Lítium-ion akkumulátorok



Hasonló dokumentumok
Lítium Ion Akkumulátor Fejlesztések. Dr. Nagy László 1

Mikor lesz áttörés az energiatárolásban? Schenek Istvántól a modern akkumulátorgyártásig

Mikor lesz áttörés az energiatárolásban? Schenek Istvántól a modern akkumulátorgyártásig.

Megújuló energiaforrások

Napjaink ipari akkumulátorai. MEE Energetikai Informatikai Szakosztály rendezvénye november 26. Óbudai Egyetem

Kulcsszavak: ciklus, töltőáram, légcsere, térfogatáram, keresztmetszet, csepp-, és gyorstöltés

Őrtechnológia a gyakorlatban

AKKUTÖLTŐ 24V CTEK XT N08954

Újdonságok. XII. Szigetelésdiagnosztikai Konferencia. Gárdony, X Bessenyei Gábor Maxicont Kft.

Savas akkumulátorok és az Ő ellenségük, az ólomszulfát.

Szigetelés- vizsgálat

Akkumulátortelepek diagnosztikája

13 Elektrokémia. Elektrokémia Dia 1 /52

SD12xx SD24xx. napelem töltésvezérlő HASZNÁLATI UTASÍTÁS

Akkumulátor teszter és adatgyűjtő pendrive-ra

Hálózati akkumulátoros energiatárolás merre tart a világ?

Akkumulátorok üzemeltetése és biztonságtechnikája MEE VET szakmai nap

62. MEE Vándorgyűlés, Síófok 2015 Szetember Csernoch Viktor, ABB Components. Vacuum Tap-Changers Minősítése

7 Elektrokémia. 7-1 Elektródpotenciálok mérése

Akkumulátoros energiatárolás élettartam vizsgálata

12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján.

UPS technika. Villamos hálózatok zavaranalizis vizsgálata. Mérésszolgáltatás. 1

TM Intelligens akkumulátor töltő Car- Systemhez

ÓBUDAI EGYETEM NAPELEMES RENDSZEREK ÁRAMÜTÉS ELLENI VÉDELME


KÖZBESZERZÉSI DOKUMENTUMOK III. KÖTET MŰSZAKI KÖVETELMÉNYEK

TORKEL 840 / 860 Akkumulátor terhelőegységek

Jankovits Hidraulika Kft. Alapítva: 1992.

Ex Fórum 2009 Konferencia május 26. robbanásbiztonság-technika 1

BETÖRÉSES LOPÁS- ÉS RABLÁSBIZTOSÍTÁS TECHNIKAI FELTÉTELEI. B.5.1. Fejezet. Karbantartásmentes akkumulátorok

TORKEL Telecom Akkumulátor terhelőegység

Thunder T6. li-ion/polymer Akkutöltő. Használati Útmutató

Ipari akkumulátorok létesítése és üzemeltetése. MEE Energetikai Informatikai Szakosztály rendezvénye november 26.

Általános Kémia, 2008 tavasz

Nagyállattenyésztési és Termeléstechnológiai Tanszék VILLAMOSÍTÁS. Gépjármű-villamosság. Készítette: Dr.Desztics Gyula

AKKUMULÁTOR BLOKK CSEPPTÖLTÉSES ÁLLAPOT FELMÉRÉSE.

1 Használati útmutató W 200 S

AZ EGYENÁRAM HATÁSAI

DL drainback napkollektor rendszer vezérlése

Felhasználói Kézikönyv. BioSealer CR6-AA. Ljunberg&Kögel AB

2010 e-bike akkumulátor csomagok autóipari gyártás kezdete (Ni-Mh)

Periodikusan változó terhelés hatása Li-ion akkumulátor cellákra

Li-Ion Akkupack. Használati útmutató Biztonságtechnikai tudnivalók

Űrtechnológia október 24. Műholdfedélzeti energiaellátás / 2 Műholdfedélzeti szolgálati rendszerek Felügyeleti, telemetria és telekommand rendsz

