Aminosavak és fehérjék. Aminosavak. Aminosavak. Az oldallánc

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Aminosavak és fehérjék. Aminosavak. Aminosavak. Az oldallánc"

Átírás

1 Aminosavak és fehérjék Aminosavak Fehérjékb!l savas hidrolízis hatására aminokarbonsavak, röviden aminosavak keletkeznek. Az aminosavak olyan vegyületek, amelyek molekulájában aminocsoport és karboxilcsoport egyaránt el!fordul. Biológiai jelent!ségüknél fogva ehelyett csak a fehérjeeredet" aminosavakkal foglalkozunk. 1 2 Aminosavak a természetes aminosavak L sztereokémiájúak és alfanh2t tartalmaznak: Az oldallánc igen sokféle funkciós csoport és tulajdonság a glicinnek nincs oldallánca Gly glicin H 2 NCH 2 COOH szerkezetük az R csoportban különbözik 20 természetes aminosavat ismerünk 10 (eszenciális) aminosavat a táplálékkal veszünk magunkhoz (a többit képesek vagyunk szintetizálni) 3 4 egyszer" alkil (apoláris) oldallánc R= Ala alanin CH 3 Val valin Gy"r"s oldallánc (szekunder amin) Pro prolin aromás oldallánc Phe fenilalanin Leu Ile leucin izoleucin Tyr tirozin Trp triptofán 5 6

2 alkohol oldallánc Ser szerin HOCH2 Thr treonin kéntartalmú oldallánc Cys cisztein HSCH 2 Met metionin CH 3 SCH 2 CH 2 karbonsav oldallánc Asp aszparaginsav HOOCCH 2 Glu glutaminsav HOOCCH 2 CH 2 amid oldallánc (a fenti savakból) Asn aszparagin H 2 NOCCH 2 Gln glutamin H 2 NOCCH 2 CH 2 bázikus oldallánc Lys lizin H 2 N(CH 2 )4 Arg arginin His hisztidin 7 8 Az aminosavak halmazszerkezete Minden aminosav tartalmaz legalább egy bázikus aminoés egy savas jelleg" karboxilcsoportot. Vizes oldatban, de kristályosítva, szilárd állapotban is az aminocsoport protonált, a karboxilcsoport protonálatlan állapotban van: ikerionos szerkezet!! Tulajdonságaik Amfoterek, tehát a vízben rosszul oldódó (nagy, apoláros jelleg" láncot tartalmazó) típusaik is feloldhatók sav, illetve lúgoldatban (savoldatban a karboxilátion protonálódik, lúgoldatban az alkilammóniumion ad le egy protont). A vízoldékony aminosavak vizes oldatának kémhatása a karboxilés az aminocsoportok, valamint az egyes csoportok savbázis er!sségét!l (Ks, Kb) függ. Az aminodikarbonsavak savas, a diaminokarbonsavak lúgos kémhatást okoznak a vízben, de az egyetlen amino és egyetlen karboxilcsoportot hordozó aminosavak sem feltétlenül semlegesek. Példa erre, hogy a glicin vizes oldata gyengén savas kémhatású, mivel a Ks= 4,5#103, a Kb= 2,5# A természetes eredet" aminosavak a fehérjékben amidkötéssel, biológiai értelemben peptidkötéssel kapcsolódnak. Alapszerkezet Fehérjék Egy vagy több, aminosavakból összekapcsolódó polipeptidláncból és esetenként szervetlen vagy szerves, nem polipeptid típusú részb!l álló makromolekulák

3 Jellemz"k Specifikus makromolekulák, melyben az épít!egységek (aminosavak) sorrendje egyediséget kölcsönöz az adott molekulának! Szerkezet a.) Els"dleges szerkezet (primer struktúra) aminosavszekvencia (aminosavsorrend) az egyediséget a polipeptidláncban oldalláncként jelentkez! Rcsoportok sorrendje biztosítja. b.) Másodlagos szerkezet (szekunder struktúra) A lánckonformáció viszonylag monoton ismétl!d! egységekb!l kialakuló szerkezete, mely leggyakrabban az #hélix, illetve a $red". A polipeptidlánc a peptidkötés körül nem foroghat (az oxocsoport pikötése és a nitrogén atom nemköt! elektronpárja delokalizálódik, ezzel rögzül a peptidkötés! /ls. ábra/). A merev, síkalkatú peptidkötések közötti (az alfaszénatom körül!) részlet mindkét oldalon elfordulhat (az ún. amidsíkok az alfa szénatom körül elforoghatnak). Az elvileg végtelen lehet!ség közül az Roldalláncok nagysága és töltése miatt jó néhány nem valósulhat meg. Mégis a természetben egy adott fehérje csak egy vagy néhány konformációban fordul el!. Ennek oka a környezet (ph, ionkoncentráció, h!mérséklet stb.) viszonylagos állandóságában keresend!. A lánckonformációt a peptidkötések atomjai között kialakuló másodrend" kötések (pl. hidrogénkötések) tartják fenn, melyek a spirális szerkezetben az egymás feletti struktúrákat (#hélix), a $red!ben az egymás mellé, hullámpapírszer"en rendez!dött láncrészeket tartják össze c.) Harmadlagos szerkezet (tercier struktúra) A másodlagos szerkezeti elemek az %hélix, $red! egymáshoz viszonyított elrendez!dését jelenti, beleértve az azokat egymástól esetleg elválasztó rendezetlen, ún. random szerkezeti részeket is! A lánckonformációt a másodrend" kötések mellett az oldalláncok közötti ionos kötések (pl. a karboxilátion és az alkilammóniumion között), illetve kovalenskötések (diszulfidhíd két cisztein molekula között) tartják fenn. d.) Negyedleges szerkezet (kvaterner struktúra) A több polipeptidláncból álló fehérjemolekulákra jellemz!, és a polipeptidláncok egymáshoz való viszonyát jelenti. A különböz! alegységek (polipeptidláncok) közötti kapcsolatot a tercier struktúrát fenntartó er!khöz hasonló kötések biztosítják. A fehérjék típusai 1.) Konformáció szerint FIBRILLÁLIS FEHÉRJÉK, melyeknek tercier struktúrájára az jellemz!, hogy a molekuláknak csaknem teljes hosszában egyféle szekunder szerkezeti elem van jelen, így a hajat %hélix, míg a selymet bred! szerkezeti elemek építik fel. GLOBULÁRIS FEHÉRJÉK, amelyek harmadlagos szerkezetére random (rendezetlen) szakaszok is jellemz!k, míg más szakaszok $red!zött vagy % hélix struktúrát vesznek fel. Ilyenek az immunglobulinok, a hemoglobin, az albuminok. Molekuláik nagyjából gömb alakúak. 2.) Vegyi összetételük szerint Egyszer! fehérjék (proteinek), amelyek csak aminosavakra hidrolizálhatók. Összetett fehérjék (proteidek), amelyek aminosavakon kívül más, szerves vagy szervetlen, ún. nem fehérjerészt is tartalmaznak. Ilyen a hemoglobinban a hem, ami vastartalmú porfirinvázas vegyület; a tejben a kazein, ami foszfátcsoportot tartalmaz. A név utal a nem fehérje rész milyenségére: lipoproteid (a nem fehérje rész lipid), glükoproteid (a nem fehérje rész szénhidrát) stb ) Funkció szerint Struktúrfehérjék, az él!lények szerkezetét meghatározó fehérjék (szaru). Enzimek, vagyis biokatalizátorok. A sejtek kommunikációjában fontos fehérjék (hormonok, receptormolekulák). Transzportmolekulák. A mozgásban jelent!s fehérjék (aktin, miozin, mikrotubulosok fehérjéi). Immunfehérjék (immunglobulinok). (Energiahordozók) Nem megfelel! körülmények között a természetes lánckonformáció megsz"nhet, ennek okai: az ionkoncentráció megváltozása phváltozás (a töltéssel rendelkez! csoportok töltése megsz"nhet, az oldalláncok ennek következtében elmozdulhatnak egymástól, és más oldalláncok között jöhetnek létre kötések) h!mérsékletváltozás (a h!mozgás hatására el!bb a gyengébb, majd magasabb h!mérsékleten akár a kovalens diszulfidhidak is felszakadhatnak) sugárzások, amelyek képesek a kovalens kötések felszakítására. Következményei: Denaturálódás: az eredeti funkció megsz"nése. Koaguláció: a kolloid állapot megsz"nése (kicsapódás). Mind a denaturáció mind a koaguláció lehet megfordítható reverzibilis, vagy visszafordíthatatlan irreverzibilis

