VILLAMOS FORGÓGÉPEK. Forgó mozgás létesítése

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "VILLAMOS FORGÓGÉPEK. Forgó mozgás létesítése"

Átírás

1 SZÉCHENYI ISTVÁN EGYETEM VILLAMOS FORGÓGÉPEK Forgó mozgás létesítése Marcsa Dániel Villamos gépek és energetika 203/204 - őszi szemeszter

2 Elektromechanikai átalakítás Villamos rendszer Villamos gép Mechanikai rendszer motor Energiaáramlás generátor Folytonos energiaátalakító villamos gép Működhet motorként és generátorként egyaránt Váltakozó áramról táplált szinkron gép, aszinkron gép Egyenáramról táplált egyenáramú gép

3 Mozgási indukció U i B l v

4 Mozgási indukció u i U U B l v ui 2B l v u v d π n Φ BA Bld i,max i, eff 2Φ max πn 4, 44 N Φ i 2Bldπn max f

5 Erő és nyomaték M sinα M áll. αáll. szükséges Tekercsre ható erő f B I l Ez úgy lehetséges, hogy a mágnesek állnak vagy azonos szögsebességgel forognak. Az utóbbit úgy jellemzik, hogy a mágnesek relatív nyugalomban vannak. A szokásos megoldás: az egyik (álló vagy forgó) tekercsrendszer áramait mágneses terét a másik (forgó vagy álló) tekercsrendszer hozza létre

6 Villamos gépek felépítése: Villamos gépek - felépítés Állórész és forgórész Hornyokban elhelyezett vezetők Hengeres gép (egyenletes légrés) Kiálló pólusú gép (nem egyenletes légrés) Vasmag (indukció növelése) Lemezelés (örvényáramok csökkentése [AC]) Armatúra tekercselés (ahol a feszültség indukálódik) Gerjesztő tekercs (ami létrehozza a főfluxust) Állandó mágnes

7 Villamos gépek felépítése: Villamos gépek - felépítés Állórész és forgórész Hornyokban elhelyezett vezetők Hengeres gép (egyenletes légrés) Kiálló pólusú gép (nem egyenletes légrés) Vasmag (indukció növelése) Lemezelés (örvényáramok csökkentése [AC]) Armatúra tekercselés (ahol a feszültség indukálódik) Gerjesztő tekercs (ami létrehozza a főfluxust) Állandó mágnes

8 Villamos gépek felépítése: Villamos gépek - felépítés Állórész és forgórész Hornyokban elhelyezett vezetők Hengeres gép (egyenletes légrés) Kiálló pólusú gép (nem egyenletes légrés) Vasmag (indukció növelése) Lemezelés (örvényáramok csökkentése [AC]) Armatúra tekercselés (ahol a feszültség indukálódik) Gerjesztő tekercs (ami létrehozza a főfluxust) Állandó mágnes

9 Villamos gépek - felépítés Tekercsoldal a hengeres forgórész vagy állórész palástfelületén helyezzük el Tekercsfej a tekercsoldalakat a tekercsfejek segítségével kötjük össze a henger egyik homlokoldalán, így jönnek létre a tekercsek

10 Villamos gépek - felépítés Fogak és hornyok tekercsoldal rögzítése A légrés csökkenthető a tekercsek horonyba történő elhelyezésével. A tekercs szimbolikus jelölése: A tekercsek tengelye egybeesik a tekercsek mágneses tengelyével, vagyis a tekercs árama által létesített mágneses tér (mágneses indukció) térbeli irányával

11 Villamos gépek felépítése: Villamos gépek - felépítés Állórész és forgórész Hornyokban elhelyezett vezetők Hengeres gép (egyenletes légrés) Kiálló pólusú gép (nem egyenletes légrés) Vasmag (indukció növelése) Lemezelés (örvényáramok csökkentése [AC]) Armatúra tekercselés (ahol a feszültség indukálódik) Gerjesztő tekercs (ami létrehozza a főfluxust) Állandó mágnes

12 Villamos gépek felépítése: Villamos gépek - felépítés Állórész és forgórész Hornyokban elhelyezett vezetők Hengeres gép (egyenletes légrés) Kiálló pólusú gép (nem egyenletes légrés) Vasmag (indukció növelése) Lemezelés (örvényáramok csökkentése [AC]) Armatúra tekercselés (ahol a feszültség indukálódik) Gerjesztő tekercs (ami létrehozza a főfluxust) Állandó mágnes

13 Villamos gépek felépítése: Villamos gépek - felépítés Állórész és forgórész Hornyokban elhelyezett vezetők Hengeres gép (egyenletes légrés) Kiálló pólusú gép (nem egyenletes légrés) Vasmag (indukció növelése) Lemezelés (örvényáramok csökkentése [AC]) Armatúra tekercselés (ahol a feszültség indukálódik) Gerjesztő tekercs (ami létrehozza a főfluxust) Állandó mágnes

14 Villamos gépek felépítése: Villamos gépek - felépítés Állórész és forgórész Hornyokban elhelyezett vezetők Hengeres gép (egyenletes légrés) Kiálló pólusú gép (nem egyenletes légrés) Vasmag (indukció növelése) Lemezelés (örvényáramok csökkentése [AC]) Armatúra tekercselés (ahol a feszültség indukálódik) Gerjesztő tekercs (ami létrehozza a főfluxust) Állandó mágnes