Gázelosztó rendszerek üzemeltetése III. rész Gázelosztó vezetékek korrózióvédelme

K E Z E L É S I Ú T M U T A T Ó

Elektromos és hibrid járművek hajtásai

IFFK 2015 Budapest, október

Közreműködők Erdélyi István Györe Attila Horvát Máté Dr. Semperger Sándor Tihanyi Viktor Dr. Vajda István

HIBRIDJÁRMŰ FEJLESZTÉS GYŐRBEN

TARTALOMJEGYZÉK TESZTELO BERENDEZÉSEK

RECON-PRO, AML1000 BEVETÉS - NORMÁL MŰKÖDÉS (SOP) Thursday, November 10, 11

Felhasználói kézikönyv

ISD POWER kft. Alállomási egyenáramú segédüzem bemutatása, fejlesztésének lehetőségei

Akkumulátoros orrfűrész 18,0 V RS

AKKUTÖLTŐK / INDÍTÓK 2011 B HAGYOMÁNYOS, AUTOMATA ÉS INVERTERES TÖLTŐK HAGYOMÁNYOS, ELEKTRONIKUS ÉS AKKUS INDÍTÓK

ELEKTROKÉMIA. - elektrolitokban: ionok irányított mozgása. Elektrolízis: elektromos áram által előidézett kémiai átalakulás

Hőközponti szabályozás, távfelügyelet. Kiss Imre Szabályozó és Kompenzátor Kft.

II. rész: a rendszer felülvizsgálati stratégia kidolgozását támogató funkciói. Tóth László, Lenkeyné Biró Gyöngyvér, Kuczogi László

Háztartási Méretű KisErőművek

A 606-D használati utasítás

NAPELEMES ERŐMŰVEK ÁRAMÜTÉS ELLENI VÉDELME

Elektromos áram. Vezetési jelenségek

Hőszivattyúk - kompresszor technológiák Január 25. Lurdy Ház

Hőmérsékletmérő (1 csatornás)

Egyenáram. Áramkörök jellemzése Fogyasztók és áramforrások kapcsolása Az áramvezetés típusai

A dielektromos válasz vizsgálata, mint szigetelésdiagnosztikai módszer

Szuper kondenzátorok és egyéb tároló elemek alkalmazása az intelligens villamos energia hálózaton

Munka kábel nélkül. Back

Áramforrások. Másodlagos cella: Használat előtt fel kell tölteni. Használat előtt van a rendszer egyensúlyban. Újratölthető.

HASZNÁLATI ÚTMUTATÓ KÜLSŐ AKKUMULÁTOR PNI mAh

Megújuló energiaforrásokkal működő termék vizsgálatok a TÜV Rheinlandnál

2. Laboratóriumi gyakorlat A TERMISZTOR. 1. A gyakorlat célja. 2. Elméleti bevezető

NAPJAINK VILLAMOSENERGIA TÁROLÁSA -

Az energiatárolás mindennapok technológiája a jövőből Dr. Pálfi Géza. Okos Jövő Innovációs Klaszter November 11.

VILLAMOSENERGIA-RENDSZER

A fotovillamos (és napenergia ) rendszerek egyensúlyának (és potenciálbecslésének) kialakításakor figyelembe veendő klimatikus sajátosságok

I. Magyar Nagyjavítási Konferencia BorsodChem Zrt. Kazincbarcika március 8-9

Szigetelés Diagnosztikai Konferencia Nagyteljesítményű turbógenerátorok állapot és diagnosztikai vizsgálatainak rendszere KTT

MUST Három fázisú Moduláris UPS. A moduláris UPS előnyei már mindenki számára elérhetőek

VILODENT-98. Mérnöki Szolgáltató Kft. feltöltődés

SPS PRO sorozatú szünetmentes áramforrmásrok 500VA-1200VA és 800VA-1500VA sorozatok Felhasználói kézikönyv

Kémiai energia - elektromos energia

Kémiai alapismeretek hét

ÜZEMELTETŐI GONDOLATOK A HATÁRÉRTÉKEK FELÜLVIZSGÁLATÁHOZ november szeptember 30.

