Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007



Hasonló dokumentumok
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Intelligens Rendszerek Gyakorlata. Neurális hálózatok I.

Budapesti Műszaki és Gazdaságtudományi Egyetem Méréstechnika és Információs rendszerek Tanszék. Neurális hálók. Pataki Béla

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

I. LABOR -Mesterséges neuron

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Gépi tanulás a gyakorlatban. Lineáris regresszió

Mit látnak a robotok? Bányai Mihály Matemorfózis, 2017.

Intelligens Rendszerek Elmélete

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Neurális hálózatok bemutató

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Bevezetés a neurális számításokba Analóg processzortömbök,

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.

Az idegrendszeri memória modelljei

Az idegrendszeri memória modelljei

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Tanulás az idegrendszerben

A TANTÁRGY ADATLAPJA

TARTALOMJEGYZÉK. TARTALOMJEGYZÉK...vii ELŐSZÓ... xiii BEVEZETÉS A lágy számításról A könyv célkitűzése és felépítése...

Mesterséges Intelligencia Elektronikus Almanach. MI Almanach projektismertetı rendezvény április 29., BME, I. ép., IB.017., 9h-12h.

Stratégiák tanulása az agyban

Teljesen elosztott adatbányászat alprojekt

Megerősítéses tanulás

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

za TANTÁRGY ADATLAPJA

Hibadetektáló rendszer légtechnikai berendezések számára

Gépi tanulás és Mintafelismerés

Mesterséges neurális hálózatok II. - A felügyelt tanítás paraméterei, gyorsító megoldásai - Versengéses tanulás

A sz.ot.ag. III. Magyar Számítógépes Nyelvészeti Konferencia december 8. Bíró Tamás, ELTE, Budapest / RUG, Groningen, NL 1/ 16

Visszacsatolt (mély) neurális hálózatok

Intelligens orvosi műszerek VIMIA023

Számítógép és programozás 2

FELÜGYELT ÉS MEGERŐSÍTÉSES TANULÓ RENDSZEREK FEJLESZTÉSE

Neurális hálózatok elméleti alapjai TULICS MIKLÓS GÁBRIEL

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

Babeş Bolyai Tudományegyetem, Kolozsvár Matematika és Informatika Kar Magyar Matematika és Informatika Intézet

KONVOLÚCIÓS NEURONHÁLÓK. A tananyag az EFOP pályázat támogatásával készült.

Tanulás tanuló gépek tanuló algoritmusok mesterséges neurális hálózatok

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Modellezés és szimuláció. Szatmári József SZTE Természeti Földrajzi és Geoinformatikai Tanszék

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges intelligencia alapú regressziós tesztelés

NEURÁLIS HÁLÓZATOK 1. eloadás 1

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/364

Gépi tanulás Gregorics Tibor Mesterséges intelligencia

Neurális hálózatok.... a gyakorlatban

Kovács Ernő 1, Füvesi Viktor 2

NEURONHÁLÓK ÉS TANÍTÁSUK A BACKPROPAGATION ALGORITMUSSAL. A tananyag az EFOP pályázat támogatásával készült.

Neurális hálózatok MATLAB programcsomagban

Közösség detektálás gráfokban

c adatpontok és az ismeretlen pont közötti kovariancia vektora

Statisztikai eljárások a mintafelismerésben és a gépi tanulásban

Fuzzy rendszerek és neurális hálózatok alkalmazása a diagnosztikában

Adatbányászati szemelvények MapReduce környezetben

Konjugált gradiens módszer

Konvolúciós neurális hálózatok (CNN)

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

MATLAB. 6. gyakorlat. Integrálás folytatás, gyakorlás

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Gépi tanulás. Hány tanítómintára van szükség? VKH. Pataki Béla (Bolgár Bence)

SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával

Kereső algoritmusok a diszkrét optimalizálás problémájához

II. LABOR Tanulás, Perceptron, Adaline

Deep Learning a gyakorlatban Python és LUA alapon Tanítás: alap tippek és trükkök