15 Villamos gépek felépítése: Villamos gépek - felépítés Állórész és forgórész Hornyokban elhelyezett vezetők Hengeres gép (egyenletes légrés) Kiálló pólusú gép (nem egyenletes légrés) Vasmag (indukció növelése) Lemezelés (örvényáramok csökkentése [AC]) Armatúra tekercselés (ahol a feszültség indukálódik) Gerjesztő tekercs (ami létrehozza a főfluxust) Állandó mágnes

16 Villamos gépek felépítése: Villamos gépek - felépítés Állórész és forgórész Hornyokban elhelyezett vezetők Hengeres gép (egyenletes légrés) Kiálló pólusú gép (nem egyenletes légrés) Vasmag (indukció növelése) Lemezelés (örvényáramok csökkentése [AC]) Armatúra tekercselés (ahol a feszültség indukálódik) Gerjesztő tekercs (ami létrehozza a főfluxust) Állandó mágnes

17 Villamos gépek felépítése: Villamos gépek - felépítés Állórész és forgórész Hornyokban elhelyezett vezetők Hengeres gép (egyenletes légrés) Kiálló pólusú gép (nem egyenletes légrés) Vasmag (indukció növelése) Lemezelés (örvényáramok csökkentése [AC]) Armatúra tekercselés (ahol a feszültség indukálódik) Gerjesztő tekercs (ami létrehozza a főfluxust) Állandó mágnes

18 Az indukcióvektor értelmezése A legtöbbször arra törekszünk, hogy villamos gépeinkben a térbeli indukcióeloszlás, valamint a feszültségek és áramok időbeli jelalakja a legjobban közelítse a szinuszfüggvényt. A szinuszosság követelménye abból az ismert villamosságtani törvényszerűségből származik, hogy a többfázisú, szinuszos, kiegyenlített rendszerek villamos teljesítménye állandó.

19 Az indukcióvektor értelmezése Hogyan jellemezhető az indukció-vektorral a kerület mentén egyenletes sebességgel haladó hullám? Ha a mágneses tér (indukció) kerület menti eloszlása szinuszos, valamint a többfázisú áramok időbeli változása (időfüggvénye) is szinuszos, akkor a villamos gép kapcsain leadott többfázisú villamos teljesítmény, illetve a villamos gép tengelyén leadott nyomaték (mechanikai teljesítmény) az időben állandó.

20 Mezőtípusok: állandó Egy tekercs egyenárammal gerjesztve. Több tekercs, térben háromfázisúan elhelyezve és egyenárammal gerjesztve. B eredő,5*b A, ez is állandó

21 Mezőtípusok: lüktető Egy tekercs, egyfázisú váltakozóárammal gerjesztve. A lüktetőmező térbeli állóhullám, lineáris esetben összetehető két forgó mezőből. Ferraris-tétele: a lüktető mező felbontható két, egymással ellentétes irányban, azonos szögsebességgel forgó mezőre, amelyek amplitúdója (hossza) a lüktető mező amplitúdójának fele.

22 A forgómező létrehozásához: Mezőtípusok: forgó Többfázisú tekercsrendszer Többfázisú áram- (gerjesztés-) rendszer SZÜKSÉGES Pólusosztás τ p Dππ 2 p α v pα g a villamos és a geometriai szög kapcsolata

23 Mezőtípusok: forgó A TEKERCSEK TENGELYEI A TÉRBEN A TEKERCSEK ÁRAMAI AZ IDŐBEN A TÉRBEN ELŐRE AZ IDŐBEN HÁTRA

24 Mezőtípusok: forgó Szimuláció

25 Szinuszos mezőeloszlás létrehozása A számítás egyszerűsítése érdekében a hengeres álló és forgórészt egy képzeletbeli ollóval a hengerpalást felület egyik alkotója mentén felvágjuk, és a síkban kiterítjük. A fogakat és hornyokat eltüntetjük A légrésen, valamint az álló és forgórészvastesten át záródó integrálási útvonalakat felvéve, és elhanyagolva a vastestre eső mágneses feszültségeket kapjuk a gerjesztés kerület menti eloszlását, esetünkben egy ún. lépcsős görbét.

26 Szinuszos mezőeloszlás létrehozása A lépcsős görbe Fourier-sora adja meg a gerjesztéseloszlás, valamint lineáris esetben a légrésindukció eloszlás alapharmonikusát és felharmonikusait. Az alapharmonikus indukció, B 4 π B max a fázisonkénti és pólusonkénti horonyszám. Z q 2 p m

27 Szinuszos mezőeloszlás létrehozása Mi történik q > választás esetén? MEZŐ: Szinuszosabb térbeli eloszlás Előnyös INDUKÁLT FESZÜLTSÉG: Kisebb, mert az egyes tekercsoldalakban fázisban eltolt feszültségek indukálódnak, amelyek vektorösszege kisebb, mint a részfeszültségek abszolút értékeinek összege (a fázisfeszültség nagysága). Hátrányos

28 Tekercselési tényező A második ábra mutatja az eredő indukált feszültség szerkesztését q3 esetén. A középső és a jobb oldali ábra q feltételezéssel készült. A harmadik ábrán a fázissáv szélessége 20 (nem szokásos!), míg a jobb oldali ábrán a fázissáv a szokásos 60.