- HTTE - Hidrogéntermelı tároló egység (járművek meghajtásához) Szerzı:

EasyPower EP24200P-S4-E ( ) EP24260P-S5-E ( ) EP24200P-O1-E ( ) EP24310P-O2-E ( ) Hungarian - Magyar

ŠKODA FÉMHÁZAS POWERBANK mah. Használati útmutató

Egy viharos nap margójára VII. MNNSZ Szolár Konf., április 25., Bugyi. Varga Zsolt

Toyota Hybrid Synergy Drive

Conrad Szaküzlet 1067 Budapest, Teréz krt. 23. Tel: (061) Conrad Vevőszolgálat 1124 Budapest, Jagelló út 30. Tel: (061)

DC üzemi feszültség Feszültségtűrés DC -20% / +30% Megengedett felhullám-tartalom 5% Max. áramfelvétel Védettség 0-20

Használati utasítás és szervizkönyv. Használati útmutatás

HAWKER MODULÁRIS TÖLTŐK NINCS MEGÁLLÁS!

Kiss László Blog:

Elektromosság, áram, feszültség

HUNGARIAN. Kezelési előírás az IRONCLAD akkumulátorokhoz. Névleges adatok

Felhasználói útmutató. Felhasználói útmutató IQ328+

SZOLGÁLTATÁS BIZTOSÍTÁS

Magas hőállóságú szigetelőpapírok használata nagyfeszültségű transzformátorokban. MEE Vándorgyűlés 2015

Átírás:

Lítium-ion akkumulátorok üzemeltetési kérdései

Li-ion akkumulátorokkal ma már az élet szinte minden területén találkozhatunk

Miért lítium? Lítium bázison érhető el a tárolt energia mennyiségre vonatkozó legkisebb fajlagos térfogat és súly. A lítiumnak van a legnegatívabb potenciálja A hidrogénhez mért potenciál [V] nagy cellafeszültség A lítium a legkisebb atomsúlyú fém Atomsúly [g/mol] nagy fajlagos energia

A különböző akkumulátor technológiák összehasonlítása Energiasűrűség űűség Wh/l Pb Li ion Fajlagos energia Wh/kg

Biztonsági kérdések Közismertek a hasonló balesetek, amelyek minden esetben a Li-ion telepek nem megfelelő kezeléséből illetve üzemeltetéséből eredeztethetők. Az általános mögöttes ok pedig ezen kémiai áramforrásoknak a hagyományosnak tekinthető akkumulátorokétól jelentősen eltérő tulajdonságaiban keresendő. Ma már a vonatkozó szabványok (UL2054, UL1642 és IEC62133) szerinti ellenőrzések az előírások betartása esetén garantálják a megfelelő biztonságot.

Li-ion cella elvi működése Kisütő áram Töltő áram Szerves elektrolit Réz negatív elektróda (Anód) Alumínium pozitív elektróda (Katód)

Lítium-ion cella felépítése I - Al kollektor (18-25 µm) II - pozitív elektróda (40-200 µm) III - szeparátor (16-35 µm) IV - negatív elektróda (30-150 µm) V - Cu kollektor (12-20 µm)

Tipikus lítium ion kisütési jelleggörbe Cella Valós kapacitás Kisütési feszültség Feszültség Kisütő áram Áram Idő A kisütési végfeszültség mintegy 3 V/cella Mimimum discharge voltage is app 3.00 V/cell. Lower (Az ennél discharges alacsonyabb damage érték the maradandó cell and incurr cellakárosodást high safety risks és biztonsági kockázatokat okoz. Cu kirakódás)