Funkcionális konnektivitás vizsgálata fmri adatok alapján

Tanulás az idegrendszerben. Structure Dynamics Implementation Algorithm Computation - Function

ACM Snake. Orvosi képdiagnosztika 11. előadás első fele

A MESTERSÉGES NEURONHÁLÓZATOK BEVEZETÉSE AZ OKTATÁSBA A GAMF-ON

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Modellkiválasztás és struktúrák tanulása

Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)

Számítógépes döntéstámogatás. Genetikus algoritmusok

Bevezetés a lágy számítás módszereibe. Neurális hálózatok Alapok

Perceptron konvergencia tétel

Megerősítéses tanulás 9. előadás

KOOPERÁCIÓ ÉS GÉPI TANULÁS LABORATÓRIUM

The nontrivial extraction of implicit, previously unknown, and potentially useful information from data.

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007

Nemlineáris egyenletrendszerek megoldása április 15.

Gépi tanulás a gyakorlatban. Bevezetés

Kereső algoritmusok a diszkrét optimalizálás problémájához

Differenciálegyenletek numerikus megoldása

Kutatás-fejlesztési eredmények a Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszéken. Dombi József

3. Fuzzy aritmetika. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

Megerősítéses tanulás 7. előadás

Irányításelmélet és technika II.

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Átírás:

Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2006/2007

Az Előadások Témái -hálók Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók / Keretrendszerek Játékok modellezése Bizonytalanság kezelése Grafikus modellek Tanuló rendszerek Szimulált kifűtés, Genetikus algoritmusok Neurális hálók Gépi tanulás Nemparametrikus módszerek

Adminisztra...... trívia Előadások honlapja http://www.cs.ubbcluj.ro/ csatol/mestint -hálók Vizsga Szóbeli (60%) + Gyakorlat (40%) (v) Előadás (60%) Laborgyakorlatok: 1 Clean vagy Prolog - dedukciós algoritmus 30% 2 C / C++ / C# / - genetikus algoritmus 10% vagy 3 Matlab - Neurális hálózatok vagy SVM 10%

Többrétegű Hálók I -hálók Az információ számok a bemeneti X rétegből a kimeneti Y réteg fele halad. Egy mintára kiszámítjuk a kimeneti értéket, minden neuron értékét kiszámítva. Feltételezzük, hogy minden adat és súly folytonos. X Y MLP NEM Bayes-háló A neurális hálók kapcsolatai kommunikációt, a Bayes-hálók kapcsolatai függőséget jelentenek.

Többrétegű Hálók II -hálók x 1 x 2 x 3 Y x 4 W h 1 h 2 h 3 h 4 h 5 MI az információ? V Formálisan : A neuronháló csúcsai az információt feldolgozzák. y ki def = f akt (x be ) Az élek: a csúcsok közötti kapcsolatok. x (i) be def = A fenti lépések ismétlődnek. j w ij x (j) ki definíció szerint x ki R k

Többrétegű Hálók II -hálók x 1 x 2 x 3 Y x 4 W h 1 h 2 h 3 h 4 h 5 MI az információ? V Formálisan : A neuronháló csúcsai az információt feldolgozzák. y ki def = f akt (x be ) Az élek: a csúcsok közötti kapcsolatok. x (i) be def = A fenti lépések ismétlődnek. j w ij x (j) ki definíció szerint x ki R k

Többrétegű Hálók II -hálók x 1 x 2 x 3 Y x 4 W h 1 h 2 h 3 h 4 h 5 MI az információ? V Formálisan : A neuronháló csúcsai az információt feldolgozzák. y ki def = f akt (x be ) Az élek: a csúcsok közötti kapcsolatok. x (i) be def = A fenti lépések ismétlődnek. j w ij x (j) ki definíció szerint x ki R k