29 Tekercselési tényező U ξ e 3 e húr ξe U ξe π π ív 3 Tehát a tekercselési tényező megmutatja, hogy a tekercselés elosztottsága következtében milyen mértékben csökken az (alapharmonikus) indukált feszültség.

30 Indukált feszültség számítása 2 z N N menetszám / fázis z összes sorbakötött vezetőszám / fázis, z h z /Z B B z v l B U U z v l B u köz i eff i i max max,max, Szinuszos esetben! ω π τ ω π τ ω π τ ω π p p R v B B p köz max Szinuszos esetben! ( ) max, max,max,,, Φ ξ Φ τ π π π τ π N f U N f l B N f N f l B U U eff i p köz p köz i eff i Ha q Ha q

Az aszinkron és a szinkron gépek külső mágnesének vasmagja, -amelyik általában az

Az aszinkron és a szinkron gépek külső mágnesének vasmagja, -amelyik általában az 8 FORGÓMEZŐS GÉPEK. Az aszinkron és a szinkron géek külső mágnesének vasmagja, -amelyik általában az állórész,- hengergyűrű alakú. A D átmérőjű belső felületén tengelyirányban hornyokat mélyítenek, és

Részletesebben

Elektrotechnika. 11. előadás. Összeállította: Dr. Hodossy László

Elektrotechnika. 11. előadás. Összeállította: Dr. Hodossy László 11. előadás Összeállította: Dr. Hodossy László 1. Szerkezeti felépítés 2. Működés 3. Működés 4. Armatúra reakció 5. Armatúra reakció 6. Egyenáramú gépek osztályozása 7. Külső 8. Külső. 9. Soros. 10. Soros

Részletesebben

Villamos gépek. Villamos forgógépek. Forgógépek elvi felépítése

Villamos gépek. Villamos forgógépek. Forgógépek elvi felépítése Villamos forgógépek Forgógépek elvi felépítése A villamos forgógépek két fő része: az álló- és a forgórész. Az állórészen elhelyezett tekercsek árama mágneses teret létesít. Ez a mágneses tér a mozgási

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő

Részletesebben

Villamos gépek I. Egyfázisú transzformátor 3 1. A vasmag funkciói 3 2. Növekedési törvények 4 3. Felépítés: vasmag kialakítása (lemezelés,

Villamos gépek I. Egyfázisú transzformátor 3 1. A vasmag funkciói 3 2. Növekedési törvények 4 3. Felépítés: vasmag kialakítása (lemezelés, Villamos gépek I. Egyfázisú transzformátor 3 1. A vasmag funkciói 3 2. Növekedési törvények 4 3. Felépítés: vasmag kialakítása (lemezelés, lépcsőzés), tekercselések (hengeres, tárcsás) 9 4. Fő- és szórt

Részletesebben

Alapfogalmak, osztályozás

Alapfogalmak, osztályozás VILLAMOS GÉPEK Alapfogalmak, osztályozás Gépek: szerkezetek, amelyek energia felhasználása árán munkát végeznek, vagy a felhasznált energiát átalakítják más jellegű energiává Működési elv: indukált áram

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU SZINKRON GÉPEK

SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU AUTOMATIZÁLÁSI TANSZÉK HTTP://AUTOMATIZALAS.SZE.HU SZINKRON GÉPEK SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU SZINKRON GÉPEK 2013/2014 - őszi szemeszter Szinkron gép Szinkron gép Szinkron gép motor Szinkron gép állandó mágneses motor Szinkron generátor - energiatermelés

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő

Részletesebben

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!

4. /ÁK Adja meg a villamos áramkör passzív építő elemeit! Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg

Részletesebben

= f p képlet szerint. A gép csak ezen a szögsebességen tud állandósult nyomatékot kifejteni.

= f p képlet szerint. A gép csak ezen a szögsebességen tud állandósult nyomatékot kifejteni. 44 SZINKRON GÉPEK. Szögsebességük az állórész f 1 frekvenciájához mereven kötődik az ω 2 π = f p képlet szerint. A gép csak ezen a szögsebességen tud állandósult nyomatékot kifejteni. Az állórész felépítése

Részletesebben

VI. fejezet. Az alapvető elektromechanikai átalakítók működési elvei

VI. fejezet. Az alapvető elektromechanikai átalakítók működési elvei VI. fejezet Az alapvető elektromechanikai átalakítók működési elvei Származtatása frekvencia-feltételből (általános áttekintés) A forgó mező tulajdonságai (már láttuk) III. A nyomatékképzés feltétele (alapesetben)

Részletesebben

1.2. A mechanikusan forgatott mező. A mezőgörbe alakja

1.2. A mechanikusan forgatott mező. A mezőgörbe alakja 1.. A mechanikusan forgatott mező. A mezőgörbe alakja Kiálló pólusú, kétpólusú egyfázisú elemi szinkrongenerátor vázlatos keresztmetszetét látjuk az 1.1a ábrán. Az állórészen egyetlen, az 1 1 vezetőkből