Tipikus lítium ion töltési jelleggörbe Feszültségkorlátozás 4,2 V Feszültség Áramkorlátozás 2 A Cella Valós kapacitás Áram Idő Maximum charge voltage is 4.20V/cell, but only used for pure cycling applications A 4,2 V legnagyobb töltőfeszültség csak ciklikus alkalmazásoknál ajánlott. Pufferüzemű alkalmazásoknál 4,05 4,1 V/cella az irányadó. Typical maximum charge voltage in industrial or float applications is 4.05 to 4.10 V/cell (A As töltőfeszültség higher the charge növelésével voltage, csökken as short az is life élettartam. time Li kirakódás)

Különböző elektródák töltési-kisütési jelleggörbéinek összehasonlítása Töltés Kisütés Feszültség A kisütöttség mértéke

NCA LFP összehasonlítás Kivehető energia [Wh/kg] NCA: Nickel Cobalt Aluminium electrodem system with high energy density LFP: Iron Phosphate Electrode Kivehető teljesítmény with intrinsic [W/kg] safety features

Hőmérsékleti viselkedés Általában nem megengedett a töltés a negatív hőmérséklet tartományban. Cella UHP 7,5 Ah Feszültség Kivehető töltésmennyiség

Ciklikus élettartam Élettartam feltétel x C N Ciklusszám Cycling at high DOD similar to premium Lead-Acid Cycling at low DOD significantly better than Lead-Acid Nagy kisütési mélységeknél az ólomakkumulátorokkal azonos a ciklizálhatóság. Kis DOD esetén lényegesen kedvezőbbek a tulajdonságok.

Várható, naptári élettartam 45 40 35 Élettartam [év] 30 25 20 15 10 5 0 20 30 40 50 60 Hőmérséklet [ C]

A szükséges biztonsági intézkedések A biztonsági intézkedések szintjei - megfelelő elektrokémia - cellaszintű beavatkozó eszközök - rendszerszintű akkumulátor felügyelet

A megfelelő elektrokémia megválasztása A lítium ion cella hőmegfutási jelensége Felszabaduló teljesítmény [mw/mg] nincs exoterm folyamat Hőmérséklet [ C] A hőmérsékletemelkedés okai lehetnek külsők (pl.: napsütés, túlmelegedő alkatrész vagy kötés a közelben) és/vagy belsők (pl.: az adott körülményekhez képest túl nagy töltő vagy kisütő áram)

Biztonsági intézkedések cella szinten HRL Heat Resistant Layer CID Current Interruption Device PTC Katód kivezető Katód kollektor Pozitív elektróda Szeparátor HRL kerámia Negatív elektróda Anód kollektor Katód CID Biztonsági szelep Kombinált védelmi egység minden cellában - túlnyomás szelep megakadályozza túlnyomás és ezáltal robbanás kialakulását - olvadó biztosító megakadályozza meg nem engedett túláramok kialakulását, a cella túlmelegedését -elektronikus védelem cellafeszültség ellenőrzés (megakadályozza a cella túltöltését) töltőáram függő lekapcsolási folyamat

Cellablokkok védelme PolySwitch Hő hatására elbomló és újra felépülő, villamosan vezető láncok a polimer belsejében Elektróda Az olvadáspont alatt Vezető láncok Munkapont Hőmérséklet Szigetelő polimer Az olvadáspont felett Szétesett vezető láncok Munkapont Hőmérséklet