Többrétegű Hálók II -hálók x 1 x 2 x 3 Y x 4 W h 1 h 2 h 3 h 4 h 5 MI az információ? V Formálisan : A neuronháló csúcsai az információt feldolgozzák. y ki def = f akt (x be ) Az élek: a csúcsok közötti kapcsolatok. x (i) be def = A fenti lépések ismétlődnek. j w ij x (j) ki definíció szerint x ki R k

Többrétegű Hálók III -hálók A bemenő aktivitás: y j = i w ijx i + b j. A perceptron tanulási algoritmushoz hasonlóan: előbb: x i = [x 1,..., x d, 1] T w j = [w 1,..., w d, b] T Univerzális approximáció A következő rendszer: f M (z w, b) = 1 M w m f (z b m ) m=1 f (z b) 0 b 1 2 f (z) = sgn(z) univerzális approximátor, azaz δ > 0 g L 2 (R d ) M, w, b ú.h. g f M (z w, b) L2 δ

Többrétegű Hálók IV -hálók Univerzális approximátor: bizonyítás a szint-halmazokon alapszik (lásd Lebesgue integrálás). Vizualizálás: Mintavételezés a MATLAB kód: %Generatorfuggvenyek f = inline( ((x>0)-0.5).*2 ); g = inline( 2./(1+exp(-2*x))-1 ); % komponensek szama mcomp = 10; % fv.-nyek szama nf = 6; % X tengely xx=-10:0.05:10; xd=repmat(xx,[mcomp,1]); % plot init clf; hf = subplot(1,2,1); set(gca,... Position,[0.05 0.1 0.42 0.85],... YTick,[], XTick,[]); hold on; box on; ylim([-25,25]); set(gca,... Position,[0.55 0.1 0.42 0.85],... YTick,[], XTick,[]); hold on; box on; ylim([-25,25]); w és b értékekből hg = subplot(1,2,2); % megjelenitesi stilus style = { b, r, k, m, c, g }; % F.v.-nyek generalasa for ii=1:nf; % egyutthatok ss=(2*rand(mcomp,1) -1)*6; ww=(2*rand(mcomp,1) -1)*6; bb=(2*rand(mcomp,1) -1)*10; bd=diag(bb)*ones(size(xd)); y_f = sum(diag(ww) * f(diag(ss)*xd + bd) y_g = sum(diag(ww) * g(diag(ss)*xd + bd) % megjelenites plot(hf,xx,y_f,style{ii}, LineWidth,3); plot(hg,xx,y_g,style{ii}, LineWidth,3); end; % nyomtatas print -depsc2 rand_fn.eps

Aktivációs függvények 1 0.5 Aktivacios fugveny F. Derivaltja 1 0.6 Aktivacios fuggveny F. Derivaltja 0 0.5 0.2 0.2 0.6 -hálók 1 10 5 0 5 10 1 10 5 0 5 10 Véletlen függvények a függvényosztályokból:

Backpropagation I -hálók Nem bináris függvényt közelít. A bemeneti/kimeneti értékek folytonosak. f NN : R d R Folytonos esetben használható a négyzetes hibafüggvény: E(w NN ) = 1 2 N ( yn f NN (x n ) ) 2 n=1 ahol w NN a neuronháló paraméterei. Differenciálható akt. függvényeknél a gradiens szabály alkalmazható backpropagation szabály.

Backpropagation II -hálók Error back-propagation négyzetes hiba visszaterjesztése Egy adott tanulási halmazhoz és egy w NN neurális hálóhoz rendelt négyzetes hiba E(w NN ) = 1 2 N ( yn f NN (x n ) ) 2 n=1 akkor zéró, ha a neurális háló minden adatot jól közelít. Egy adott w (0) NN hálónál jobban közelítő hálót kapunk ha egy kis lépést végzünk a negatív gradiens irányába.

