NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL. A tananyag az EFOP pályázat támogatásával készült.
|
|
- József Kelemen
- 5 évvel ezelőtt
- Látták:
Átírás
1 NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL A tananyag az EFOP pályázat támogatásával készült.
2 Neuron helyett neuronháló Neuron reprezentációs erejének növelése: építsünk hálózatot! Klasszikus struktúra: Multilayer feedforward network Minden réteg az alatta lévő rétegtől kapja az inputját A rétegek között full connection : minden neuron minden neuronnal Csak előremutató kapcsolatok Viszonylag ritkán szokás, de: Fully connected helyett ritka ( sparse ) hálót is lehet csinálni Rétegek kihagyása szintén viszonylag könnyen megoldható Visszacsatolt (rekurrens) struktúra is lehetséges, azt viszont jóval bonyolultabb tanítani (ld. recurrent neural networks - később) Ezek főleg időbeli sorozatok modellezésében hasznosak
3 A neuronháló reprezentációs ereje Konvex térrész körbekerítése: 1 rejtett réteg elég A rejtett réteg egyes neuronjai reprezentálnak 1-1 határoló egyenest A kimeneti neuron ÉS műveletet végez: ott jelez, ahol a rejtett neuronok mindegyike jelez Tetszőleges (akár non-konvex, nem összefüggő) térrész megtanulása: 2 rejtett réteg elég Az első rejtett réteg neuronjai egyeneseket húznak A második réteg neuronjai ÉS művelettel konvex térrészeket jelölnek ki A kimeneti neuron VAGY művelettel ezeket non-konvex, nem összefüggő térrészeké is össze tudja kapcsolni Elvben 2 rejtett réteggel minden gyakorlati tanulási feladat megoldható A tetszőleges pontossághoz végtelen sok neuron, végtelen sok tanító adat és tökéletes (globális optimumot adó) tanító algoritmus kellene
4 Többosztályos tanulás Egyetlen neuron 2 osztályt tud csak elválasztani Neuronháló esetén viszont már szóba jön a többosztályos tanulás is Többosztályos osztályozási feladat megoldása neuronhálóval Minden c i osztályhoz egy kimeneti neuront rendelünk Azt várjuk a hálótól, hogy adott példa esetén a helyes osztályhoz rendelt kimeneten egyet adjon, a többin nullát Tanító példák címkéje: 1-of-M kódolású (vagy one-hot-encoded ) vektor M méretű vektor (osztályok száma), benne egyetlen 1-es: Tanítási célfüggvény: maradhat az MSE error Csak összegezni kell az összes kimenetre: Hogyan soroljuk be az aktuális példát? w d D k outputs Arra tanítjuk a hálót, hogy a helyes osztályra 1-et adjon, máshol 0-t Valójában - ha a hiba nem 0 - a sigmoid aktivációs fgv. 0-1 közti értékeket ad vissza Válasszuk a maximális értéket adó kimeneti neuron osztályát! E 1 N t kd o kd 2
5 Többosztályos tanulás a CE hibafüggvénnyel Egy korábbi ábrán szemléltettük, hogy a neuronháló hogyan képes osztályokat elszeparálni (geometriai szemlélet) Most azt látjuk, hogy többosztályos háló esetén egy-egy kimenetünk lesz minden c i osztályhoz És ezek közül a maximális értéket adóra tippelünk Ezt pontosan megfelel a döntéselméleti szemlélet döntési sémájának! De értelmezhetjük-e a háló kimeneteit P(c i x) valószínűségi becslésként? Igen, így a többosztályos háló a döntéselméleti szemléletnek is meg tud felelni, de ehhez az alábbiak kellenek még: Módosítani kell a kimeneti neuronok aktivációs függvényét, hogy a kimenetek összege 1 legyen Módosítani fogjuk a hibafüggvényt is: az MSE hiba helyett az ún. keresztentrópia (cross entropy, CE) hibafüggvényt fogjuk használni
6 Többosztályos tanulás a CE hibafüggvénnyel (2) A kimeneti neuronok értékét P(c i x) becslésként akarjuk értelmezni Ezek együtt egy diszkrét valószínűségi eloszlást adnak meg Az egyes kimenetek értékkészlete [0,1], összegük 1 kell legyen Előbbit teljesíti a sigmoid függvény, de az utóbbit nem A kimeneti neuronokon a sigmoid helyett a softmax aktivációs függvényt fogjuk alkalmazni A kimenetek értéke így garantáltan (0,1) közé esik, és az összegük 1