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók DC motorok 1. rész egyetemi docens - 1 - Főbb típusok: Elektromos motorok Egyenáramú motor DC motor. Kefenélküli egyenáramú motor BLDC motor. Indukciós motor AC motor aszinkron

Részletesebben

S Z I N K R O N G É P E K

S Z I N K R O N G É P E K VILLANYSZERELŐ KÉPZÉS 2 0 1 5 S Z I N K R O N G É P E K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Szinkrongépek működési elve...3 Szinkrongépek felépítése...3 Szinkrongenerátor üresjárási

Részletesebben

A LEGFONTOSABB VILLAMOS GÉPEK MŰKÖDÉSÉNEK ALAPJAI

A LEGFONTOSABB VILLAMOS GÉPEK MŰKÖDÉSÉNEK ALAPJAI A LEGFONTOSABB VILLAMOS GÉPEK MŰKÖDÉSÉNEK ALAPJAI 1. Bevezetés 1 2. A mechanikusan forgatott mező. A mezőgörbe alakja 4 3 Váltakozóáramú tekercselések 8 3.1 A sávtényező 8 3.2. A tekercselések kialakítása

Részletesebben

TARTALOMJEGYZÉK. Előszó 9

TARTALOMJEGYZÉK. Előszó 9 TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha

Részletesebben

Vajda István: Forgó mozgás létesítése. Elektrotechnika, BME VIK, 2010 ősz. Vajda István: Forgó mozgás létesítése. Elektrotechnika, BME VIK, 2010 ősz

Vajda István: Forgó mozgás létesítése. Elektrotechnika, BME VIK, 2010 ősz. Vajda István: Forgó mozgás létesítése. Elektrotechnika, BME VIK, 2010 ősz 2 A NYOMATÉKKÉPZÉS Reluktancia és hiszterézis Reluktancia- és hiszterézisnyomaték keletkezése és számítása Olvasmány Ha az egyik oldal, pl. a forgórész kiálló pólusos (a ábra), akkor forgás közben az állórésztekercs

Részletesebben

Háromfázisú aszinkron motorok

Háromfázisú aszinkron motorok Háromfázisú aszinkron motorok 1. példa Egy háromfázisú, 20 kw teljesítményű, 6 pólusú, 400 V/50 Hz hálózatról üzemeltetett aszinkron motor fordulatszáma 950 1/min. Teljesítmény tényezője 0,88, az állórész

Részletesebben

Egyenáramú gépek. Felépítés

Egyenáramú gépek. Felépítés Egyenármú gépek Felépítés 1. Állórész koszorú 2. Főpólus 3. Segédpólus 4. Forgórész koszorú 5. Armtúr tekercselés 6. Pólus fluxus 7. Kompenzáló tekercselés 1 Állórész - Tömör vstest - Tömör vs pólus -

Részletesebben

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK

MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó

Részletesebben

HÁROMFÁZISÚ VÁLTAKOZÓ ÁRAM

HÁROMFÁZISÚ VÁLTAKOZÓ ÁRAM VILLANYSZERELŐ KÉPZÉS 2 0 1 5 HÁROMFÁZISÚ VÁLTAKOZÓ ÁRAM ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Nem szimmetrikus többfázisú rendszerek...3 Háronfázisú hálózatok...3 Csillag kapcsolású

Részletesebben

Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és

Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és 1. fejezet Az elektromechanikai energiaátalakítás Nagyon sokféle berendezés van, ami villamos energiát alakít mechanikai energiává és fordítva. Ezeknek a berendezéseknek a felépítése különböző lehet, a

Részletesebben

Elektrotechnika. Dr. Hodossy László előadás

Elektrotechnika. Dr. Hodossy László előadás Elektrotechnika 13 előadás Dr Hodossy László 2006 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 Szervo Lineáris Lineáris Lineáris Szervo Vezérlő és szabályozó rendszerekben pozícionálási célra alkalmazzák

Részletesebben

MÁGNESES TÉR, INDUKCIÓ

MÁGNESES TÉR, INDUKCIÓ Egy vezetéket 2 cm átmérőjű szigetelő testre 500 menettel tekercselünk fel, 25 cm hosszúságban. Mekkora térerősség lép fel a tekercs belsejében, ha a vezetékben 5 amperes áram folyik? Mekkora a mágneses

Részletesebben

1. Az energiaforrások típusai.

1. Az energiaforrások típusai. . Az energiaforrások típusai. -Kimerülő: szerves, fosszilis nukleáris, hasadó (fúziós) -Megújuló: napenergia: közvetlen: sugárzás, fotoszintézis közvetett: szél, felszíni folyamatok égitestek mozgása:

Részletesebben

Váltakozóáramú gépek. Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet

Váltakozóáramú gépek. Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet Váltakozóáramú gépek Összeállította: Langer Ingrid adjunktus Aszinkron (indukciós) gép Az ipari berendezések

Részletesebben

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken

Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.

Részletesebben

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés

1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.