Backpropagation III -hálók Képletesen w (t+1) NN w (t) NN α E(w (t) NN ) w (t) NN w (t) NN α we(w (t) NN ) ahol α tanulási együttható; w E(w (t) NN ) a hiba gradiense (vektorok!). Kérdés: milyen α értékek megfelelőek? Kis lépések hosszú konvergencia. Nagy lépések nem konvergál. E(w) (2)(1) (0) w w

Backpropagation IV Differenciálás szabálya: f (g 1 (w i ),..., g k (w i )) = f (g 1,..., g k ) g j w i g g j w i j -hálók Neuronháló függvénye: ( ( ) ) y =, f j h i w ij, i h 1 h 2 w i1 w i2 f j ( i h i w ij ) w in h N wij E() = j fj E() wij f j ( i w ij h i )

Backpropagation V (folyt) wij E() = fj E( ) wij f j ( Nn=1 w ij h i ) = h i f j ( Nn=1 w ij h i ) fj E() -hálók A bemeneti érték és a kimeneti hiba szorzódnak. És fj E() = fj E Lánc-deriválás szerint: fj E() = k ( ) ) (..., g k j v jkf j,... v jk gk E()g k () f j () v j1... Az egyéni hibák súlyozottan összeadódnak. v jk

Backpropagation VI -hálók (folyt) Tehát: amíg a működésnél a jel előre terjed, a tanulás folyamán a hiba visszafele; a kimeneti réteg felől a háló bemenete felé terjed. Hiba-visszaterjesztés (BP) = azaz az osztópontok összegzővé alakulnak; = azaz az összegző csomópontok meg hiba-elosztóvá.

Backpropagation Összefoglaló -hálók A BP algoritmus a gradiens szabály alkalmazása a neuronhálókra; Az alap a négyzetes hiba; Egyszerűen implementálható; Nagyon sok alkalmazás; Hátrányok: Mivel gradiens, lassú nagyon sokáig tarthat a tanulás. Más módszerekkel állítani be a súlyokat: Newton, Konjugált gradiens. E(w) Nincs a becsült mennyiségre konfidencia valószínűségi módszerek szükségesek. (2)(1) (0) w w Rosenbrock

Backpropagation Példa I Feladat: keressük a h(x 1, x 2 ) = 100 `x 2 x 2 1 2 + (1 x1 ) 2 függvény minimumát a gradiens szabály használatával. -hálók 1 h() = 400(x 2 x 2 1 )x 1 + 2(x 1 1) 2 h() = 200(x 2 x 2 1 ) A második egyenlet x 2 = x 1 Behelyettesítve x 1 = 1. Induljunk a ( 1, 1) pontból.

Backpropagation Példa II -hálók BP szabály = gradiens általában nagyon lassú. Rosenbrock fv. optimizálás 2 Gradient Descent Scaled Conjugate Gradients Quasi Newton 1.5 Conjugate Gradients 1 0.5 0 0.5 1.5 1 0.5 0 0.5 1 1.5

M.L.P. Összefoglaló -hálók Neurális hálók fekete-doboz módszerek: 1 minden feladat megoldására potenciálisan alkalmazhatóak; 2 jó eredményekhez (majdnem mindig) kell egy kis igazítás a módszeren; 3 siker függ a tapasztalattól; 5 BackPropagation = gradiens 1 általában nagyon lassú; 2 fejlett módszerek: konjugált gradiens módszerek, quasi-newton, etc. gyorsítanak a konvergencián. 3 lokális optimumok elkerülésére többszálú optimizálás, pl. mintavételezéssel kijelölni a kezdőértékeket. 5 Érdemes tehát tovább tanulni.

D.O. I D.O. The organization of behavior -hálók A neurális moduláció alapelvei: Két neuronok közötti kapcsolat erőssége arányos a neuronok pre-, illetve poszt-szinaptikus tevékenységével; Azon neuron csoportok, melyek általában egyszerre tüzelnek, egy egységet alkotnak; (modularitás) A gondolkodás folyamata ezen sejt-csoportok szekvenciális aktivációja;

D.O. II -hálók Organization of Behavior: When an axon of cell A is near enough to excite B and repeatedly or persistently takes part in firing it, some growth process or metabolic change takes place in one or both cells such that A s efficiency, as one of the cells firing B, is increased. Neuroscience synapse szabály (p. 62) w ij = αa i a j Ahol a i, a j neuronok aktivitásai; az összekötő szinapszis erőssége; w ij α tanulási együttható.