4 1.) Biuretreakció A fehérjék kimutatása NaOHval meglúgosított oldatban néhány csepp CuSO 4 hozzáadásakor, fehérjék jelenlétében ibolya színreakció tapasztalható. A folyamat feltétele, hogy a vegyület legalább két peptidkötést tartalmazzon! A folyamat során lúgos közegben a réz(ii.)ionok komplexet alkotnak valószín"leg a peptidkötés oxigénatomjaival, ez okozza a színváltozást miközben ammónia szabadul fel, a peptidkötés reakciójáról van tehát szó. 2.) Xantoproteinreakció Tömény cc.hno3 hatására sárga színreakciót kapunk. Az aromás oldalláncokat a cc.hno 3 nitrálja, s az így keletkez! vegyület sárga szín". Csak az aromás oldalláncú aminosavakat tartalmazó fehérjék adják a próbát (tirozin, fenilalanin)! 19 Nukleinsavak Az él! szervezet minden biológiai tulajdonságának átörökítéséért felel!s makromolekulák! Savval f!zve hidrolizálnak, és a hidrolizátum: foszforsavat, ötszénatomos cukrot, és nitrogéntartalmú heterociklusos vegyületet tartalmaz. 20 Épít!egységeik a NUKLEOTIDOK! A nukleotidok felépítése: PENTÓZ: Dribóz (RNS) vagy 2dezoxiDribóz (DNS). A pentóz 1'szénatomjához kapcsolódó nitrogéntartalmú heteroaromás bázis: PURINVÁZAS bázisok: adenin, guanin PIRIMIDINVÁZAS bázisok: citozin, uracil, timin A pentóz 5'szénatomján lév! hidroxilcsoportját észteresítve foszforsav. A nukleotidok szerepe Tri és difoszfátjai a szervezet energiahordozói: ATP, ADP! Koenzimek alkotórészei: NAD, NADP, KoA! A sejtek kommunikációs kapcsolataiban játszanak szerepet: camp! A nukleinsavak alkotórészei! A nukleinsavak felépülése A nukleinsavak nukleotidokból épülnek fel. A polinukleotidlánc tulajdonképpen poliészterlánc, melyben a nukleotid pentózának 5' szénatomjával észterkötésben lév! foszfátcsoport a másik nukleotid pentózának 3' szénatomján lév! hidroxilcsoporttal kondenzációs reakcióban (vízkilépés) hoz létre észterkötést. Dezoxiribóz az RNSben a cukor ribóz, pontosabban bétadribofuranóz a DNSben a cukor 2dezoxiribóz, szintén bétafuranóz formában 23 24

5 A nitrogénbázisok a pirimidinbázisok 6tagú, két nitrogént tartalmazó heterociklusok citozin, uracil (az RNSben található) és timin (a DNSben található) a purinbázisok kétgy"r"sek, négy nitrogénatommal adenin és guanin citozin uracil timin cukorhoz kapcsolódó pont adenin guanin cukorhoz kapcsolódó pont Nukleozidok nitrogénbázis + cukor = nukleozid a nukleozidokat egybetûs kódokkal jelöljük Nukleotidok nitrogénbázis + cukor + foszfát = nukleotid Polinukleotidok DNS és RNS C = citozin U = uridin T = timidin A = adenozin G = guanozin Bázispárosodás specifikus Hkötés jöhet létre a szomszédos szál bázisaival az DNSben: az A és a T, valamint a G és a C kapcsolódik párba az RNS: az A és az U, valamint a G és a C kapcsolódik párba a bázispárosodáshoz szükséges, hogy a szálak párhuzamosak legyenek a bázispárosodás optimális szerkezete: kettõs spirál 29 30

A sejtek élete. 5. Robotoló törpék és óriások Az aminosavak és fehérjék R C NH 2. C COOH 5.1. A fehérjeépítőaminosavak általános

A sejtek élete. 5. Robotoló törpék és óriások Az aminosavak és fehérjék R C NH 2. C COOH 5.1. A fehérjeépítőaminosavak általános A sejtek élete 5. Robotoló törpék és óriások Az aminosavak és fehérjék e csak nézd! Milyen protonátmenetes reakcióra képes egy aminosav? R 2 5.1. A fehérjeépítőaminosavak általános képlete 5.2. A legegyszerűbb

Részletesebben

Szerkesztette: Vizkievicz András

Szerkesztette: Vizkievicz András Fehérjék A fehérjék - proteinek - az élő szervezetek számára a legfontosabb vegyületek. Az élet bármilyen megnyilvánulási formája fehérjékkel kapcsolatos. A sejtek szárazanyagának minimum 50 %-át adják.