Részletesebben

VI. fejezet. Az alapvető elektromechanikai átalakítók működési elvei

VI. fejezet. Az alapvető elektromechanikai átalakítók működési elvei VI. fejezet Az alapvető elektromechanikai átalakítók működési elvei Aszinkron gépek Gépfajták származtatása #: ω r =var Az ún. indukciós gépek forgórészében indukált feszültségek által létrehozott rotoráramok

Részletesebben

Egyetlen menetben folyó állandó áram által létrehozott mágneses tér

Egyetlen menetben folyó állandó áram által létrehozott mágneses tér 3. FORGÓ MÁGNESES TÉR LÉTREHOZÁSA Állndó ármú geresztés mezőeloszlás A geresztési törvény szerint: Hdl = JdA = I. A τ p állórész É D É légrés forgórész I H H 1 t x Egyetlen meneten folyó állndó árm áltl

Részletesebben

9. Szinkron gépek. Ebbõl következik, hogy a forgórésznek az állórész mezõvel együtt, azzal szinkron kell forognia

9. Szinkron gépek. Ebbõl következik, hogy a forgórésznek az állórész mezõvel együtt, azzal szinkron kell forognia 9. Szinkron gépek 9.1. Mûködési elv, alapgondolat Láttuk, hogy v.á. gépeink mûködésének alapja két szinkron forgó forgómezõ, képletesen két összetapadt, együttfutó pólusrendszer. Tengelyeik között - a

Részletesebben

GENERÁTOR. Összeállította: Szalai Zoltán

GENERÁTOR. Összeállította: Szalai Zoltán GENERÁTOR Összeállította: Szalai Zoltán 2008 GÉPJÁRMŰ GENERÁTOROK CSOPORTOSÍTÁSA Működés elve szerint: - mozgási indukció: - mágnes áll, tekercs forog (dinamó) - tekercs áll, mágnes forog (generátor) Pólus

Részletesebben

Az elektromágneses indukció jelensége

Az elektromágneses indukció jelensége Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér

Részletesebben

Transzformátorok Egyfázisú transzformátor felépítése, állandósult üzeme. fő- és szórt fluxusok. indukált feszültség számítása.

Transzformátorok Egyfázisú transzformátor felépítése, állandósult üzeme. fő- és szórt fluxusok. indukált feszültség számítása. Transzformátorok Egyfázisú transzformátor felépítése, állandósult üzeme. fő- és szórt fluxusok. indukált feszültség számítása. helyettesítő kapcsolás. feszültség-kényszer. gerjesztés- és teljesítmény-invariancia.

Részletesebben

Villamos gépek működése

Villamos gépek működése Villamos gépek működése Mágneses körök alapjai, többfázisú rendszerek Marcsa Dániel egyetemi tanársegéd E-mail: marcsad@sze.hu Széchenyi István Egyetem http://uni.sze.hu Automatizálási Tanszék http://automatizalas.sze.hu

Részletesebben

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:

Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek: 3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója

Részletesebben

A II. kategória Fizika OKTV mérési feladatainak megoldása

A II. kategória Fizika OKTV mérési feladatainak megoldása Nyomaték (x 0 Nm) O k t a t á si Hivatal A II. kategória Fizika OKTV mérési feladatainak megoldása./ A mágnes-gyűrűket a feladatban meghatározott sorrendbe és helyre rögzítve az alábbi táblázatban feltüntetett

Részletesebben

Forgó mágneses tér létrehozása

Forgó mágneses tér létrehozása Forgó mágnee tér létrehozáa 3 f-ú tekercelé, pólupárok záma: p=1 A póluoztá: U X kivezetéekre i=io egyenáram Az indukció kerület menti elozláa: U X kivezetéekre Im=Io amplitúdójú váltakozó áram Az indukció

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?

1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? .. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.

Részletesebben

Időben állandó mágneses mező jellemzése

Időben állandó mágneses mező jellemzése Időben állandó mágneses mező jellemzése Mágneses erőhatás Mágneses alapjelenségek A mágnesek egymásra és a vastárgyakra erőhatást fejtenek ki. vonzó és taszító erő Mágneses pólusok északi pólus: a mágnestű

Részletesebben

Elektromechanika. 4. mérés. Háromfázisú aszinkron motor vizsgálata. 1. Rajzolja fel és értelmezze az aszinkron gép helyettesítő kapcsolási vázlatát.

Elektromechanika. 4. mérés. Háromfázisú aszinkron motor vizsgálata. 1. Rajzolja fel és értelmezze az aszinkron gép helyettesítő kapcsolási vázlatát. Elektromechanika 4. mérés Háromfázisú aszinkron motor vizsgálata 1. Rajzolja fel és értelmezze az aszinkron gép helyettesítő kapcsolási vázlatát. U 1 az állórész fázisfeszültségének vektora; I 1 az állórész

Részletesebben

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata

Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások

Részletesebben

Mechatronika, Optika és Gépészeti Informatika Tanszék MOTOR - BOARD

Mechatronika, Optika és Gépészeti Informatika Tanszék MOTOR - BOARD echatronika, Optika és Gépészeti Informatika Tanszék OTOR - BORD I. Elméleti alapok a felkészüléshez 1. vizsgált berendezés mérést a HPS System Technik (www.hps-systemtechnik.com) rendszereszközök segítségével