7 Többosztályos tanulás a CE hibafüggvénnyel (3) A keresztentrópia hibafüggvény: E 1 N w t kd ln o d D k outputs A keresztentrópiát diszkrét eloszlások eltérésének mérésére találták ki Vegyük észre, hogy 1-of-N kódolás esetén t értéke csak 0 vagy 1 lehet, így a célfüggvény az alábbi módon egyszerűsödik: 1 Ez akkor lesz minimális, ha a helyes osztályhoz tartozó kimenet minél inkább 1-hez közelít Mivel a softmax függvény révén a kimenetek össze vannak kötve, ez csak úgy lehetséges, ha az összes többi osztályhoz tartozó kimenet értéke 0-hoz közelít kd w ln o correct d E, N d D
8 Kapcsolat a statisztikai alakfelismeréssel A fenti módosításokkal a háló kimenetei értelmezhetők P(c i x) re adott becslésként, de vajon a tanulás során előálló értékeknek tényleg van közük P(c i x) hez? Bebizonyítható, hogy a korábban leírtaknak megfelelően felépített és tanított háló kimenetei tanítás során P(c i x) valószínűségekhez tartanak! A gyakorlatban nem szabad elfelejteni, hogy ez csak közelítés, a tökéletes modellezéshez végtelen nagy háló, végtelen sok tanító adat és globális optimumot garantáló tanítóalgoritmus kellene A statisztikai alakfelismeréssel, illetve a Bayes döntési szabállyal való összekapcsolás bizonyos alkalmazási területeken jelentősen megnövelte a neuronhálók iránti bizalmat
9 A neuronháló tanítása A hibafüggvények által definiáltuk, hogy hogyan mérjük a háló hibáját egy adott mintahalmazon A neuronháló úgy tekinthető, mint egyetlen nagy függvény, amelynek változói a súlyok A tanítás során a súlyokat akarjuk úgy beállítani, hogy a tanító példahalmazon a háló minél kisebb hibát adjon Ez egy sokváltozós optimalizálási feladat Sokféle optimalizáló algoritmust lehetne használni a tanuláshoz A legegyszerűbb és leggyakrabban használt megoldás a korábban már látott gradient descent algoritmus Neuronhálók esetében ez hiba-visszaterjesztéses (backpropagation) algoritmus néven lett közismert
10 A backpropagation algoritmus A hegymászó ill. gradent descent algoritmus változata neuronhálók esetére A derivált alapján fogjuk eldönteni, hogy merre lépjünk a hibafelületen ( gradiens módszer ) legmeredekebb csökkentés elve: a gradiensvektorral ellentétes irányba fogunk lépni Véletlenszerű inicializálásból indulunk A lépésközt heurisztikusan állítjuk be ( learn rate ) ld. később Iteratív (addig lépkedünk, amíg el nem akadunk) Csak lokális optimum megtalálását garantálja
11 A backpropagation algoritmus egyetlen neuron esetére (emlékeztető) Az MSE hibafüggvény egyetlen neuronra: E o a w t o d d 1/(1 e i 1 2 d d N d D w x i i a d ) - hibafüggvé ny - aktivációs függvény - lineárisaktiváció Ezeket egymásba ágyazva kapjuk meg, hogyan függ E(w) egy konkrét w j -től Deriválás: ezek deriváltjai láncszabállyal összerakva E w i 1 N d D 2 t o o 1 o d d d d x id Súlyok frissítése minden lépésben: Ahol η egy kis pozitív kontans ( learn rate ) w i E wi w i
12 A backpropagation algoritmus általánosan Általános eset: több kimenő neuron, többrétegű hálózat E 1 2N w d D k outputs t kd o kd Ugyanúgy a láncszabályt kell alkalmazni, csak több lépésen keresztül (a felső neuronok bemenete nem x, hanem az alatta levő réteg kimenete) (az egyszerűség kedvéért a D-re összegzést kihagyjuk a levezetésből) A deriváltat (röviden: hibát ) először levezetjük a kimeneti rétegre 2 Majd rétegről rétegre terjesztjük vissza (backpropagation!) az alsóbb rétegekre Értelmezés: adott rejtett neuron hibája az ő kimenetét felhasználó neuronok hibájának súlyozott összegével arányos Ahol a súlyok megegyeznek az adott kapcsolat súlyával