Részletesebben

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak

MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Modul cím: MEDICINÁLIS ALAPISMERETEK AZ ÉLŐ SZERVEZETEK KÉMIAI ÉPÍTŐKÖVEI AZ AMINOSAVAK ÉS FEHÉRJÉK 1. kulcsszó cím: Aminosavak Egy átlagos emberben 10-12 kg fehérje van, mely elsősorban a vázizomban található.

Részletesebben

3. Sejtalkotó molekulák III.

3. Sejtalkotó molekulák III. 3. Sejtalkotó molekulák III. Fehérjék, fehérjeszintézis (transzkripció, transzláció, posztszintetikus módosítások). Enzimműködés 3.1 Fehérjék A genetikai információ egyik fő manifesztálódása Számos funkció

Részletesebben

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk. Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak

Részletesebben

Az élő szervezetek felépítése I. Biogén elemek biomolekulák alkotóelemei a természetben előforduló elemek közül 22 fordul elő az élővilágban O; N; C; H; P; és S; - élő anyag 99%-a Biogén elemek sajátosságai:

Részletesebben

A fehérjék hierarchikus szerkezete

A fehérjék hierarchikus szerkezete Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék

Részletesebben

4. FEHÉRJÉK. 2. Vázanyagok. Az izmok alkotórésze (pl.: a miozin). Inak, izületek, csontok szerves komponensei, az ún. vázfehérjék (szkleroproteinek).

4. FEHÉRJÉK. 2. Vázanyagok. Az izmok alkotórésze (pl.: a miozin). Inak, izületek, csontok szerves komponensei, az ún. vázfehérjék (szkleroproteinek). 4. FEÉRJÉK 4.0. Bevezetés A fehérjék elsısorban α-l-aminosavakból felépülı biopolimerek. A csak α-laminosavakat tartalmazó fehérjék a proteinek. evüket a görög proteios szóból kapták, ami elsırangút jelent.

Részletesebben

,:/ " \ OH OH OH - 6 - / \ O / H / H HO-CH, O, CH CH - OH ,\ / "CH - ~(H CH,-OH \OH. ,-\ ce/luló z 5zer.~ezere

,:/  \ OH OH OH - 6 - / \ O / H / H HO-CH, O, CH CH - OH ,\ / CH - ~(H CH,-OH \OH. ,-\ ce/luló z 5zer.~ezere - 6 - o / \ \ o / \ / \ () /,-\ ce/luló z 5zer.~ezere " C=,1 -- J - 1 - - ---,:/ " - -,,\ / " - ~( / \ J,-\ ribóz: a) r.yílt 12"('.1, b) gyürus íormája ~.. ~ en;én'. fu5 héli'(ef1e~: egy menete - 7-5.

Részletesebben

AMINOSAVAK, FEHÉRJÉK

AMINOSAVAK, FEHÉRJÉK AMINOSAVAK, FEHÉRJÉK Az aminosavak olyan szerves vegyületek, amelyek molekulájában aminocsoport (-NH2) és karboxilcsoport (-COOH) egyaránt előfordul. Felosztás A fehérjéket feloszthatjuk aszerint, hogy

Részletesebben

TestLine - Biogén elemek, molekulák Minta feladatsor

TestLine - Biogén elemek, molekulák Minta feladatsor TestLine - iogén elemek, molekulák iogén elemek, szervetlen és szerves molekulák az élő szervezetben. gészítsd ki a mondatot! aminocsoportja kondenzáció víz ún. peptidkötés 1. 1:48 Normál fehérjék biológiai

Részletesebben

INFORMATIKA EMELT SZINT%

INFORMATIKA EMELT SZINT% Szövegszerkesztés, prezentáció, grafika, weblapkészítés 1. A fényképezés története Táblázatkezelés 2. Maradékos összeadás Adatbázis-kezelés 3. Érettségi Algoritmizálás, adatmodellezés 4. Fehérje Maximális

Részletesebben

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek

Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Több oxigéntartalmú funkciós csoportot tartalmazó vegyületek Hidroxikarbonsavak α-hidroxi karbonsavak -Glikolsav (kézkrémek) - Tejsav (tejtermékek, izomláz, fogszuvasodás) - Citromsav (citrusfélékben,

Részletesebben

Aminosavak általános képlete NH 2. Csoportosítás: R oldallánc szerkezete alapján: Semleges. Esszenciális aminosavak

Aminosavak általános képlete NH 2. Csoportosítás: R oldallánc szerkezete alapján: Semleges. Esszenciális aminosavak Aminosavak 1 Aminosavak általános képlete N 2 soportosítás: oldallánc szerkezete alapján: Apoláris Poláris Bázikus Savas Semleges Esszenciális aminosavak 2 (apoláris) Glicin Név Gly 3 Alanin Ala 3 3 Valin

Részletesebben

Az aminosav anyagcsere orvosi vonatkozásai Csősz Éva

Az aminosav anyagcsere orvosi vonatkozásai Csősz Éva Az aminosav anyagcsere orvosi vonatkozásai Csősz Éva E-mail: cseva@med.unideb.hu Általános reakciók az aminosav anyagcserében 1. Nitrogén eltávolítás: transzaminálás dezaminálás: oxidatív nem oxidatív

Részletesebben

Aminosavak, peptidek, fehérjék. Szerkezet, előállítás, kémiai tulajdonság

Aminosavak, peptidek, fehérjék. Szerkezet, előállítás, kémiai tulajdonság Aminosavak, peptidek, fehérjék Szerkezet, előállítás, kémiai tulajdonság Aminosavak Aminosavaknak nevezzük azokat a karbonsavakat, amelyekben a szénlánc egy vagy több hidrogénjét amino (NH 2 ) csoportra

Részletesebben

Az élő anyag szerkezeti egységei: víz, nukleinsavak, fehérjék. elrendeződés, rend, rendszer, periodikus ismétlődés

Az élő anyag szerkezeti egységei: víz, nukleinsavak, fehérjék. elrendeződés, rend, rendszer, periodikus ismétlődés Az élő anyag szerkezeti egységei: víz, nukleinsavak, fehérjék Agócs Gergely 2013. december 3. kedd 10:00 11:40 1. Mit értünk élő anyag alatt? Az élő szervezetet felépítő anyagok. Az anyag azonban nem csupán

Részletesebben

Aminosavak, peptidek, fehérjék

Aminosavak, peptidek, fehérjék Aminosavak, peptidek, fehérjék Az aminosavak a fehérjék építőkövei. A fehérjék felépítésében mindössze 20- féle aminosav vesz részt. Ezek általános képlete: Az aminosavakban, mint arra nevük is utal van

Részletesebben

A szénhidrátok lebomlása

A szénhidrátok lebomlása A disszimiláció Szerk.: Vizkievicz András A disszimiláció, vagy lebontás az autotróf, ill. a heterotróf élőlényekben lényegében azonos módon zajlik. A disszimilációs - katabolikus - folyamatok mindig valamilyen

Részletesebben

(11) Lajstromszám: E 007 952 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

(11) Lajstromszám: E 007 952 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA !HU00000792T2! (19) HU (11) Lajstromszám: E 007 92 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 04 73892 (22) A bejelentés napja:

Részletesebben

A fehérjék szerkezete és az azt meghatározó kölcsönhatások

A fehérjék szerkezete és az azt meghatározó kölcsönhatások A fehérjék szerkezete és az azt meghatározó kölcsönhatások 1. A fehérjék szerepe az élõlényekben 2. A fehérjék szerkezetének szintjei 3. A fehérjék konformációs stabilitásáért felelõs kölcsönhatások 4.