Részletesebben

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz

Villamos mérések. Analóg (mutatós) műszerek. Készítette: Füvesi Viktor doktorandusz Villamos mérések Analóg (mutatós) műszerek Készítette: Füvesi Viktor doktorandusz rodalom UrayVilmos Dr. Szabó Szilárd: Elektrotechnika o.61-79 1 Alapfogalmak Mutatós műszerek Legegyszerűbbek Közvetlenül

Részletesebben

Tevékenység: 1.A szinkronmotorok állórészének kialakításáról

Tevékenység: 1.A szinkronmotorok állórészének kialakításáról Tevékenység: Olvassa el az állórész kialakításának lehetőségeit. Jegyezze meg a az eredő vektor vagy Parkvektor fogalmát, a Clark-transzformáció rendeltetését, az M nyomaték, az M r reluktancianyomaték,

Részletesebben

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM

EGYFÁZISÚ VÁLTAKOZÓ ÁRAM VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású

Részletesebben

Legutolsó frissítés ZÁRÓVIZSGA KÉRDÉSEK a VÁLOGATOTT FEJEZETEK AZ ELEKTROTECHNIKÁBAN CÍMŰ MSc TÁRGYBÓL

Legutolsó frissítés ZÁRÓVIZSGA KÉRDÉSEK a VÁLOGATOTT FEJEZETEK AZ ELEKTROTECHNIKÁBAN CÍMŰ MSc TÁRGYBÓL Legutolsó frissítés 2013.05.24. Tárgykód: BMEVIAUM012 ZÁRÓVIZSGA KÉRDÉSEK a VÁLOGATOTT FEJEZETEK AZ ELEKTROTECHNIKÁBAN CÍMŰ MSc TÁRGYBÓL Fontos megjegyzés: a felkészüléshez ajánljuk a www.get.bme.hu hálózati

Részletesebben

Villamos gépek a megújuló villamosenergia termelésben 58. MEE Vándorgyűlés, Konferencia és Kiállítás

Villamos gépek a megújuló villamosenergia termelésben 58. MEE Vándorgyűlés, Konferencia és Kiállítás Villamos gépek a megújuló villamosenergia termelésben 58. MEE Vándorgyűlés, Konferencia és Kiállítás Szeged, 2011. szeptember 14-16. 1 BanKonzult Energy Kft., Tiszaújváros villamos forgógépek javítása,

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus

Részletesebben

Aszinkron motoros hajtás Matlab szimulációja

Aszinkron motoros hajtás Matlab szimulációja Aszinkron motoros hajtás Matlab szimulációja Az alábbiakban bemutatjuk egy MATLAB programban modellezett 147,06 kw teljesítményű aszinkron motoros hajtás modelljének felépítését, rendszertechnikáját és

Részletesebben

= Φ B(t = t) Φ B (t = 0) t

= Φ B(t = t) Φ B (t = 0) t 4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy

Részletesebben

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja

Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben

Részletesebben

Elektrotechnika. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autotechnikai Intézet

Elektrotechnika. Budapest Műszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autotechnikai Intézet Budapest űszaki Főiskola Bánki Donát Gépész és Biztonságtechnikai Kar echatronikai és Autotechnikai Intézet Elektrotechnika Egyenáram ramú gépek Összeállította: Langer Ingrid főisk. adjunktus Elektromechanikai

Részletesebben

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók

Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM VILLAMOSMÉRÖKI ÉS IFORMATIKAI KAR VILLAMOS EERGETIKA TASZÉK Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók vizsgálata

Részletesebben

Villamos gépek tantárgy tételei

Villamos gépek tantárgy tételei 10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata KLASSZIKUS FIZIKA LABORATÓRIUM 3. MÉRÉS Hangfrekvenciás mechanikai rezgések vizsgálata Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. november 23. Szerda délelőtti csoport 1. A

Részletesebben

Hangfrekvenciás mechanikai rezgések vizsgálata

Hangfrekvenciás mechanikai rezgések vizsgálata Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk

Részletesebben

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?

7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át? 1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás

Részletesebben

Érzékelők és beavatkozók

Érzékelők és beavatkozók Érzékelők és beavatkozók AC motorok egyetemi docens - 1 - AC motorok Félrevezető elnevezés, mert: Arra utal, hogy váltakozó árammal működő motorokról van szó, pedig ma vannak egyenfeszültségről táplált

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 2. DC MOTOROK BEVEZETÉS ÉS STATIKUS MODELLEZÉS

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 2. DC MOTOROK BEVEZETÉS ÉS STATIKUS MODELLEZÉS ÉRZÉKELŐK ÉS EVTKOZÓK II. 2. DC MOTOROK EVEZETÉS ÉS STTIKUS MODELLEZÉS Dr. Soumelidis lexandros 2019.02.13. ME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTL TÁMOGTOTT TNNYG Elektromos

Részletesebben

1. fejezet: Szinkron gépek

1. fejezet: Szinkron gépek 1. Fejezet Szinkron gépek Szinkron gépek/1 TARTALOMJEGYZÉK 1. FEJEZET SZINKRON GÉPEK 1 1.1. Működési elv, alapgondolat 3 1.2. Felépítés 4 1.3. Helyettesítő áramkör 5 1.4. Fázorábra 7 1.5. Hálózatra kapcsolás