13 A backpropagation algoritmus - Összegzés Összegezve, a backpropagation tanítás fő lépései: Inputtól az output felé haladva kiszámoljuk az egyes neuronok kimeneteit a D tanítópéldákon A hibafüggvényhez kell tudnunk a kimeneteket! Az outputtól az input felé haladva kiszámoljuk az egyes neuronok hibáit Frissítjük a súlyokat: Megjegyzés: a hiba-visszaterjesztés megengedi a ritka ( sparse ) hálózatot, vagy a rétegek közötti ugrást tartalmazó hálózatot is. Az egyetlen lényeges megkötés a hálózati struktúrára, hogy ne legyen visszacsatolás (kör) Ha nincs, akkor topológiai rendezés sorrendjében lehet frissíteni Ha van, akkor visszacsatolt (rekurrens) hálózatot kapunk ezek tanítása jóval komplikáltabb
14 Sztochasztikus backpropagation A hibafüggvényeink a hibát az összes tanítópéldára átlagolják: E 1 2N w d D k outputs t kd o kd Ennek kiértékeléséhez az összes példát össze kell várnunk. Ez kizárja pl. az online tanulást On-line backpropagation: a hibafüggvényből kihagyjuk a D-re összegzést. Ehelyett minden egyes beérkező példán elvégezzük a kiértékelést, majd rögtön a hibaszámolást és súlyfrissítést is Semi-batch backpropagation: nem egy, de nem is az összes példa alapján frissítünk, hanem egy blokknyi ( batch ) adat alapján Tulajdonképpen minden frissítéskor kicsit más hibafüggvényt optimalizálunk! (az adott batch-ből számoltat) Ez nem ront, hanem javít: kis véletlenszerűséget visz a rendszerbe csökkenti a lokális optimumban való elakadás esélyét Innen a név: sztochasztikus gradient descent (SGD) 2
15 Semi-batch backpropagation A gyakorlatban mindig ezt használjuk A batch alapú tanítás előnyei: Csökken a lokális optimumban elakadás kockázata Gyorsabb konvergencia Gyorsabb végrehajtás (nem kell az összes adatot feldolgozni egyszerre) Egyszerűbb implementáció (egy batch-nyi adat befér a memóriába) Lehetővé teszi a (szemi) online tanítást Tipikus batch-méret: példa Mint a teljes adathalmazon tanításnál, itt is általában többször végigmegyünk az összes adaton Egy tanítási kör az adatokon angolul: egy training epoch
16 Backpropagation GPU-n Miért hatékonyabb a neuronhálókat GPU-n tanítani? Egy neuron aktivációjának n kiszámítása: a w x i i i 0 =vektor-vektor szorzás De az adott réteg neuronjainak aktivációját párhuzamosan is kiszámolhatjuk! =mátrix-vektor szorzás De ugyanezt párhuzamosan elvégezhetjük egy batch-nyi input vektorra is! =mátrix-mátrix szorzás A GPU-k a szorzatmátrix egyes celláinak értékét párhuzamosan tudják számolni szer gyorsabb, mint ha egyetlen CPU-n végeznénk
17 Tanítási tippek és trükkök A backpropagation algoritmus megadja a matematikai alapot a neuronhálók betanításához Viszont csak lokális optimum megtalálását garantálja, így jó a tanítási eredmény elérése sajnos különféle gyakorlati trükkökön is múlik Ezek többnyire inkább csak heurisztikák, nem precízen megalapozott elvek A legfontosabb gyakorlati fortélyokat mutatjuk be a továbbiakban Adatok normalizálása, randomizálása Súlyok inicializálása A learning rate hangolása
18 Adatok randomizálása Semi-batch tanításnál sokat segíthet, ha az adatvektorokat véletlenszerű sorrendbe rakjuk Nélkülözhetetlen, ha pl. a példák osztálycímkék szerint nincsenek jól összekeverve (pl. először az 1. osztály példái, aztán a 2. osztály, stb.) Akkor is segít, ha az osztálycímkék ugyan keverednek, de valami más szempont szerint nem véletlenszerű a példák sorrendje (pl. beszédfelismerés: a felvételek beszélők szerint sorban jönnek) Ugyanis mindig az aktuális batch hibafüggvényére optimalizálunk, így az újabb adatok nagyobb hangsúlyt kapnak, mint a régiek a rendszer rátanul a későbbi adatok speciális tulajdonságára, a korábbiakat elfelejti Az adatokon többször végig kell menni elvileg érdemes minden epoch előtt újra randomizálni az adatokat Sajnos a randomizálás nem egyszerű: ha a memóriában csináljuk, akkor lassul az adatelérés, ha fájlban, akkor még macerásabb.