Részletesebben

Szerkesztette: Vizkievicz András

Szerkesztette: Vizkievicz András Fehérjék A fehérjék - proteinek - az élő szervezetek számára a legfontosabb vegyületek. Az élet bármilyen megnyilvánulási formája fehérjékkel kapcsolatos. A sejtek szárazanyagának minimum 50 %-át adják.

Részletesebben

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk.

A nukleinsavak polimer vegyületek. Mint polimerek, monomerekből épülnek fel, melyeket nukleotidoknak nevezünk. Nukleinsavak Szerkesztette: Vizkievicz András A nukleinsavakat először a sejtek magjából sikerült tiszta állapotban kivonni. Innen a név: nucleus = mag (lat.), a sav a kémhatásukra utal. Azonban nukleinsavak

Részletesebben

9. Előadás Fehérjék Előzmények Peptidkémia Analitikai kémia Protein kémia 1901 E.Fischer : Gly-Gly 1923 F. Pregl : Mikroanalitika 1952 Stein and Moore : Aminosav analizis 1932 Bergman és Zervas : Benziloxikarbonil

Részletesebben

BSc záróvizsga tételek Szerves kémia

BSc záróvizsga tételek Szerves kémia BSc záróvizsga tételek Szerves kémia A) tételsor 1. Gyökös mechanizmusú szubsztitúciós és addíciós reakciók. A telített szénhidrogének halogénezése. Allil-helyzetű szubsztitúciós halogénezés. A hidrogén-bromid

Részletesebben

1. Tömegszámváltozás nélkül milyen részecskéket bocsáthatnak ki magukból a bomlékony atommagok?

1. Tömegszámváltozás nélkül milyen részecskéket bocsáthatnak ki magukból a bomlékony atommagok? A 2004/2005. tanévi Országos Középiskolai Tanulmányi Verseny első (iskolai) fordulójának feladatlapja KÉMIÁBÓL I-II. kategória I. FELADATSOR Az I. feladatsorban húsz kérdés szerepel. Minden kérdés után

Részletesebben

Nukleinsavak. Szerkezet, szintézis, funkció

Nukleinsavak. Szerkezet, szintézis, funkció Nukleinsavak Szerkezet, szintézis, funkció Nukleinsavak, nukleotidok, nukleozidok 1869-ben Miescher a sejtmagból egy savas természetű, lúgban oldódó foszfortartalmú anyagot izolált, amit később, eredetére

Részletesebben

A kémiai energia átalakítása a sejtekben

A kémiai energia átalakítása a sejtekben A kémiai energia átalakítása a sejtekben A sejtek olyan mikroszkópikus képződmények amelyek működése egy vegyi gyárhoz hasonlítható. Tehát a sejtek mikroszkópikus vegyi gyárak. Mi mindenben hasonlítanak

Részletesebben

DNS, RNS, Fehérjék. makromolekulák biofizikája. Biológiai makromolekulák. A makromolekulák TÖMEG szerinti mennyisége a sejtben NAGY

DNS, RNS, Fehérjék. makromolekulák biofizikája. Biológiai makromolekulák. A makromolekulák TÖMEG szerinti mennyisége a sejtben NAGY makromolekulák biofizikája DNS, RNS, Fehérjék Kellermayer Miklós Tér Méret, alak, lokális és globális szerkezet Idő Fluktuációk, szerkezetváltozások, gombolyodás Kölcsönhatások Belső és külső kölcsöhatások,

Részletesebben

A tejfehérje és a fehérjeellátás

A tejfehérje és a fehérjeellátás A tejfehérje A tejfehérje és a fehérjeellátás Fejlődő országok: a lakosság 20 30%-a hiányosan ellátott fehérjével. Fejlett ipari országok: fehérje túlfogyasztás. Az emberiség éves fehérjeszükséglete: 60

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 12 KRISTÁLYkÉMIA XII. KÖTÉsTÍPUsOK A KRIsTÁLYOKBAN 1. KÉMIAI KÖTÉsEK Valamennyi kötéstípus az atommag és az elektronok, illetve az elektronok egymás közötti

Részletesebben

1. Az élő szervezetek felépítése és az életfolyamatok 17

1. Az élő szervezetek felépítése és az életfolyamatok 17 Élődi Pál BIOKÉMIA vomo; Akadémiai Kiadó, Budapest 1980 Tartalom Bevezetés 1. Az élő szervezetek felépítése és az életfolyamatok 17 Mi jellemző az élőre? 17. Biogén elemek 20. Biomolekulák 23. A víz 26.

Részletesebben

Aminosavak, peptidek, fehérjék. Béres Csilla

Aminosavak, peptidek, fehérjék. Béres Csilla Aminosavak, peptidek, fehérjék Béres Csilla Aminosavak Az aminosavak (más néven aminokarbonsavak) olyan szerves vegyületek, amelyek molekulájában aminocsoport (- NH 2 ) és karboxilcsoport (-COOH) egyaránt

Részletesebben

TAKARMÁNYOZÁSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010

TAKARMÁNYOZÁSTAN. Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 TAKARMÁNYOZÁSTAN Az Agrármérnöki MSc szak tananyagfejlesztése TÁMOP-4.1.2-08/1/A-2009-0010 Takarmányok fehérjetartalma Az állati szervezet létfontosságú vegyületei fehérje természetűek Az állati termékek

Részletesebben

Polikondenzációs termékek

Polikondenzációs termékek Polikondenzációs termékek 4. hét Kötı és ragasztó anyagok aminoplasztok (UF, MF, UMF) fenoplasztok (PF) poliamidok (PA) szilikonok (SI) Felületkezelı anyagok poliészterek (alkidgyanták) poliamidok (PA)