Az akkumulátorok felügyeleti rendszere (Battery Management System) Az akkumulátor felügyeleti rendszer egy adatgyűjtő, adatfeldolgozó és beavatkozó elektronikus egység, amelynek feladata a telep üzemének ellenőrzése. Három alapvető funkciója - a biztonságos üzemelés - az optimális működés - a külső, belső kommunikáció biztosítása. Üzembiztonság A BMS-nek biztosítania kell, hogy a nagyszámú, soros-párhuzamos cellából álló A BMS-nek biztosítania kell, hogy a nagyszámú, soros-párhuzamos cellából álló rendszerben az üzemelési körülmények mindenben megfeleljenek a cellák által támasztott követelményeknek: - az egyes cellák feszültsége soha nem léphet ki a gyártó által megadott töltési és kisütési végfeszültségek által meghatározott sávból, azaz kell mélykisütés és túltöltés elleni védelem - a töltési és kisütési áramok nem haladhatják meg a meghatározott időfüggő határértékeket, azaz szükség van túláram védelemre - a cellák hőmérséklete benne kell maradjon az üzemmódtól függő alsó és felső megengedett értékek által adott tartományban, azaz kell alsó és felső hőmérsékleti védelem A megfelelő rendszer megbízhatóság megkövetel bizonyos öndiagnosztikai funkciókat is.

Optimális működés A telep optimális működésének feltétele, hogy valamennyi sorba kapcsolt cella mindig azonos mértékben legyen feltöltve. Minthogy az egyes cellák között mindig vannak eltérések, amelyek ráadásul az öregedéssel növekednek, a felügyeleti rendszernek a cellák töltöttségi állapotát ki kell egyenlítenie. A cél a jelentős, tartós eltérések kiküszöbölése. Kiegyenlítésre sor kerülhet mind töltés, mind kisütés alatt, de gyakorlatilag könnyebb és elegendő is csak a töltési szakaszban alkalmazni. Az eljárást igen sokszor lehet cellafeszültség mérésre alapozni, de ez nem tehető meg tetszőleges cella elektrokémia esetén. Pl. lítium-vas-foszfát celláknál az igen lapos áram-feszültség jelleggörbe miatt ez a módszer csak a töltés végső szakaszában alkalmazható hatékonyan. Itt inkább a töltöttségi állapot (SOC) meghatározása ad megfelelő támpontot. Kommunikáció Van egy rendszeren belüli és egy külső kommunikáció. A belső kommunikáció a rendszert alkotó egyes alegységek egymás közötti információ cseréjét jelenti, ami elengedhetetlen feltétele a BMS működésének. A külső kommunikáció egy szolgáltatás egy fölérendelt rendszer számára. A BMS minden, a rendszerben rendelkezésre álló adatot továbbítani tud, pl. SOC, SOH, hőmérsékletek, feszültségek, áramok, üzemállapotok, hibajelzések stb. A felügyeleti rendszer tud külső parancsokat fogadni és azoknak megfelelően módosítani az akkumulátor működését.

Másodlagos biztonsági rendszer A BMS mellett létezik egy attól független, analóg, másodlagos biztonsági rendszer is, amely - önállóan ellenőrzi a kritikus rendszeradatokat. (feszültségeket, hőmérsékleteket, áramot) - redundáns módon ellenőrzi a cellafeszültségeket - kritikus, meg nem engedett helyzetet érzékelve közvetlen rendszer lekapcsolást tud végrehajtani - közvetlenül ellenőrzi a telepkapcsoló állapotát Telepkapcsoló Nagyteljesítményű rendszerekben a telepkapcsolót 3 hierarchikusan egymásra épülő részegység alkothatja: - félvezetős kapcsoló - kontaktor - olvadó biztosító Normál üzemben a lekapcsolásokat a félvezetős egység végzi. Ennek hibája esetén a kontaktor veszi át a szerepét. E két elem együttes meghibásodásakor a lekapcsolás feladata a biztosítóra hárul.

Egy kis aktualitás Rosetta műhold Az Európai Űrkutatási Ügynökség Rosetta műholdja 2004-ben indult, hogy találkozzon a Jupiter közelében egy üstökössel 2014-ben. A műhold ezután követi az égitestet napkörüli pályáján. A Rosettáról leváló Philae egység az üstökösre leszállva gyűjt további, felszíni adatokat. Dr. Nagy László 22

Köszönöm a figyelmet