19 Adatok normalizálása (standardizálása) Tanítás előtt érdemes az egyes jellemzők értéktartományát egységes skálára hozni Láz Ízületi_fájdalom Köhögés Influenzás 38,2 Van Nincs Igen 36,7 Van Száraz Nem 41,2 Nincs Nyákos Igen 38,5 Van Száraz Igen 37,2 Nincs Nincs Nem min=-1, max=1: nem annyira jó ötlet, egyetlen kilógó adat ( outlier ) hazavághatja Szokásos megoldás: az egyes jellemzők átlaga 0, szórása 1 legyen Miért segít az egységes skála? A súlyokat egységes tartományban inicializáljuk. Ha a jellemzők más-más skálára esnének, egyes jellemzők elnyomnának másokat az aktivációban: n a i 0 w i x i
20 Adatok normalizálása (2) Miért 0 környékére normalizálunk? Idézzük fel a sigmoid aktivációs fügvényt: n Ha a w x i i túl nagy van túl kicsi, akkor a sigmoid lapos i 0 részére esik itt a derivált lényegében 0, a rendszer nem fog tanulni ( elhaló gradiens problémája) Erre még visszatérünk az újabb aktivációs függvények, illetve a regularizációs módszerek bemutatásakor
21 Súlyok inicializálása A súlyokat kis random értékekkel inicializáljuk Pl. [-0.1, 0.1] közötti véletlenszámokkal Különösen mély (sok rejtett réteget tartalmazó) hálók esetén fontos, hogy hogyan inicializálunk A jó inicializálás segíti a hiba visszaterjesztését a legalsó rétegig Különböző stratégiák léteznek az inicializálásra, ez a használt aktivációs függvénytől is függhet Pl: a súlyok legyenek Gauss-eloszlású véletlenszámok 0 várható értékkel és 1/inputszám szórással A magyarázat ugyanaz, mint az input normalizálásánál: szeretnénk az szorzatot egységesen ugyanabban a tartományban tartani n a i 0 w i x i
22 A learning rate beállítása A learning rate értékét általában tapasztalat alapján lőjük be Bár vannak automatikus optimalizálási próbálkozások is Túl nagy learn rate: nincs tanulás, ugrálás a hibafelületen Túl kicsi learn rate: lassú tanulás, könnyebb elakadás lokális optimumban Szokásos általános heurisztika: Indítsunk olyan nagy learn rate-tel, amekkorával csak lehet (van tanulás) Egy idő után (ha már nem csökken a hiba) kezdjük el csökkenteni (pl. felezgetni)
23 A learning rate beállítása (2) A túltanulás elkerülése érdekében érdemes a hiba alkaulását nem csak a tanítóadatokon, hanem egy független validációs halmazon is figyelni A learning rate frissítése validációs példahalmaz segítségével A tanítás előtt tegyük féle az adatok egy részét validációs halmaz Valamennyi tanítási lépés (pl. 1 epoch) után értékeljük ki a hibát a validációs halmazon Ha az előző kiértékeléshez képest a hiba csökkent: újabb iteráció ha nőtt, vagy csökkenése kisebb, mint egy küszöb learning rate felezése Teljes leállás: ha a learning rate lement egy küszöb alá
24 KÖSZÖNÖM A FIGYELMET! A tananyag az EFOP pályázat támogatásával készült.
KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült.
KONVOLÚCIÓS NEURONHÁLÓK A tananyag az EFOP-3.5.1-16-2017-00004 pályázat támogatásával készült. 1. motiváció A klasszikus neuronháló struktúra a fully connected háló Két réteg között minden neuron kapcsolódik
Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.
: Intelligens Rendszerek Gyakorlata Neurális hálózatok I. dr. Kutor László http://mobil.nik.bmf.hu/tantargyak/ir2.html IRG 3/1 Trend osztályozás Pnndemo.exe IRG 3/2 Hangulat azonosítás Happy.exe IRG 3/3
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök
Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök http://smartlab.tmit.bme.hu Deep Learning Híradó Hírek az elmúlt 168 órából Deep Learning Híradó Google
Gépi tanulás a gyakorlatban. Lineáris regresszió
Gépi tanulás a gyakorlatban Lineáris regresszió Lineáris Regresszió Legyen adott egy tanuló adatbázis: Rendelkezésünkre áll egy olyan előfeldolgozott adathalmaz, aminek sorai az egyes ingatlanokat írják
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)
Gépi tanulás Hány tanítómintára van szükség? VKH Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Induktív tanulás A tanítás folyamata: Kiinduló
Visszacsatolt (mély) neurális hálózatok
Visszacsatolt (mély) neurális hálózatok Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Sima előrecsatolt neurális hálózat Visszacsatolt hálózatok kimenet rejtett rétegek bemenet Pl.: kép feliratozás,
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla
Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék Neurális hálók Előadó: Előadás anyaga: Hullám Gábor Pataki Béla Dobrowiecki Tadeusz BME I.E. 414, 463-26-79
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.
Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017. Vizuális feldolgozórendszerek feladatai Mesterséges intelligencia és idegtudomány Mesterséges intelligencia és idegtudomány Párhuzamos problémák
Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok
Zrínyi Miklós Gimnázium Művészet és tudomány napja Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok 10/9/2009 Dr. Viharos Zsolt János Elsősorban volt Zrínyis diák Tudományos főmunkatárs
Megerősítéses tanulás 7. előadás
Megerősítéses tanulás 7. előadás 1 Ismétlés: TD becslés s t -ben stratégia szerint lépek! a t, r t, s t+1 TD becslés: tulajdonképpen ezt mintavételezzük: 2 Akcióértékelő függvény számolása TD-vel még mindig
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Konvolúciós neurális hálózatok (CNN)
Konvolúciós neurális hálózatok (CNN) Konvolúció Jelfeldolgozásban: Diszkrét jelek esetén diszkrét konvolúció: Képfeldolgozásban 2D konvolúció (szűrők): Konvolúciós neurális hálózat Konvolúciós réteg Kép,
Hibadetektáló rendszer légtechnikai berendezések számára
Hibadetektáló rendszer légtechnikai berendezések számára Tudományos Diákköri Konferencia A feladatunk Légtechnikai berendezések Monitorozás Hibadetektálás Újrataníthatóság A megvalósítás Mozgásérzékelő
Megerősítéses tanulás 9. előadás
Megerősítéses tanulás 9. előadás 1 Backgammon (vagy Ostábla) 2 3 TD-Gammon 0.0 TD() tanulás (azaz időbeli differencia-módszer felelősségnyomokkal) függvényapproximátor: neuronháló 40 rejtett (belső) neuron
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén
Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén Dombi József Szegedi Tudományegyetem Bevezetés - ID3 (Iterative Dichotomiser 3) Az ID algoritmusok egy elemhalmaz felhasználásával
Neurális hálózatok bemutató
Neurális hálózatok bemutató Füvesi Viktor Miskolci Egyetem Alkalmazott Földtudományi Kutatóintézet Miért? Vannak feladatok amelyeket az agy gyorsabban hajt végre mint a konvencionális számítógépek. Pl.:
Neurális hálózatok.... a gyakorlatban
Neurális hálózatok... a gyakorlatban Java NNS Az SNNS Javás változata SNNS: Stuttgart Neural Network Simulator A Tübingeni Egyetemen fejlesztik http://www.ra.cs.unituebingen.de/software/javanns/ 2012/13.
Konjugált gradiens módszer
Közelítő és szimbolikus számítások 12. gyakorlat Konjugált gradiens módszer Készítette: Gelle Kitti Csendes Tibor Vinkó Tamás Faragó István Horváth Róbert jegyzetei alapján 1 LINEÁRIS EGYENLETRENDSZEREK
Gépi tanulás a gyakorlatban. Kiértékelés és Klaszterezés
Gépi tanulás a gyakorlatban Kiértékelés és Klaszterezés Hogyan alkalmazzuk sikeresen a gépi tanuló módszereket? Hogyan válasszuk az algoritmusokat? Hogyan hangoljuk a paramétereiket? Precízebben: Tegyük
Lineáris regressziós modellek 1
Lineáris regressziós modellek 1 Ispány Márton és Jeszenszky Péter 2016. szeptember 19. 1 Az ábrák C.M. Bishop: Pattern Recognition and Machine Learning c. könyvéből származnak. Tartalom Bevezető példák
Intelligens orvosi műszerek VIMIA023
Intelligens orvosi műszerek VIMIA023 Neurális hálók (Dobrowiecki Tadeusz anyagának átdolgozásával) 2017 ősz http://www.mit.bme.hu/oktatas/targyak/vimia023 dr. Pataki Béla pataki@mit.bme.hu (463-)2679 A
I. LABOR -Mesterséges neuron
I. LABOR -Mesterséges neuron A GYAKORLAT CÉLJA: A mesterséges neuron struktúrájának az ismertetése, neuronhálókkal kapcsolatos elemek, alapfogalmak bemutatása, aktivációs függvénytípusok szemléltetése,
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE
FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE Dr. Aradi Szilárd, Fehér Árpád Mesterséges intelligencia kialakulása 1956 Dartmouth-i konferencián egy maroknyi tudós megalapította a MI területét
Google Summer of Code Project
Neuronhálózatok a részecskefizikában Bagoly Attila ELTE TTK Fizikus MSc, 2. évfolyam Integrating Machine Learning in Jupyter Notebooks Google Summer of Code Project 2016.10.10 Bagoly Attila (ELTE) Machine
Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )
Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Deep Learning a gyakorlatban Python és LUA alapon Felhasználói viselkedés modellezés
Gyires-Tóth Bálint Deep Learning a gyakorlatban Python és LUA alapon Felhasználói viselkedés modellezés http://smartlab.tmit.bme.hu Modellezés célja A telefon szenzoradatai alapján egy általános viselkedési
Bevezetés a neurális számításokba Analóg processzortömbök,
Pannon Egyetem Villamosmérnöki és Információs Tanszék Bevezetés a neurális számításokba Analóg processzortömbök, neurális hálózatok Előadó: dr. Tömördi Katalin Neurális áramkörök (ismétlés) A neurális
Matematika III előadás
Matematika III. - 2. előadás Vinczéné Varga Adrienn Debreceni Egyetem Műszaki Kar, Műszaki Alaptárgyi Tanszék Előadáskövető fóliák Vinczéné Varga Adrienn (DE-MK) Matematika III. 2016/2017/I 1 / 23 paramétervonalak,
Teljesen elosztott adatbányászat pletyka algoritmusokkal. Jelasity Márk Ormándi Róbert, Hegedűs István
