK. Forgó mozgás létesítése SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU VILLAMOS FORGÓGÉPEK Forgó mozgás létesítése Marcsa Dániel Villamos gépek és energetika 203/204 - őszi szemeszter Elektromechanikai átalakítás Villamos rendszer

Részletesebben

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?

Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni? 1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

Régi műszerek a MIT-60 kiállításon Varga Sándor Dudás József Tóth Csaba

Régi műszerek a MIT-60 kiállításon Varga Sándor Dudás József Tóth Csaba Régi műszerek a MIT-60 kiállításon 2014.05.22-23. Varga Sándor Dudás József Tóth Csaba Galvanométer Függesztőszálas tükrös galvanométer Thomson galvanométer A függesztőszál helyettesíti a lengőtekercs

Részletesebben

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét

11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként

Részletesebben

Előadások (1.) ÓE BGK Galla Jánosné, 2011.

Előadások (1.) ÓE BGK Galla Jánosné, 2011. Előadások (1.) 2011. 1 Metrológiai alapfogalmak Mérési módszerek Mérési folyamat Mértékegységek Etalonok 2 Metrológiai alapfogalmak 3 A mérendő (mérhető) mennyiség előírt hibahatárokon belüli meghatározása

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

VÁLTAKOZÓ ÁRAMÚ KÖRÖK

VÁLTAKOZÓ ÁRAMÚ KÖRÖK Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,

Részletesebben

Teljesítm. ltség. U max

Teljesítm. ltség. U max 1 tmény a váltakozó áramú körben A váltakozv ltakozó feszülts ltség Áttekinthetően szemlélteti a feszültség pillanatnyi értékét a forgóvektoros ábrázolás, mely szerint a forgó vektor y-irányú vetülete

Részletesebben

2013. 09. 02. www.biofizika.aok.pte.hu Biofizika I. Kötelező tantárgy Tantárgyfelelős: Dr. Nyitrai Miklós Heti 2 óra előadás, 2 óra gyakorlat Félévközi számonkérés: Egy írásbeli dolgozat Félév végi vizsga:kollokvium

Részletesebben

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA

EBBEN A VIZSGARÉSZBEN A VIZSGAFELADAT ARÁNYA Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján. Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,

Részletesebben

Mutatós műszerek. Lágyvasas műszer. Lapos tekercsű műszerek. Kerek tekercsű műszerek

Mutatós műszerek. Lágyvasas műszer. Lapos tekercsű műszerek. Kerek tekercsű műszerek Mutatós műszerek Lágyvasas műszer Lapos tekercsű műszerek Kerek tekercsű műszerek Lágyvasas műszer Működési elv:mágneses vonzáson és taszításon alapszik 1. Lapos tekercsű műszerek Mágneses vonzáson alapszik

Részletesebben

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat

Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

Házi Feladat. Méréstechnika 1-3.

Házi Feladat. Méréstechnika 1-3. Házi Feladat Méréstechnika 1-3. Tantárgy: Méréstechnika Tanár neve: Tényi V. Gusztáv Készítette: Fazekas István AKYBRR 45. csoport 2010-09-18 1/1. Ismertesse a villamos jelek felosztását, és az egyes csoportokban

Részletesebben

Budapesti Műszaki- és Gazdaságtudományi Egyetem. Gazdaság- és Társadalomtudományi Kar. Fizika dolgozat. Kovács Emese. 4-es tankör április 30.

Budapesti Műszaki- és Gazdaságtudományi Egyetem. Gazdaság- és Társadalomtudományi Kar. Fizika dolgozat. Kovács Emese. 4-es tankör április 30. Budapesti Műszaki- és Gazdaságtudományi Egyetem Gazdaság- és ársadalomtudományi Kar Fizika dolgozat 4. Váltakozó áramú áramkörök munkája és teljesítménye Kovács Emese Műszaki szakoktató hallgató 4-es tankör

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM

ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését

Részletesebben

Mérésadatgyűjtés, jelfeldolgozás.