Önszervező Hálók I -hálók Cél: Haykin: Neural Networks A comprehensive foundation, IEEE press, 1994 Struktúrák felfedezése az adatokban; Felügyelet nélküli működés önszervezés. Tanulái szabályok: lokális szabályok, melyek sok neuronra alkalmazva egy globális függvényt határoznak meg. Alapja (Turing 1952): Global order can arise from local interactions.

Önszervező Hálók II -hálók Önszervező rendszerek alapelvei (von der Marlsburg): A szinapszisok önmegerősítőek A pre-, illetve posztszinaptikus neuronok egyidejű aktivációja erősíti a szinapszist (lásd ). A szinapszisok versengenek az erőforrásokért A legerősebb szinapszis biztos, hogy túléli. Ez a többi rovására történik (winner-takes-all). A szinapszisok változásai koordináltak Egy szinapszis nem kódol robusztusan, ezért egy régió neuronjai majdnem azonos bemenet kimenet kapcsolatot kódolnak.

Önszervező Hálók III -hálók X Önszervező tanulás Struktúra-felismerés A vizuális rendszer önszervező: fejlődésének elején csak a felismerésre való képesség van jelen; a működés során egyes kép-csoportok klaszterek együttesen lesznek ábrázolva; A származtatott fogalmak ábrázolása a hierarchia egy felsőbb szintjén történik. Y Példa: neurális rendszer pixelcsoportokat keres. némely pixelcsoport gyakori; ezen csoportok rözgülnek a rendszerben. a felső szinten a rendszer címkézést végez.

-féle tanulás I -hálók tanulás - auto-asszociatív rendszerek A rendszer bemenete egy minta - nincs kimeneti jel. A kimeneten vagy: az eredeti mintát; vagy egy csoportosítást, sűrített ábrázolást szeretnénk visszakapni. csoportosításkor a kimeneti neuronok versengenek: ^y j = x i w ij i { 1 l = k y l = 0 l k ahol k = argmax ^y j j

-féle tanulás II y l = { 1 l = k 0 l k ahol k = argmax ^y j j Végleges kimeneti érték az argmin művelet után. Versengés a bemeneti mintákért. -hálók y 1 y 2 y 3 y 4 y 5 W x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 Feltételezve egy kezdő W véletlen súlyvektort, a v minta bemutatása után csak a w4 súlyok változnak a kompetitív tanulás során. v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9

-féle tanulás II y l = { 1 l = k 0 l k ahol k = argmax ^y j j Végleges kimeneti érték az argmin művelet után. Versengés a bemeneti mintákért. -hálók y 1 y 2 y 3 y 4 y 5 W x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 Feltételezve egy kezdő W véletlen súlyvektort, a v minta bemutatása után csak a w4 súlyok változnak a kompetitív tanulás során. v 1 v 2 v 3 v 4 v 5 v 6 v 7 v 8 v 9

-féle tanulás III w ij = αx i y j minden y k neuron attraktorként működik. receptív mezők alakulnak ki Y Y 2 1 -hálók α 0 tanulási mód, pl. Y 4 Y 3 Y 5 α t = K t X 2 az asszociatív háló konvergál (lásd). X 1 ami nincs: kapcsolatok a kimeneti neuronok között: Kohonen-hálók

Kohonen hálók I -hálók Teuvo Kohonen Since the 1960 s, introduced several new concepts to neural computing: theories of distributed associative memory and optimal associative mappings, the self-organizing feature maps (SOMs), the learning vector quantization (LVQ),... the Adaptive-Subspace SOM (ASSOM) in which invariant-feature filters emerge... A new SOM architecture WEBSOM has been developed in his laboratory for exploratory textual data mining. http://websom.hut.fi/websom/ Wikipedia link