Teljesen elosztott adatbányászat pletyka algoritmusokkal Jelasity Márk Ormándi Róbert, Hegedűs István Motiváció Nagyméretű hálózatos elosztott alkalmazások az Interneten egyre fontosabbak Fájlcserélő rendszerek
NEURÁLIS HÁLÓZATOK 1. eloadás 1
NEURÁLIS HÁLÓZATOKH 1. eloadás 1 Biológiai elozmények nyek: az agy Az agy az idegrendszerunk egyik legfontosabb része: - képes adatokat tárolni, - gyorsan és hatékonyan mukodik, - nagy a megbízhatósága,
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
Diverzifikáció Markowitz-modell MAD modell CAPM modell 2017/ Szegedi Tudományegyetem Informatikai Intézet
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 11. Előadás Portfólió probléma Portfólió probléma Portfólió probléma Adott részvények (kötvények,tevékenységek,
III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ
infokommunikációs technológiák III.6. MAP REDUCE ELVŰ ELOSZTOTT FELDOLGOZÁSI ALGORITMUSOK ÉS TESZTKÖRNYEZET KIDOLGOZÁSA ADATBÁNYÁSZATI FELADATOK VÉGREHAJTÁSÁHOZ KECSKEMÉTI ANNA KUN JEROMOS KÜRT Zrt. KUTATÁSI
Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására
VÉGZŐS KONFERENCIA 2009 2009. május 20, Budapest Újfajta, automatikus, döntési fa alapú adatbányászati módszer idősorok osztályozására Hidasi Balázs hidasi@tmit.bme.hu Konzulens: Gáspár-Papanek Csaba Budapesti
E x μ x μ K I. és 1. osztály. pontokként), valamint a bayesi döntést megvalósító szeparáló görbét (kék egyenes)
6-7 ősz. gyakorlat Feladatok.) Adjon meg azt a perceptronon implementált Bayes-i klasszifikátort, amely kétdimenziós a bemeneti tér felett szeparálja a Gauss eloszlású mintákat! Rajzolja le a bemeneti
ACM Snake. Orvosi képdiagnosztika 11. előadás első fele
ACM Snake Orvosi képdiagnosztika 11. előadás első fele ACM Snake (ismétlés) A szegmentáló kontúr egy paraméteres görbe: x Zs s X s, Y s,, s A szegmentáció energia funkcionál minimalizálása: E x Eint x
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás
Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás http:/uni-obuda.hu/users/kutor/ IRE 7/50/1 A neurális hálózatok általános jellemzői 1. A
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
Intelligens Rendszerek Elmélete
Intelligens Rendszerek Elmélete Dr. Kutor László : Mesterséges neurális hálózatok felügyelt tanítása hiba visszateresztő Back error Propagation algoritmussal Versengéses tanulás http://mobil.nik.bmf.hu/tantargyak/ire.html
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás
A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L
Teljesen elosztott adatbányászat alprojekt
Teljesen elosztott adatbányászat alprojekt Hegedűs István, Ormándi Róbert, Jelasity Márk Big Data jelenség Big Data jelenség Exponenciális növekedés a(z): okos eszközök használatában, és a szenzor- és
Kollektív tanulás milliós hálózatokban. Jelasity Márk
Kollektív tanulás milliós hálózatokban Jelasity Márk 2 3 Motiváció Okostelefon platform robbanásszerű terjedése és Szenzorok és gazdag kontextus jelenléte, ami Kollaboratív adatbányászati alkalmazások
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363
1/363 Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 Az Előadások Témái 288/363 Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák
Tanulás az idegrendszerben
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Funkcióvezérelt modellezés Abból indulunk ki, hogy milyen feladatot valósít meg a rendszer Horace Barlow: "A
Gépi tanulás Gregorics Tibor Mesterséges intelligencia
Gépi tanulás Tanulás fogalma Egy algoritmus akkor tanul, ha egy feladat megoldása során olyan változások következnek be a működésében, hogy később ugyanazt a feladatot vagy ahhoz hasonló más feladatokat
Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel
Navigáci ció és s mozgástervez stervezés Algoritmusok és alkalmazásaik Osváth Róbert Sorbán Sámuel Feladat Adottak: pálya (C), játékos, játékos ismerethalmaza, kezdőpont, célpont. Pálya szerkezete: akadályokkal
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Stratégiák tanulása az agyban
Statisztikai tanulás az idegrendszerben, 2019. Stratégiák tanulása az agyban Bányai Mihály banyai.mihaly@wigner.mta.hu http://golab.wigner.mta.hu/people/mihaly-banyai/ Kortárs MI thispersondoesnotexist.com
Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei
A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
Megerősítéses tanulás
Megerősítéses tanulás elméleti kognitív neurális Introduction Knowledge representation Probabilistic models Bayesian behaviour Approximate inference I (computer lab) Vision I Approximate inference II:
Valószínűségi változók. Várható érték és szórás
Matematikai statisztika gyakorlat Valószínűségi változók. Várható érték és szórás Valószínűségi változók 2016. március 7-11. 1 / 13 Valószínűségi változók Legyen a (Ω, A, P) valószínűségi mező. Egy X :
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Többváltozós, valós értékű függvények
TÖ Többváltozós, valós értékű függvények TÖ Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza, n változós függvényeknek nevezzük. TÖ Példák:.