Részletesebben

Táplálkozási ismeretek. Fehérjék. fehérjéinek és egyéb. amelyeket

Táplálkozási ismeretek. Fehérjék. fehérjéinek és egyéb. amelyeket Táplálkozási ismeretek haladóknak I. Az előző három fejezetben megismerkedtünk az alapokkal (táplálék-piramis, alapanyag-csere, napi energiaszükséglet, tápanyagok energiatartalma, naponta szükséges fehérje,

Részletesebben

3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások)

3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3. Sejtalkotó molekulák III. Fehérjék, enzimműködés, fehérjeszintézis (transzkripció, transzláció, poszt szintetikus módosítások) 3.1 Fehérjék, enzimek A genetikai információ egyik fő manifesztálódása

Részletesebben

3. Aminosavak gyártása

3. Aminosavak gyártása 3. Aminosavak gyártása Előállításuk Fehérje-hidrolizátumokból: cisztein, leucin, aszparaginsav, tirozin, glutaminsav Kémiai szintézissel: metionin, glicin, alanin, triptofán (reszolválás szükséges) Biotechnológiai

Részletesebben

Fehérjeszerkezet, fehérjetekeredés

Fehérjeszerkezet, fehérjetekeredés Fehérjeszerkezet, fehérjetekeredés A fehérjeszerkezet szintjei A fehérjetekeredés elmélete: Anfinsen kísérlet Levinthal paradoxon A feltekeredés tölcsér elmélet 2014.11.05. Aminosavak és fehérjeszerkezet

Részletesebben

A fehérjék hierarchikus szerkezete

A fehérjék hierarchikus szerkezete Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék

Részletesebben

Mária. A pirimidin-nukleotidok. nukleotidok anyagcseréje

Mária. A pirimidin-nukleotidok. nukleotidok anyagcseréje Prof.. Sasvári Mária A pirimidin-nukleotidok nukleotidok anyagcseréje 1 A nukleobázisok szerkezete Nitrogéntartalmú, heterociklusos vegyületek; szubsztituált purin- és pirimidin-származékok purin Adenin

Részletesebben

A szénhidrátok lebomlása

A szénhidrátok lebomlása A disszimiláció Szerk.: Vizkievicz András A disszimiláció, vagy lebontás az autotróf, ill. a heterotróf élőlényekben lényegében azonos módon zajlik. A disszimilációs - katabolikus - folyamatok mindig valamilyen

Részletesebben

Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete

Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Peptid- és fehérjék másodlagos-, harmadlagos- és negyedleges szerkezete Polipeptidek térszerkezete Tipikus (rendezett) konformerek em tipikus (rendezetlen) konformerek Periodikus vagy homokonformerek Aperiodikus

Részletesebben

FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa. Bay Péter

FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa. Bay Péter FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa Bay Péter Fehérjeszintézis és poszttranszlációs módosítások A kódszótár A riboszóma szerkezete A fehérjeszintézis (transzláció)

Részletesebben

FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa. Gergely Pál 2009

FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa. Gergely Pál 2009 FEHÉRJESZINTÉZIS: a transzláció mechanizmusa és a polipeptidlánc további sorsa Gergely Pál 2009 Fehérjeszintézis és poszttranszlációs módosítások A kódszótár A riboszóma szerkezete A fehérjeszintézis (transzláció)

Részletesebben

Bioinformatika 2 5.. előad

Bioinformatika 2 5.. előad 5.. előad adás Prof. Poppe László BME Szerves Kémia és Technológia Tsz. Bioinformatika proteomika Előadás és gyakorlat 2009. 03. 21. Fehérje térszerkezet t megjelenítése A fehérjék meglehetősen összetett

Részletesebben

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai

A tananyag felépítése: A BIOLÓGIA ALAPJAI. I. Prokarióták és eukarióták. Az eukarióta sejt. Pécs Miklós: A biológia alapjai A BIOLÓGIA ALAPJAI A tananyag felépítése: Környezetmérnök és műszaki menedzser hallgatók számára Előadó: 2 + 0 + 0 óra, félévközi számonkérés 3 ZH: október 3, november 5, december 5 dr. Pécs Miklós egyetemi

Részletesebben

BIOLÓGIA VERSENY 10. osztály 2016. február 20.

BIOLÓGIA VERSENY 10. osztály 2016. február 20. BIOLÓGIA VERSENY 10. osztály 2016. február 20. Kód Elérhető pontszám: 100 Elért pontszám: I. Definíció (2x1 = 2 pont): a) Mikroszkopikus méretű szilárd részecskék aktív bekebelezése b) Molekula, a sejt

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2011/2012. tanév. Kémia II. kategória 2. forduló. Megoldások

Országos Középiskolai Tanulmányi Verseny 2011/2012. tanév. Kémia II. kategória 2. forduló. Megoldások ktatási Hivatal rszágos Középiskolai Tanulmányi Verseny 011/01. tanév Kémia II. kategória. forduló Megoldások I. feladatsor 1. D 5. A 9. B 1. D. B 6. C 10. B 14. A. C 7. A 11. E 4. A 8. A 1. D 14 pont

Részletesebben

Fehérjeszerkezet, és tekeredés. Futó Kinga

Fehérjeszerkezet, és tekeredés. Futó Kinga Fehérjeszerkezet, és tekeredés Futó Kinga Polimerek Polimer: hasonló alegységekből (monomer) felépülő makromolekulák Alegységek száma: tipikusan 10 2-10 4 Titin: 3,435*10 4 aminosav C 132983 H 211861 N

Részletesebben

A biokémia alapjai. Typotex Kiadó. Wunderlich Lívius Szarka András

A biokémia alapjai. Typotex Kiadó. Wunderlich Lívius Szarka András A biokémia alapjai Wunderlich Lívius Szarka András Összefoglaló: A jegyzet elsősorban egészségügyi mérnök MSc. hallgatók részére íródott, de hasznos segítség lehet biomérnök és vegyészmérnök hallgatók

Részletesebben

Az enzimek katalitikus aktivitású fehérjék. Jellemzőik: bonyolult szerkezet, nagy molekulatömeg, kolloidális sajátságok, alakváltozás, polaritás.

Az enzimek katalitikus aktivitású fehérjék. Jellemzőik: bonyolult szerkezet, nagy molekulatömeg, kolloidális sajátságok, alakváltozás, polaritás. Enzimek Az enzimek katalitikus aktivitású fehérjék Jellemzőik: bonyolult szerkezet, nagy molekulatömeg, kolloidális sajátságok, alakváltozás, polaritás. Az enzim lehet: csak fehérje: Ribonukleáz A, lizozim,

Részletesebben

Kollokviumi vizsgakérdések biokémiából humánkineziológia levelező (BSc) 2015

Kollokviumi vizsgakérdések biokémiából humánkineziológia levelező (BSc) 2015 Kollokviumi vizsgakérdések biokémiából humánkineziológia levelező (BSc) 2015 A kérdés 1. A sejtről általában, a szervetlen alkotórészeiről, a vízről részletesen. 2. A sejtről általában, a szervetlen alkotórészeiről,

Részletesebben

DER (Felületén riboszómák találhatók) Feladata a biológiai fehérjeszintézis Riboszómák. Az endoplazmatikus membránrendszer. A kódszótár.