Mérésadatgyűjtés, jelfeldolgozás. Mérésadatgyűjtés, jelfeldolgozás. Nem villamos jelek mérésének folyamatai. Érzékelők, jelátalakítók felosztása. Passzív jelátalakítók. 1.Ellenállás változáson alapuló jelátalakítók -nyúlásmérő ellenállások

Részletesebben

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel?

Orvosi jelfeldolgozás. Információ. Információtartalom. Jelek osztályozása De, mi az a jel? Orvosi jelfeldolgozás Információ De, mi az a jel? Jel: Információt szolgáltat (információ: új ismeretanyag, amely csökkenti a bizonytalanságot).. Megjelent.. Panasza? információ:. Egy beteg.. Fáj a fogam.

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek középszint 06 ÉRETTSÉGI VIZSG 007. május 5. ELEKTRONIKI LPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSG JVÍTÁSI-ÉRTÉKELÉSI ÚTMTTÓ OKTTÁSI ÉS KLTRÁLIS MINISZTÉRIM Teszt jellegű

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás

Hobbi Elektronika. Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás Hobbi Elektronika Bevezetés az elektronikába: Ohm törvény, Kirchoff törvényei, soros és párhuzamos kapcsolás 1 Felhasznált irodalom Hodossy László: Elektrotechnika I. Torda Béla: Bevezetés az Elektrotechnikába

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani alapismeretek Hunyadi Sándor

II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani alapismeretek Hunyadi Sándor A 2015. LVII-es energiahatékonysági törvényben meghatározott auditori és energetikai szakreferens vizsga felkészítő anyaga II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani

Részletesebben

Elektromos ellenállás, az áram hatásai, teljesítmény

Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás, az áram hatásai, teljesítmény Elektromos ellenállás Az anyag részecskéi akadályozzák a töltések mozgását. Ezt a tulajdonságot nevezzük elektromos ellenállásnak. Annak a fogyasztónak

Részletesebben

Mérés és adatgyűjtés

Mérés és adatgyűjtés Mérés és adatgyűjtés 7. óra Mingesz Róbert Szegedi Tudományegyetem 2013. április 11. MA - 7. óra Verzió: 2.2 Utolsó frissítés: 2013. április 10. 1/37 Tartalom I 1 Szenzorok 2 Hőmérséklet mérése 3 Fény

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

Elektromos töltés, áram, áramkör

Elektromos töltés, áram, áramkör Elektromos töltés, áram, áramkör Az anyagok szerkezete Az anyagokat atomok, molekulák építik fel, ezekben negatív elektromos állapotú elektronok és pozitív elektromos állapotú protonok vannak. Az atomokban

Részletesebben

mérőeszköz mérték mérőátalakító Mérőeszközök általános és alapvető metrológiai fogalmai és definíciói

mérőeszköz mérték mérőátalakító Mérőeszközök általános és alapvető metrológiai fogalmai és definíciói mérőeszköz Mérőeszközök általános és alapvető metrológiai fogalmai és definíciói Önmagában, vagy kiegészítő eszközökkel együtt mérésre használt eszköz. mérték Adott mennyiség egy vagy több ismert értékét

Részletesebben

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.

A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája. 11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió

1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK Elektronikai alapismeretek emelt szint 08 ÉETTSÉGI VIZSG 00. október 8. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ NEMZETI EŐFOÁS MINISZTÉIUM Egyszerű, rövid feladatok

Részletesebben

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra

A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ

ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ VILLAMOSIPAR ÉS ELEKTRONIKA ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ I. feladatlap Egyszerű, rövid feladatok megoldása Maximális pontszám: 40. feladat 4 pont

Részletesebben

Elektromos áramerősség

Elektromos áramerősség Elektromos áramerősség Két különböző potenciálon lévő fémet vezetővel összekötve töltések áramlanak amíg a potenciál ki nem egyenlítődik. Az elektromos áram iránya a pozitív töltéshordozók áramlási iránya.