CHT& NSZT Hoeffding NET mom. stabilis. 2011. november 9.
CHT& NSZT Hoeffding NET mom. stabilis Becslések, határeloszlás tételek Székely Balázs 2011. november 9. CHT& NSZT Hoeffding NET mom. stabilis 1 CHT és NSZT 2 Hoeffding-egyenlőtlenség Alkalmazása: Beengedés
Osztályozási feladatok képdiagnosztikában. Orvosi képdiagnosztikai 2017 ősz
Osztályozási feladatok képdiagnosztikában Orvosi képdiagnosztikai 2017 ősz Osztályozás Szeparáló felületet keresünk Leképezéseket tanulunk meg azok mintáiból A tanuláshoz használt minták a tanító minták
Szomszédság alapú ajánló rendszerek
Nagyméretű adathalmazok kezelése Szomszédság alapú ajánló rendszerek Készítette: Szabó Máté A rendelkezésre álló adatmennyiség növelésével egyre nehezebb kiválogatni a hasznos információkat Megoldás: ajánló
First Prev Next Last Go Back Full Screen Close Quit
Többváltozós függvények (2) First Prev Next Last Go Back Full Screen Close Quit 1. Egyváltozós függvények esetén a differenciálhatóságból következett a folytonosság. Fontos tudni, hogy abból, hogy egy
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL
Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL TULICS@TMIT.BME.HU Példa X (tanult órák száma, aludt órák száma) y (dolgozaton elért pontszám) (5, 8) 80 (3, 5) 78 (5, 1) 82 (10, 2) 93 (4, 4)
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
Információk. Ismétlés II. Ismétlés. Ismétlés III. A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin. Algoritmus. Algoritmus ábrázolása
1 Információk 2 A PROGRAMOZÁS ALAPJAI 2. Készítette: Vénné Meskó Katalin Elérhetőség mesko.katalin@tfk.kefo.hu Fogadóóra: szerda 9:50-10:35 Számonkérés időpontok Április 25. 9 00 Május 17. 9 00 Június
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 10 X. SZIMULÁCIÓ 1. VÉLETLEN számok A véletlen számok fontos szerepet játszanak a véletlen helyzetek generálásában (pénzérme, dobókocka,
Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
[1000 ; 0] 7 [1000 ; 3000]
Gépi tanulás (vimim36) Gyakorló feladatok 04 tavaszi félév Ahol lehet, ott konkrét számértékeket várok nem puszta egyenleteket. (Azok egy részét amúgyis megadom.). Egy bináris osztályozási feladatra tanított
(Independence, dependence, random variables)
Két valószínűségi változó együttes vizsgálata Feltételes eloszlások Két diszkrét változó együttes eloszlása a lehetséges értékpárok és a hozzájuk tartozó valószínűségek (táblázat) Példa: Egy urna 3 fehér,
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban
OpenCL alapú eszközök verifikációja és validációja a gyakorlatban Fekete Tamás 2015. December 3. Szoftver verifikáció és validáció tantárgy Áttekintés Miért és mennyire fontos a megfelelő validáció és
A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL
A RADARJELEK DETEKTÁLÁSA NEURÁLIS HÁLÓZAT ALKALMAZÁSÁVAL Dr. Ludányi Lajos mk. alezredes egyetemi adjunktus Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti Rendszerek Tanszék
BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA
BEKE ANDRÁS, FONETIKAI OSZTÁLY BESZÉDVIZSGÁLATOK GYAKORLATI ALKALMAZÁSA BESZÉDTUDOMÁNY Az emberi kommunikáció egyik leggyakrabban használt eszköze a nyelv. A nyelv hangzó változta, a beszéd a nyelvi kommunikáció
Ellenőrző kérdések. 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t
Ellenőrző kérdések 2. Kis dolgozat kérdései 36. Ha t szintű indexet használunk, mennyi a keresési költség blokkműveletek számában mérve? (1 pont) log 2 (B(I (t) )) + t 37. Ha t szintű indexet használunk,
Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
Véletlen jelenség: okok rendszere hozza létre - nem ismerhetjük mind, ezért sztochasztikus.