DER (Felületén riboszómák találhatók) Feladata a biológiai fehérjeszintézis Riboszómák. Az endoplazmatikus membránrendszer. A kódszótár. Az endoplazmatikus membránrendszer Részei: DER /durva (szemcsés) endoplazmatikus retikulum/ SER /sima felszínű endoplazmatikus retikulum/ Golgi készülék Lizoszómák Peroxiszómák Szekréciós granulumok (váladékszemcsék)

Részletesebben

Aminosavak és aminok meghatározása biológiai és természetes mintákban, HPLC eljárással

Aminosavak és aminok meghatározása biológiai és természetes mintákban, HPLC eljárással Aminosavak és aminok meghatározása biológiai és természetes mintákban, HPLC eljárással Doktori értekezés Kőrös Ágnes Semmelweis Egyetem Gyógyszertudományok Doktori Iskola Témavezető: Perlné Dr. Molnár

Részletesebben

Citrátkör, terminális oxidáció, oxidatív foszforiláció

Citrátkör, terminális oxidáció, oxidatív foszforiláció Citrátkör, terminális oxidáció, oxidatív foszforiláció A citrátkör jelentősége tápanyagok oxidációjának közös szakasza anyag- és energiaforgalom központja sejtek anyagcseréjében elosztórendszerként működik:

Részletesebben

A replikáció mechanizmusa

A replikáció mechanizmusa Az öröklődés molekuláris alapjai A DNS megkettőződése, a replikáció Szerk.: Vizkievicz András A DNS-molekula az élőlények örökítő anyaga, kódolt formában tartalmazza mindazon információkat, amelyek a sejt,

Részletesebben

Fehérjék. Készítette: Friedrichné Irmai Tünde

Fehérjék. Készítette: Friedrichné Irmai Tünde Fehérjék Készítette: Friedrichné Irmai Tünde http://www.youtube.com/watch?v=haee7lnx i2u http://videoklinika.hu/video/tarnai_tejsavo http://shop.biotechusashop.hu/nitro_gold_pr o_enzy_fusion 2200_g_zsak_394

Részletesebben

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag

NUKLEINSAVAK. Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag NUKLEINSAVAK Nukleinsav: az élő szervezetek sejtmagvában és a citoplazmában található, az átöröklésben szerepet játszó, nagy molekulájú anyag RNS = Ribonukleinsav DNS = Dezoxi-ribonukleinsav A nukleinsavak

Részletesebben

Aminosavak, peptidek

Aminosavak, peptidek Aminosavak, peptidek Aminosavak Neutrális aminosavak + H 3 N C O O - C H + H 3 N + H 3 N COO- COO- C H CH H CH 3 CH 3 CH 3 H 3 N glicin (Gly) alanin (Ala) valin (Val) C O O - + + C C H 2 H H 3 N H COO-

Részletesebben

1. jelentésük. Nevüket az alkotó szén, hidrogén, oxigén 1 : 2 : 1 arányából hajdan elképzelt képletről [C n (H 2 O) m ] kapták.

1. jelentésük. Nevüket az alkotó szén, hidrogén, oxigén 1 : 2 : 1 arányából hajdan elképzelt képletről [C n (H 2 O) m ] kapták. Összefoglalás II. Szénhidrátok 1. jelentésük Nevüket az alkotó szén, hidrogén, oxigén 1 : 2 : 1 arányából hajdan elképzelt képletről [C n (H 2 O) m ] kapták. Ha ezeket az anyagokat hevítjük vizet vesztenek

Részletesebben

Szerves és bioorganikus kémia

Szerves és bioorganikus kémia Gergely Pál - Penke Botond - Tóth Gyula Szerves és bioorganikus kémia egyetemi tankönyv harmadik, átdolgozott kiadás Semmelweis Kiadó Budapest, 2000 ti A Részletes tartalom Az O lv asó h o z...13 Szénvegyületek

Részletesebben

A fehérjék hierarchikus szerkezete. Szerkezeti hierarchia. A fehérjék építőkövei az aminosavak. Fehérjék felosztása

A fehérjék hierarchikus szerkezete. Szerkezeti hierarchia. A fehérjék építőkövei az aminosavak. Fehérjék felosztása Fehérjék felosztása A fehérjék hierarchikus szerkezete Smeller László Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézet Biológiai funkció alapján Enzimek (pl.: tripszin, citokróm-c ) Transzportfehérjék

Részletesebben

Kémia. Tantárgyi programjai és követelményei A/2. változat

Kémia. Tantárgyi programjai és követelményei A/2. változat 5. sz. melléklet Kémia Tantárgyi programjai és követelményei A/2. változat Az 51/2012. (XII. 21.) számú EMMI rendelethez a 6/2014. (I.29.) EMMI rendelet 3. mellékleteként kiadott és a 34/2014 (IV. 29)

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

KÉMIA 9-12. évfolyam (Esti tagozat)

KÉMIA 9-12. évfolyam (Esti tagozat) KÉMIA 9-12. évfolyam (Esti tagozat) A kémiai alapműveltség az anyagi világ megismerésének és megértésének egyik fontos eszköze. A kémia tanulása olyan folyamat, amely tartalmain és tevékenységein keresztül

Részletesebben

CzB 2010. Élettan: a sejt

CzB 2010. Élettan: a sejt CzB 2010. Élettan: a sejt Sejt - az élet alapvető egysége Prokaryota -egysejtű -nincs sejtmag -nincsenek sejtszervecskék -DNS = egy gyűrű - pl., bactériumok Eukaryota -egy-/többsejtű -sejmag membránnal

Részletesebben

Az AS nitrogénjének eltávolítása

Az AS nitrogénjének eltávolítása AMINOSAV ANYAGCSERE Az AS nitrogénjének eltávolítása 1. Hidrolízis (NH 3 eltávolítás az Asn és Gln amid csoportjából) 2. Transzamináció (amino és oxo csoport cseréje; AS és ketosav párok, transzamináz

Részletesebben

AquaWorld Resort, Budapest 2017 április

AquaWorld Resort, Budapest 2017 április AquaWorld Resort, Budapest 2017 április 27-28. História Hungalimentaria 2015. április 22-23. AquaWorld AquaWorld Resort, Budapest 2017 április 27-28. 20 év Hungalimentaria 2017. április 26-27. Budapest