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

Elektronikai alapgyakorlatok

Elektronikai alapgyakorlatok Elektronikai alapgyakorlatok Mőszerismertetés Bevezetés a szinuszos váltakozó feszültség témakörébe Alkalmazott mőszerek Stabilizált ikertápegység Digitális multiméter Kétsugaras oszcilloszkóp Hanggenerátor

Részletesebben

Passzív áramkörök, CAD ismeretek

Passzív áramkörök, CAD ismeretek Passzív áramkörök, CAD ismeretek (C tanterv) Két tárgy összevonása (B tanterv): Passzív áramkörök CAD ismeretek 2 óra előadás, 1 óra táblagyakorlat 3 óra laborgyakorlat Most: 4 óra előadás, 2 óra laborgyakorlat

Részletesebben

21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú

21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú 1. laboratóriumi gyakorlat Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú kismintán 1 Elvi alapok Távvezetékek villamos számításához, üzemi viszonyainak vizsgálatához a következő

Részletesebben

1. mérés: Indukciós fogyasztásmérő hitelesítése wattmérővel

1. mérés: Indukciós fogyasztásmérő hitelesítése wattmérővel 1. mérés: ndukciós fogyasztásmérő hitelesítése wattmérővel 1.1. A mérés célja ndukciós fogyasztásmérő hibagörbéjének felvétele a terhelés függvényében wattmérő segítségével. 1.2. A méréshez szükséges eszközök

Részletesebben

ELEKTRONIKAI ALAPISMERETEK

ELEKTRONIKAI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2010. október 18. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2010. október 18. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati NEMZETI ERŐFORRÁS

Részletesebben

Digitális multiméterek

Digitális multiméterek PÉCSI TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR FIZIKAI INTÉZET Fizikai mérési gyakorlatok Digitális multiméterek Segédlet környezettudományi és kémia szakos hallgatók fizika laboratóriumi mérési gyakorlataihoz)

Részletesebben

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával

2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett

Részletesebben

Elektromechanika. 6. mérés. Teljesítményelektronika

Elektromechanika. 6. mérés. Teljesítményelektronika Elektromechanika 6. mérés Teljesítményelektronika 1. Rajzolja fel az ideális és a valódi dióda feszültségáram jelleggörbéjét! Valódi dióda karakterisztikája: Ideális dióda karakterisztikája (3-as jelű

Részletesebben

Elektromos egyenáramú alapmérések

Elektromos egyenáramú alapmérések Elektromos egyenáramú alapmérések A mérés időpontja: 8.. 5. hétf ő,.-4. Készítették: 5.mérőpár - Lele István (CYZH7) - Nagy Péter (HQLOXW) A mérések során elektromos egyenáramú köröket vizsgálunk feszültség-

Részletesebben

4. Hálózatszámítás: a hurokmódszer

4. Hálózatszámítás: a hurokmódszer 4. Hálózatszámítás: a hurokmódszer Kirchhoff törvényeinek alkalmazásával bármely hálózatban meghatározhatók az egyes ágakban folyó áramok és a hálózat tetszés szerinti két pontja közötti feszültség. A

Részletesebben

Fizika 1 Elektrodinamika beugró/kis kérdések

Fizika 1 Elektrodinamika beugró/kis kérdések Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos

Részletesebben

KÍSÉRLET, MÉRÉS, MŰSZERES MÉRÉS

KÍSÉRLET, MÉRÉS, MŰSZERES MÉRÉS KÍSÉRLET, MÉRÉS, MŰSZERES MÉRÉS Kísérlet, mérés, modellalkotás Modell: olyan fizikai vagy szellemi (tudati) alkotás, amely egy adott jelenség lefolyását vagy egy rendszer viselkedését részben vagy egészen

Részletesebben

1. SI mértékegységrendszer

1. SI mértékegységrendszer I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

7. Mágneses szuszceptibilitás mérése

7. Mágneses szuszceptibilitás mérése 7. Mágneses szuszceptibilitás mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Mérés időpontja: 2012. 10. 25. I. A mérés célja: Egy mágneses térerősségmérő műszer

Részletesebben