Valószín ségelméleti és matematikai statisztikai alapfogalmak összefoglalása (Kemény Sándor - Deák András: Mérések tervezése és eredményeik értékelése, kivonat) Véletlen jelenség: okok rendszere hozza
TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...
TARTALOMJEGYZÉK TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS...1 1. A lágy számításról...2 2. A könyv célkitűzése és felépítése...6 AZ ÖSSZETEVŐ LÁGY RENDSZEREK...9 I. BEVEZETÉS...10 3. Az összetevő
SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával
SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Aradi Bernadett. 2017/18 ősz. TensorFlow konvolúciós hálózatokhoz 2017/18 ősz 1 / 11
TensorFlow konvolúciós hálózatokhoz Aradi Bernadett 2017/18 ősz TensorFlow konvolúciós hálózatokhoz 2017/18 ősz 1 / 11 Tensorflow import tensorflow as tf szoftverkönyvtár neurális hálózatokhoz a Google
Véletlen bolyongás. Márkus László március 17. Márkus László Véletlen bolyongás március / 31
Márkus László Véletlen bolyongás 2015. március 17. 1 / 31 Véletlen bolyongás Márkus László 2015. március 17. Modell Deníció Márkus László Véletlen bolyongás 2015. március 17. 2 / 31 Modell: Egy egyenesen
EGÉSZSÉGÜGYI DÖNTÉS ELŐKÉSZÍTŐ
EGÉSZSÉGÜGYI DÖNTÉS ELŐKÉSZÍTŐ MODELLEZÉS Brodszky Valentin, Jelics-Popa Nóra, Péntek Márta BCE Közszolgálati Tanszék A tananyag a TÁMOP-4.1.2/A/2-10/1-2010-0003 "Képzés- és tartalomfejlesztés a Budapesti
Legkisebb négyzetek módszere, Spline interpoláció
Közelítő és szimbolikus számítások 10. gyakorlat Legkisebb négyzetek módszere, Spline interpoláció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor Vinkó Tamás London András Deák Gábor jegyzetei alapján
Gépi tanulás a gyakorlatban. Bevezetés
Gépi tanulás a gyakorlatban Bevezetés Motiváció Nagyon gyakran találkozunk gépi tanuló alkalmazásokkal Spam detekció Karakter felismerés Fotó címkézés Szociális háló elemzés Piaci szegmentáció analízis
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
Neurális hálózatok MATLAB programcsomagban
Debreceni Egyetem Informatikai Kar Neurális hálózatok MATLAB programcsomagban Témavezető: Dr. Fazekas István Egyetemi tanár Készítette: Horváth József Programtervező informatikus Debrecen 2011 1 Tartalomjegyzék
Differenciálegyenletek numerikus megoldása
a Matematika mérnököknek II. című tárgyhoz Differenciálegyenletek numerikus megoldása Fokozatos közeĺıtés módszere (1) (2) x (t) = f (t, x(t)), x I, x(ξ) = η. Az (1)-(2) kezdeti érték probléma ekvivalens
KÖZELÍTŐ INFERENCIA II.
STATISZTIKAI TANULÁS AZ IDEGRENDSZERBEN KÖZELÍTŐ INFERENCIA II. MONTE CARLO MÓDSZEREK ISMÉTLÉS Egy valószínűségi modellben a következtetéseinket a látensek vagy a paraméterek fölötti poszterior írja le.
Mesterséges Intelligencia I.
Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a
Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function
Tanulás az idegrendszerben Structure Dynamics Implementation Algorithm Computation - Function Tanulás pszichológiai szinten Classical conditioning Hebb ötlete: "Ha az A sejt axonja elég közel van a B sejthez,
Követelmény a 7. évfolyamon félévkor matematikából
Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.
Készítette: Fegyverneki Sándor
VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y
Az idegrendszeri memória modelljei
Az idegrendszeri memória modelljei A memória típusai Rövidtávú Working memory - az aktuális feladat Vizuális, auditórikus,... Prefrontális cortex, szenzorikus területek Kapacitás: 7 +-2 minta Hosszútávú
First Prev Next Last Go Back Full Screen Close Quit. (Derivált)
Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.
Mély neuronhálók alkalmazása és optimalizálása
magyar nyelv beszédfelismerési feladatokhoz 2015. január 10. Konzulens: Dr. Mihajlik Péter A megvalósítandó feladatok Irodalomkutatás Nyílt kutatási eszközök keresése, beszédfelismer rendszerek tervezése