Részletesebben

DOKTORI (Ph D) ÉRTEKEZÉS

DOKTORI (Ph D) ÉRTEKEZÉS DOKTORI (Ph D) ÉRTEKEZÉS NÉMETH ZSOLT ISTVÁN Nyugat-Magyarországi Egyetem Sopron 2002 2 A FORMALDEHID ÉS TERMÉSZETES GENERÁTORAI, MINT A KÖRNYEZETI HATÁSOK JELZİ MOLEKULÁI A CSERTÖLGY ONTOGENEZISÉNEK KORAI

Részletesebben

a III. kategória (11-12. évfolyam) feladatlapja

a III. kategória (11-12. évfolyam) feladatlapja 2009/2010. tanév I. forduló a III. kategória (11-12. évfolyam) feladatlapja Versenyző neve:... évfolyama: Iskolája : Település : Felkészítő szaktanár neve:.. Megoldási útmutató A verseny feladatait nyolc

Részletesebben

Élettan. előadás tárgykód: bf1c1b10 ELTE TTK, fizika BSc félév: 2015/2016., I. időpont: csütörtök, 8:15 9:45

Élettan. előadás tárgykód: bf1c1b10 ELTE TTK, fizika BSc félév: 2015/2016., I. időpont: csütörtök, 8:15 9:45 Élettan előadás tárgykód: bf1c1b10 ELTE TTK, fizika BSc félév: 2015/2016., I. időpont: csütörtök, 8:15 9:45 oktató: Dr. Tóth Attila, adjunktus ELTE TTK Biológiai Intézet, Élettani és Neurobiológiai tanszék

Részletesebben

Biológia 3. zh. A gyenge sav típusú molekulák mozgása a szervezetben. Gyengesav transzport. A glükuronsavval konjugált molekulákat a vese kiválasztja.

Biológia 3. zh. A gyenge sav típusú molekulák mozgása a szervezetben. Gyengesav transzport. A glükuronsavval konjugált molekulákat a vese kiválasztja. Biológia 3. zh Az izomösszehúzódás szakaszai, molekuláris mechanizmusa, az izomösszehúzódás során milyen molekula deformálódik és hogyan? Minden izomrosthoz kapcsolódik kegy szinapszis, ez az úgynevezett

Részletesebben

hosszú szénláncú, telített vagy telítetlen karbonsavak palmitinsav (hexadekánsav) olajsav (cisz-9 oktadecénsav) néhány, állatokban előforduló zsírsav

hosszú szénláncú, telített vagy telítetlen karbonsavak palmitinsav (hexadekánsav) olajsav (cisz-9 oktadecénsav) néhány, állatokban előforduló zsírsav Lipidek: zsírsavak hosszú szénláncú, telített vagy telítetlen karbonsavak palmitinsav (hexadekánsav) sztearinsav (oktadekánsav) olajsav (cisz-9 oktadecénsav) Szénatomszám Kettős kötések száma néhány, állatokban

Részletesebben

6. A kémiai kötés fajtái

6. A kémiai kötés fajtái 6. A kémiai kötés fajtái 6.1. A kémiai kötés egyszerű, Lewis féle elmélete, kovalens kötés Láttuk, hogy VB elméletben a kötés létrejöttéért az azonos térrészbe kerülő párosítatlan elektronok a felelősek.

Részletesebben

IPARI ENZIMEK 2. Proteázok. Alkalikus proteázok. Pécs Miklós: Biotermék technológia 1. 6. fejezet: Ipari enzimek 2.

IPARI ENZIMEK 2. Proteázok. Alkalikus proteázok. Pécs Miklós: Biotermék technológia 1. 6. fejezet: Ipari enzimek 2. IPARI ENZIMEK 2 Proteázok A proteázok az ipari enzimek egyik legfontosabb csoportja (6200 t tiszta E/év) Peptid kötéseket bont (létrehoz) (hidrolízis, szintézis) Fehérje lebontás: élelmiszer, tejalvadás,

Részletesebben

Laboratóriumi technikus laboratóriumi technikus 54 524 01 0010 54 02 Drog és toxikológiai

Laboratóriumi technikus laboratóriumi technikus 54 524 01 0010 54 02 Drog és toxikológiai É 049-06/1/3 A 10/007 (II. 7.) SzMM rendelettel módosított 1/006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján.

Részletesebben

Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve)

Házi dolgozat. Minta a házi dolgozat formai és tartalmi követelményeihez. Készítette: (név+osztály) Iskola: (az iskola teljes neve) Házi dolgozat Minta a házi dolgozat formai és tartalmi követelményeihez Készítette: (név+osztály) Iskola: (az iskola teljes neve) Dátum: (aktuális dátum) Tartalom Itt kezdődik a címbeli anyag érdemi kifejtése...

Részletesebben

IX. Szénhidrátok - (Polihidroxi-aldehidek és ketonok)

IX. Szénhidrátok - (Polihidroxi-aldehidek és ketonok) IX Szénhidrátok - (Polihidroxi-aldehidek és ketonok) A szénhidrátok polihidroxi-aldehidek, polihidroxi-ketonok vagy olyan vegyületek, amelyek hidrolízisekor az előbbi vegyületek keletkeznek Növényi és

Részletesebben

Eszközszükséglet: Szükséges anyagok: tojás, NaCl, ammónium-szulfát, réz-szulfát, ólom-acetát, ecetsav, sósav, nátrium-hidroxid, desztillált víz

Eszközszükséglet: Szükséges anyagok: tojás, NaCl, ammónium-szulfát, réz-szulfát, ólom-acetát, ecetsav, sósav, nátrium-hidroxid, desztillált víz A kísérlet, megnevezés, célkitűzései: Fehérjék tulajdonságainak, szerkezetének vizsgálata. Környezeti változások hatásának megfigyelése a fehérjék felépítésében. Eszközszükséglet: Szükséges anyagok: tojás,

Részletesebben

A fehérjék harmadlagos vagy térszerkezete. Még a globuláris fehérjék térszerkezete is sokféle lehet.