Részletesebben

E G Y E N Á R A M Ú G É P E K

E G Y E N Á R A M Ú G É P E K VILLANYSZERELŐ KÉPZÉS 2 0 1 5 E G Y E N Á R A M Ú G É P E K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Egyenáramú gépek működési elve...3 Egyenáramú gépek felépítése...3 A forgórész tekercselése...4

Részletesebben

FIZIKA II. Az áram és a mágneses tér kapcsolata

FIZIKA II. Az áram és a mágneses tér kapcsolata Az áram és a mágneses tér kapcsolata Mágneses tér jellemzése: Mágneses térerősség: H (A/m) Mágneses indukció: B (T = Vs/m 2 ) B = μ 0 μ r H 2Seres.Istvan@gek.szie.hu Sztatikus terek Elektrosztatikus tér:

Részletesebben

Elektrotechnika. Ballagi Áron

Elektrotechnika. Ballagi Áron Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:

Részletesebben

Elektrotechnika 3. zh-ra. by Lacee. dr. Vajda István és dr. Berta István diáiból + előadásaiból 2008.12.06.

Elektrotechnika 3. zh-ra. by Lacee. dr. Vajda István és dr. Berta István diáiból + előadásaiból 2008.12.06. Elektrotechnika 3. zh-ra by Lacee dr. Vajda István és dr. Berta István diáiból + előadásaiból 2008.12.06. C) GYAKORLATI ÁRAMKÖR-SZÁMÍTÁSI TECHNIKÁK ÉS KONVENCIÓK: EGY- ÉS HÁROMFÁZISÚ HÁLÓZATOK SZÁMÍTÁSA

Részletesebben

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!

2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! 1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)

Részletesebben

Elektrotechnika II. egyetemi jegyzet. 1. Fejezet. Villamos energia átalakítók

Elektrotechnika II. egyetemi jegyzet. 1. Fejezet. Villamos energia átalakítók Elektrotechnika II. egyetemi jegyzet A jegyzetben használjuk a nemzetközileg elismert rövidítéseke az áram típusára vonatkozólag: - AC - váltóáram, mely az angol Alternating Current elnevezés rövidítéséből

Részletesebben

4. Mérés Szinkron Generátor

4. Mérés Szinkron Generátor 4. Mérés Szinkron Generátor Elsődleges üzemállaot szerint beszélhetünk szinkron generátorról és szinkron motorról, attól függően, hogy a szinkron gé elsődlegesen generátoros vagy motoros üzemállaotban

Részletesebben

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 8. AC MOTOROK

ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 8. AC MOTOROK ÉRZÉKELŐK ÉS BEAVATKOZÓK II. 8. AC MOTOROK Dr. Soumelidis Alexandros 2019.04.16. BME KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR 32708-2/2017/INTFIN SZÁMÚ EMMI ÁLTAL TÁMOGATOTT TANANYAG AC motorok Félrevezető

Részletesebben

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)

(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő

Részletesebben

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:

Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen: Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása

Részletesebben

VILLAMOS HAJTÁSOK Készítette: Dr. Mádai Ferenc Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék 2014

VILLAMOS HAJTÁSOK Készítette: Dr. Mádai Ferenc Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék 2014 VILLAMOS HAJTÁSOK Készítette: Dr. Mádai Ferenc Miskolci Egyetem Elektrotechnikai-Elektronikai Tanszék 2014 2 1. ÁLTALÁNOS KÉRDÉSEK A villamos hajtások felépítése, stabilitása A villamos motorokat valamilyen

Részletesebben

KIÁLLÓ PÓLUSÚ SZINKRON GÉP VIZSGÁLATA Laboratóriumi mérési útmutató

KIÁLLÓ PÓLUSÚ SZINKRON GÉP VIZSGÁLATA Laboratóriumi mérési útmutató BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Villamos gépek és hajtások csoport KIÁLLÓ PÓLUSÚ SZINKRON GÉP VIZSGÁLATA Laboratóriumi mérési

Részletesebben

Váltakozóáramú gépek. Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet

Váltakozóáramú gépek. Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet Óbudai Egyetem Bánki Donát Gépész és Biztonságtechnikai Kar Mechatronikai és Autótechnikai Intézet Váltakozóáramú gépek Összeállította: Langer Ingrid adjunktus Aszinkron (indukciós) gép Az ipari berendezések

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /

Részletesebben

Magas minőségi követelményeket kielégítő szinkronmotoros szervó hajtások. Bakos Ádám

Magas minőségi követelményeket kielégítő szinkronmotoros szervó hajtások. Bakos Ádám Magas minőségi követelményeket kielégítő szinkronmotoros szervó hajtások Bakos Ádám 1/41 Tartalom Bevezetés Szinkrongépek vektoros leírása Szinkrongépek mezőorientált szabályozása Mezőorientált szabályozás

Részletesebben

Számítási feladatok megoldással a 6. fejezethez

Számítási feladatok megoldással a 6. fejezethez Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5

Részletesebben

VÁLTAKOZÓ ÁRAM JELLEMZŐI

VÁLTAKOZÓ ÁRAM JELLEMZŐI VÁLTAKOZÓ ÁA JELLEZŐI Ohmos fogyasztók esetén - a feszültség és az áramerősség fázisban van egymással Körfrekvencia: ω = π f I eff = 0,7 max I eff = 0,7 I max Induktív fogyasztók esetén - az áramerősség