Kohonen hálók II -hálók Jellemzők: kétrétegű háló, egy bemeneti és egy kimeneti réteggel; kompetitív háló: csak egy neuron lesz aktív; (mint előbb) (mint előbb) a kimeneti rétegen topológia van értelmezve (ÚJ)

Kohonen hálók Topológia Topológia szomszédságot jelent -hálók segít a tanulásban: a szomszédok is tanulnak kevésbé... értelmezhető eredmény: a szomszédok aktivitása is n 14 n 13 n 24 n 23 n 34 n 33 n 44 n 43 aktivitása alapján pontosabb n n 22 n 32 n 42 rekonstrukció a kimeneti n ij neuronok megcímkézhetőek: n 11 n 21 n 31 n 41 Kohonen:... fonéma annotáció

Kohonen hálók Tanulás I -hálók Az algoritmus iteratív: 1 minták egyenként; a t-edik időpontban legyen x t 2 kiszámtítjuk a kimeneti neuronok aktivitását: y j = i w ij x i (t) = W x(t) 3 megkeressük a nyertes kimeneti neuront: k def = argmax j y j 4 Az összes szomszédos neuron súlyát módosítjuk: w ij (t + 1) = w ij (t) + α η(j, k)x i (t) Normáljuk a súlyokat wj wj / wj 5 GOTO 1

Kohonen hálók Tanulás II -hálók Szavakban: a nyertes neuron aktivizálódik ; A nyertes neuront és szomszédait közelebb hozzuk a bemenethez; Mindegyik neuron specializálódik a mintákra: arra lesz a legnagyobb a kimenete;

Kohonen hálók Tanulás II -hálók Szavakban: a nyertes neuron aktivizálódik ; A nyertes neuront és szomszédait közelebb hozzuk a bemenethez; Mindegyik neuron specializálódik a mintákra: arra lesz a legnagyobb a kimenete; x t

Kohonen hálók Tanulás II -hálók Szavakban: a nyertes neuron aktivizálódik ; A nyertes neuront és szomszédait közelebb hozzuk a bemenethez; Mindegyik neuron specializálódik a mintákra: arra lesz a legnagyobb a kimenete; x t

Kohonen hálók Tanulás III x t -hálók Eredmény: a neuronok elhelyezkedését a bemeneti minták sűrűség függvénye határozza meg több neuron kerül a sűrűbb régiókba.

Kohonen hálók Tanulás III x t -hálók Eredmény: a neuronok elhelyezkedését a bemeneti minták sűrűség függvénye határozza meg több neuron kerül a sűrűbb régiókba.

Önszervező rendszerek Összefoglaló Az adatokhoz nincs kimeneti érték rendelve; A rendszer általában az adatok egy csoportosítását valósítja meg; -hálók Ez implicit módon a bemeneti adatok terének a felosztását jelenti; Zajszűrés/Sűrítés: a teljes bemeneti adatok helyett a hozzá tartozó osztály kódját küldjük.

Példa Térképészgép -hálók Walter Bischof, Jun Zhou (U. Alberta) és Terry Caelli (Australian N.U) a kartográfiát (részben) automatizáló programmal álltak elő. A program embertől tanulja, miként fedezzen fel és azonosítson légi felvételeken korábban nem szereplő vagy megváltozott elemeket: utakat, vasutakat, épületeket. Ágens portál Walter Bischof projektek Működése: Egyre többet tud meg okosabb lesz. Kellő mennyiségű gyakorlás után az operátor rábízza a munkát. Bayes-féle következtetést használ: korábbi mérések alapján végez új becsléseket. A legjobbakból állapítja meg az adott országút soron következő pontjait, és ezt mindaddig folytatja, amíg az új elemek pozíciója megfelel az elvárásoknak.