A fehérjék harmadlagos vagy térszerkezete. Még a globuláris fehérjék térszerkezete is sokféle lehet. A fehérjék harmadlagos vagy térszerkezete Még a globuláris fehérjék térszerkezete is sokféle lehet. A ribonukleáz redukciója és denaturálódása Chrisian B. Anfinsen A ribonukleáz renaturálódása 1972 obel-díj

Részletesebben

Fehérjék színreakciói

Fehérjék színreakciói A kísérlet, mérés megnevezése, célkitűzései: Fehérjéket felépítő aminosavak és a köztük lévő peptid kötés kimutatása Eszközszükséglet: Szükséges anyagok: tej, burgonya, víz, nátrium-hidroxid-oldat, réz(ii)-szulfát,

Részletesebben

2011.02.21. Royal Jelly (Méhanya-pempő) Első Magyar Apiterápia Konferencia Budapest. Medicus curat, natura sanat.

2011.02.21. Royal Jelly (Méhanya-pempő) Első Magyar Apiterápia Konferencia Budapest. Medicus curat, natura sanat. Első Magyar Apiterápia Konferencia Budapest A Méhanya-pempő összetevői és azok mézben történő feldolgozásának kérdései Dr. Sebők Péter Dietetikus, méhész Pécs Royal Jelly (Méhanya-pempő) Az anya súlya

Részletesebben

Az anyag- és energiaforgalom alapjai

Az anyag- és energiaforgalom alapjai Az anyag- és energiaforgalom alapjai Anyagcsere Tápanyagbevitel a szükségletnek megfelelően - test felépítése - energiaszükséglet fedezete Szénhidrátok, Zsirok, Fehérjék, Nukleinsavak, Munka+hő+raktározás

Részletesebben

A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében. Szigeti Krisztián

A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében. Szigeti Krisztián A Ca 2+ szerepe a tormaperoxidáz enzim aktív szerkezetében Doktori értekezés Szigeti Krisztián Semmelweis Egyetem Gyógyszertudományok Doktori Iskola Témavezető: Hivatalos Bírálók: Szigorlati Bizottság

Részletesebben

Tartalomjegyzék. Szénhidrogének... 1

Tartalomjegyzék. Szénhidrogének... 1 Tartalomjegyzék Szénhidrogének... 1 Alkánok (Parafinok)... 1 A gyökök megnevezése... 2 Az elágazó szénláncú alkánok megnevezése... 3 Az alkánok izomériája... 4 Előállítás... 4 1) Szerves magnéziumvegyületekből...

Részletesebben

Szerkesztette: Vizkievicz András

Szerkesztette: Vizkievicz András Fehérjék A fehérjék - proteinek - az élő szervezetek számára a legfontosabb vegyületek. Az élet bármilyen megnyilvánulási formája fehérjékkel kapcsolatos. A sejtek szárazanyagának minimum 50 %-át adják.

Részletesebben

RÉSZLETEZŐ OKIRAT a NAH /2016 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT a NAH /2016 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT a NAH-1-1400/2016 nyilvántartási számú akkreditált státuszhoz A MEZŐLABOR Szolgáltató és Kereskedelmi Kft. Laboratórium (8500 Pápa, Jókai utca 32.) akkreditált területe: I. Az akkreditált

Részletesebben

Heterociklusos vegyületek

Heterociklusos vegyületek Szerves kémia A gyűrű felépítésében más atom (szénatomon kívül!), ún. HETEROATOM is részt vesz. A gyűrűt alkotó heteroatomként leggyakrabban a nitrogén, oxigén, kén szerepel, (de ismerünk arzént, szilíciumot,

Részletesebben

2. Aminosavak - Treonin

2. Aminosavak - Treonin Az aminosavak felhasználása nátrium-glutamát ízfokozó (Delikát, Vegeta) lizin, metionin, treonin, triptofán takarmány- és élelmiszerkiegészítő aszparaginsav és fenilalanin aszpartám édesítőszer gyártásához

Részletesebben

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI

SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI SZAKÁLL SÁNDOR, ÁsVÁNY- És kőzettan ALAPJAI 11 KRISTÁLYkÉMIA XI. ATOMOK És IONOK 1. AZ ATOM Az atom az anyag legkisebb olyan része, amely még hordozza a kémiai elem jellegzetességeit. Ezért az ásványtanban

Részletesebben

Az elemek szintézise. Környezeti kémia. Elemgyakoriságok az univerzumban Elemgyakoriságok az univerzumban: lineáris ábrázolás

Az elemek szintézise. Környezeti kémia. Elemgyakoriságok az univerzumban Elemgyakoriságok az univerzumban: lineáris ábrázolás Az elemek szintézise Környezeti kémia 2. Előadás A természeti környezet evolúciója Univerzum kialakulása: 13-15 milliárd évvel ezelőtt Ősrobbanás : neutrongáz robbanása neutronok és protonok deutérium-

Részletesebben

A kén kémiai tulajdonágai, fontosabb reakciói és vegyületei

A kén kémiai tulajdonágai, fontosabb reakciói és vegyületei A kén kémiai tulajdonágai, fontosabb reakciói és vegyületei 1. KÉMIAI TULAJDONSÁGOK: Reakciókészsége közönséges hőmérsékleten nem nagy, aktivitása azonban a hőmérséklet emelkedésével nagymértékben fokozódik,

Részletesebben

1. A) Elsőrendű kémiai kötések; kovalens kötés jellemzése, molekulák polaritása

1. A) Elsőrendű kémiai kötések; kovalens kötés jellemzése, molekulák polaritása 1. A) Elsőrendű kémiai kötések; kovalens kötés jellemzése, molekulák polaritása B) Két óraüvegen tejföl található, az egyik lisztezett. A tálcán lévő anyagok segítségével azonosítsa a lisztezett tejfölt!

Részletesebben

Tisztító- és fertőtlenítőszerek

Tisztító- és fertőtlenítőszerek Tisztító- és fertőtlenítőszerek Tisztítószerek A szennyező anyagok eltávolítására felhasznált vegyszerek. Követelmények: hideg, illetve meleg vízben maradéktalanul oldódjék, oldja és lazítsa fel az eltávolítandó

Részletesebben

Zsírsav szintézis. Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P. 2 i

Zsírsav szintézis. Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P. 2 i Zsírsav szintézis Az acetil-coa aktivációja: Acetil-CoA + CO + ATP = Malonil-CoA + ADP + P 2 i A zsírsav szintáz reakciói Acetil-CoA + 7 Malonil-CoA + 14 NADPH + 14 H = Palmitát + 8 CoA-SH + 7 CO 2 + 7

Részletesebben

RÉSZLETEZŐ OKIRAT (2) a NAH /2016 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (2) a NAH /2016 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (2) a NAH-1-1400/2016 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: MEZŐLABOR Szolgáltató és Kereskedelmi Kft. Laboratórium (8500 Pápa, Jókai utca

Részletesebben

VEGYIPARI ALAPISMERETEK

VEGYIPARI ALAPISMERETEK Vegyipari alapismeretek középszint 1411 ÉRETTSÉGI VIZSGA 2016. május 18. VEGYIPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos

Részletesebben