Részletesebben

É r z é k e l ő k. M,ω M t. A korszerű, szabályozott villamos hajtás elvi felépítése 1.1.a ábra

É r z é k e l ő k. M,ω M t. A korszerű, szabályozott villamos hajtás elvi felépítése 1.1.a ábra 1 1. ÁLTALÁNOS KÉRDÉSEK. A villamos hajtás felépítése, kiválasztása, stabilitása. A villamos motorokat valamilyen technológiai (anyag-, energia-, biológiai-átalakítási, szállítási) folyamatot végző munkagép

Részletesebben

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2

1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2 1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2

Részletesebben

II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani alapismeretek Hunyadi Sándor

II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani alapismeretek Hunyadi Sándor A 2015. LVII-es energiahatékonysági törvényben meghatározott auditori és energetikai szakreferens vizsga felkészítő anyaga II. Szakmai alap- és szakismeretek, gyakorlati alkalmazásuk 4. Villamosságtani

Részletesebben

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép

Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő

Részletesebben

VILLAMOS ENERGETIKA I. RÉSZ

VILLAMOS ENERGETIKA I. RÉSZ VLLAMOS ENERGETKA. RÉSZ. smertesse blokkvázlatban az energiaszolgáltatás rendszerét! Adja meg a villamos energia sajátosságait, valamint a villamosenergia-felhasználás részaránya és a társadalmi fejlettség

Részletesebben

Az ábrán a mechatronikát alkotó tudományos területek egymás közötti viszonya látható. A szenzorok és aktuátorok a mechanika és elektrotechnika szoros

Az ábrán a mechatronikát alkotó tudományos területek egymás közötti viszonya látható. A szenzorok és aktuátorok a mechanika és elektrotechnika szoros Aktuátorok Az ábrán a mechatronikát alkotó tudományos területek egymás közötti viszonya látható. A szenzorok és aktuátorok a mechanika és elektrotechnika szoros kapcsolatára utalnak. mért nagyság A fizikai

Részletesebben

T Ö R P E M O T O R O K

T Ö R P E M O T O R O K VILLANYSZERELŐ KÉPZÉS 2 0 1 5 T Ö R P E M O T O R O K ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Törpemotorok fogalma...3 Reluktancia motor...3 Árnyékolt pólusú motor...3 Szervomotorok...4

Részletesebben

Négypólusok helyettesítő kapcsolásai

Négypólusok helyettesítő kapcsolásai Transzformátorok Magyar találmány: Bláthy Ottó Titusz (1860-1939), Déry Miksa (1854-1938), Zipernovszky Károly (1853-1942), Ganz Villamossági Gyár, 1885. Felépítés, működés Transzformátor: négypólus. Működési

Részletesebben

Budapesti Műszaki és Gazdaságtudományi Egyetem Automatizálási és Alkalmazott Informatikai Tanszék. Elektromechanika. Alapkérdések

Budapesti Műszaki és Gazdaságtudományi Egyetem Automatizálási és Alkalmazott Informatikai Tanszék. Elektromechanika. Alapkérdések Budapesti Műszaki és Gazdaságtudományi Egyetem Automatizálási és Alkalmazott Informatikai Tanszék Elektromechanika Alapkérdések Dr. Nagy István Egyetemi tanár vezetésével írta: Dranga Octavianus, doktorandusz

Részletesebben

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok

FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35

Részletesebben

4. FEJEZET MOTORHAJTÁSOK

4. FEJEZET MOTORHAJTÁSOK Tantárgy: TELJESÍTMÉNYELEKTRONIKA Tanár: Dr. Burány Nándor Tanársegéd: Mr. Divéki Szabolcs 5. félév Óraszám: 2+2 1 4. FEJEZET MOTORHAJTÁSOK Széles skála: o W...MW, o precíz pozícionálás...goromba sebességvezérlés.

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Teljesítm. ltség. U max

Teljesítm. ltség. U max 1 tmény a váltakozó áramú körben A váltakozv ltakozó feszülts ltség Áttekinthetően szemlélteti a feszültség pillanatnyi értékét a forgóvektoros ábrázolás, mely szerint a forgó vektor y-irányú vetülete

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét.

A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. MÁGNESES MEZŐ A mágneses tulajdonságú magnetit ásvány, a görög Magnészia városról kapta nevét. Megfigyelések (1, 2) Minden mágnesnek két pólusa van, északi és déli. A felfüggesztett mágnes - iránytű -

Részletesebben

írásbeli vizsgatevékenység

írásbeli vizsgatevékenység Vizsgarészhez rendelt követelménymodul azonosítója, megnevezése: 0896-06 Villanyszerelési munka előkészítése, dokumentálása Vizsgarészhez rendelt vizsgafeladat száma, megnevezése: 0896-06/3 Mérési feladat

Részletesebben

LI 2 W = Induktív tekercsek és transzformátorok

LI 2 W = Induktív tekercsek és transzformátorok Induktív tekercsek és transzformátorok A tekercsek olyan elektronikai alkatrészek, amelyek mágneses terükben jelentős elektromos energiát képesek felhalmozni. A mágneses tér a tekercset alkotó vezetéken

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben