8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek. Készítette: Darabos Noémi Ágnes

Hasonló dokumentumok
9. Trigonometria. I. Nulladik ZH-ban láttuk: 1. Tegye nagyság szerint növekvő sorrendbe az alábbi értékeket! Megoldás:

11. modul: LINEÁRIS FÜGGVÉNYEK

Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint

Matematika A 9. szakiskolai évfolyam. 11. modul EGYENLETEK, EGYENLŐTLENSÉGEK MEGOLDÁSA. Készítették: Vidra Gábor és Koller Lászlóné dr.

13. modul: MÁSODFOKÚ FÜGGVÉNYEK

10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK

Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK

13. Trigonometria II.

MATEMATIKA A 10. évfolyam

12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY

Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)

16. modul: ALGEBRAI AZONOSSÁGOK

Exponenciális és logaritmikus kifejezések Megoldások

2018/2019. Matematika 10.K

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK

Feladatok a logaritmus témaköréhez 11. osztály, középszint

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

Függvények Megoldások

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria II.

Matematika A 9. szakiskolai évfolyam. 16. modul EGYBEVÁGÓSÁGOK. Készítette: Vidra Gábor

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

Szögfüggvények értékei megoldás

Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra

Abszolútértékes és gyökös kifejezések Megoldások

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői

Kalkulus S af ar Orsolya F uggv enyek S af ar Orsolya Kalkulus

4. modul: MŰVELETEK A VALÓS SZÁMOK KÖRÉBEN

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria I.

MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

I. Egyenlet fogalma, algebrai megoldása

MATEMATIKA A 11. évfolyam

Matematika javítóvizsga témakörök 10.B (kompetencia alapú )

Óra A tanítási óra anyaga Ismeretek, kulcsfogalmak/fogalmak 1. Év eleji szervezési feladatok 2.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

Matematika A 9. szakiskolai évfolyam. 15. modul SÍKIDOMOK. Készítette: Vidra Gábor

Feladatok MATEMATIKÁBÓL

I. A négyzetgyökvonás

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

Matematika tanmenet 10. évfolyam 2018/2019

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS

Módszertani megjegyzés: A kikötés az osztás műveletéhez kötődik. A jobb megértés miatt célszerű egy-két példát mu-

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / május a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

12. Trigonometria I.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

Matematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor

Síkgeometria 12. évfolyam. Szögek, szögpárok és fajtáik

MATEMATIK A 9. évfolyam. 2. modul: LOGIKA KÉSZÍTETTE: VIDRA GÁBOR

NULLADIK MATEMATIKA ZÁRTHELYI

egyenlőtlenségnek kell teljesülnie.

Exponenciális és logaritmusos kifejezések, egyenletek

18. modul: STATISZTIKA

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold!

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Gyökvonás. Másodfokú egyenlet. 3. Az egyenlet megoldása nélkül határozd meg, hogy a következő egyenleteknek mennyi gyöke van!

Az Országos Középiskolai Tanulmányi Verseny tanévi első fordulójának feladatmegoldásai

Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1

MATEMATIKA C 12. évfolyam 4. modul Még egyszer!

Matematika tanmenet 12. osztály (heti 4 óra)

12. modul. Forgásszög szögfüggvényei

SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM

c.) Mely valós számokra teljesül a következő egyenlőtlenség? 3

Tanmenet a Matematika 10. tankönyvhöz

Matematika 11. osztály

TANMENET 2015/16. Készítette: KOVÁCS ILONA, Felhasználja: Juhász Orsolya

1. GONDOLKODÁSI MÓDSZEREK, HALMAZOK, KOMBINATORIKA, GRÁFOK

SULINOVA PROGRAMTANTERVÉHEZ ILLESZKEDŐ TANMENET 10. ÉVFOLYAM SZÁMÁRA

MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

Egyenletek, egyenlőtlenségek V.

OSZTÁLYOZÓVIZSGA TÉMAKÖRÖK 9. OSZTÁLY

Kisérettségi feladatsorok matematikából

8. Egyenletek, egyenlőtlenségek, egyenletrendszerek II.

Exponenciális, logaritmikus függvények

M. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!

Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor

Az osztályozóvizsgák követelményrendszere MATEMATIKA

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

2017/2018. Matematika 9.K

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP

Átírás:

8. modul Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Készítette: Darabos Noémi Ágnes

Matematika A. évfolyam 8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Trigonometriai alapismeretek ismétlése (trigonometrikus függvények és transzformációik, szögfüggvények és a közöttük levő kapcsolatok). Egyszerű trigonometrikus egyenletek megoldása. 8 óra. évfolyam Tágabb környezetben: Alkalmazás fizikai, biológiai, kémiai törvényszerűségek leírására. Szűkebb környezetben: Függvények grafikonjának ábrázolása függvénytranszformációkkal; egyenletek, egyenlőtlenségek grafikus megoldása. Egyenletek, egyenlőtlenségek algebrai megoldása. Ajánlott megelőző tevékenységek: Hegyesszögek szögfüggényei, a szögfüggvények kiterjesztése. Forgásszög szögfüggvényei, trigonometrikus függvények. Ajánlott követő tevékenységek: Szinusz- és koszinusztétel

Matematika A. évfolyam 8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató A képességfejlesztés fókuszai Számolás, számlálás, számítás: sebszámológép biztos használata. Egyenletek, egyenlőtlenségek megoldása. Becslés, mérés, valószínűségi szemlélet: Ismert adatokból logikus rend szerint ismeretlen adatok meghatározása. A mennyiségek folytonossága, fogalmának továbbfejlesztése. Egyenletek, egyenlőtlenségek megoldásai számának a meghatározása. Szöveges feladatok, metakogníció: Szövegértelmezés továbbfejlesztése a lényegkiemelő képesség fejlesztése. A geometriai feladok algebrai megoldása során keletkező hamis gyökök kiválasztásának képessége. Rendszerezés, kombinatív gondolkodás: A geometriai feladatok algebrai eszközökkel történő megoldásának képessége. Függvények grafikonjának ábrázolása függvénytranszformációkkal; egyenletek, egyenlőtlenségek grafikus megoldása. Egyenletek, egyenlőtlenségek megoldása a függvény tulajdonságainak ismeretében. Másodfokúra visszavezethető trigonometrikus egyenletek. Induktív, deduktív következtetés: Összefüggések, képletek felfedezése gyakorlati tapasztalatból kiindulva, azok általánosítása és alkalmazása más esetekben. TÁMOGATÓ RENDSER A modul mellékleteként készült a 8. kártyakészlet dominójátékhoz. Ezen kívül javasoljuk, hogy a tanár készítsen kártyákat diákkvartetthez, amelyeken A, B, C vagy D betű található. fős csoportonként - ilyen kártyakészletre van szükség. ÉRETTSÉGI KÖVETELMÉNYEK Középszint Tudja hegyesszögek szögfüggvényeit derékszögű háromszög oldalarányaival definiálni, ismereteit alkalmazza feladatokban. Tudja a szögfüggvények általános definícióját. Tudja és alkalmazza a szögfüggvényekre vonatkozó alapvető összefüggéseket: pótszögek, kiegészítő

Matematika A. évfolyam 8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató szögek, negatív szög szögfüggvénye, pitagoraszi összefüggés. Tudjon hegyes szögek esetén szögfüggvényeket kifejezni egymásból. Ismerje és alkalmazza a nevezetes szögek (0, 5, 0 ) szögfüggvényeit. Tudjon definíciók és azonosságok közvetlen alkalmazását igénylő trigonometrikus egyenleteket megoldani. Emelt szint Tudjon szögfüggvényeket kifejezni egymásból. Függvénytáblázat segítségével tudja alkalmazni egyszerű feladatokban az addíciós összefüggéseket ( sin( α ± β ), cos( α ± β ), tg( α ± β )). JAVASOLT ÓRABEOSTÁS. Trigonometrikus függvények és transzformációik ismétlése. Szögfüggvények közötti összefüggések ismétlése. Trigonometrikus egyenletek megoldása a függvények grafikonjainak felhasználásával. Trigonometrikus egyenletek megoldása a szögfüggvények közötti összefüggések felhasználásával 5. Másodfokú egyenletre vezethető trigonometrikus egyenletek. Feladatok megoldása 7. Trigonometrikus egyenlőtlenségek 8. Vegyes feladatok

Matematika A. évfolyam 8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 5 Modulvázlat Lépések, tevékenységek Kiemelt készségek, képességek Eszköz/Feladat/ Gyűjtemény I. Trigonometrikus függvények és transzformációik (ismétlés). A mintapélda közös megbeszélése. Szinus, koszinus, tangensfüggvény grafikonjának, valamint tulajdonságainak átismétlése (értelmezési tartomány, értékkészlet, zérushely, periodicitás, monotonitás, szélsőérték, paritás).. Szakértői mozaik. Egyszerű függvények ábrázolása függvénytranszformációkkal és a Számolás, számítás. Kombinatív gondolkodás. Induktív és deduktív következtetés. Számolás, számítás. Kombinatív gondolkodás. Induktív és deduktív következtetés.. mintapélda 5. mintapélda 5. feladat függvények jellemzése.. Feladatok megoldása. és. 7. feladatokból válogatva II. Összefüggések a szögfüggvények között (ismétlés). Dominójáték. Számolás, számítás. 8. kártyakészlet A nevezetes szögek szögfüggvényeinek ismétlése.. A mintapéldák közös megbeszélése. Kombinatív gondolkodás. Induktív és deduktív 7. mintapélda Szögfüggvények közötti összefüggések ismétlése. következtetés.. Szakértői mozaik. Kombinatív gondolkodás. Induktív és deduktív 0. feladat Szögfüggvények közötti összefüggések gyakorlása. következtetés.. Feladatok megoldása 8 9. és. feladatokból válogatva

Matematika A. évfolyam 8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató III. Trigonometrikus egyenletek. A mintapéldák közös megbeszélése. A grafikon segítségével megoldható egyszerű egyenletek.. Szakértői mozaik. A grafikon segítségével megoldható egyszerű egyenletek megoldásának gyakorlása. Számolás, számítás, kombinatív gondolkodás. Számolás, számítás, kombinatív gondolkodás. 8 0. mintapélda 5 8. feladat. A mintapéldák közös megbeszélése. Számolás, számítás, kombinatív gondolkodás.. mintapélda. Feladatok megoldása 9. feladatokból válogatva Trigonometrikus egyenletek megoldása a szögfüggvények közötti összefüggések felhasználásával 5. Szakértői mozaik. Egyenletmegoldás szögfüggvényekre vonatkozó összefüggések felhasználásával.. A mintapélda közös megbeszélése. Egyenletmegoldás a pótszögekre vonatkozó összefüggések felhasználásával. Számolás, számítás, kombinatív gondolkodás. Számolás, számítás, kombinatív gondolkodás. 7. mintapélda 8. mintapélda 7. Feladatok megoldása 5. feladatokból válogatva Másodfokú egyenletre vezethető trigonometrikus egyenletek 8. A mintapéldák közös megbeszélése. Másodfokú egyenletre vezethető trigonometrikus egyenletek. 9. Torpedójáték. Másodfokú egyenletre vezethető trigonometrikus egyenletek megoldásának gyakorlása. 0. Feladatok megoldása. Különböző trigonometrikus egyenletek megoldása. Az eddig megismert módszerek rendszerezése. Számolás, számítás, kombinatív gondolkodás. Számolás, számítás, kombinatív gondolkodás. Számolás, számítás. Rendszerezés, kombinatív gondolkodás. 9. mintapélda. feladat 9 7. feladatokból válogatva

Matematika A. évfolyam 8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 7 IV. Trigonometrikus egyenlőtlenségek. A mintapéldák közös megbeszélése. Számolás, számítás, kombinatív gondolkodás. Trigonometrikus egyenlőtlenségek megoldása.. Vegyes feladatok megoldása. Számolás, számítás. Rendszerezés, kombinatív gondolkodás. Különböző trigonometrikus egyenletek és egyenlőtlenségek megoldása. Az eddig megismert módszerek rendszerezése, gyakorlása. V. Vegyes feladatok. Vegyes feladatok megoldása. Különböző trigonometrikus egyenletek és egyenlőtlenségek megoldása. Az eddig megismert módszerek rendszerezése, gyakorlása. Számolás, számítás. Rendszerezés, kombinatív gondolkodás.. mintapélda A 8 0., valamint a kimaradt feladatokból válogatva A 5., valamint a kimaradt feladatokból válogatva

Matematika A. évfolyam Tanári útmutató 8 I. Trigonometrikus függvények és transzformációik (ismétlés) Minden valós számnak mint radiánban megadott szögnek létezik szinusza, illetve koszinusza, valamint minden szöghöz pontosan egy szinusz-, illetve koszinuszérték tartozik. Ezért készíthetünk olyan függvényt, amely minden valós számhoz hozzárendeli azok szinuszát, illetve koszinuszát. Ismételjük át ezeknek a függvények a grafikonját, illetve legfontosabb tulajdonságaikat! Mintapélda Készítsük el a következő függvények grafikonját, majd jellemezzük a függvényeket! a) f ( ) = sin b) g( ) = cos c) h( ) = tg a) Jellemzés:. É.T.: R. É.K.: [ ; ]. érushely: sin = 0 = k, k. Periódus: 5. Monotonitás: Szigorúan monoton növekvő: + l + l, l Szigorúan monoton csökkenő: + m + m, m. Szélsőérték: Maimumhely: = + n, n Maimumérték: sin = Minimumhely: = + s, s Minimumérték: sin = 7. Paritás: Páratlan, mert sin = sin( )

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 9 b) Jellemzés:. É.T.: R. É.K.: [ ; ]. érushely: sin = 0 = + k, k. Periódus: 5. Monotonitás: Szigorúan monoton csökkenő: l + l, l Szigorúan monoton növekvő: + m + m, m. Szélsőérték: Maimumhely: = n, n Maimumérték: cos = Minimumhely: = + s, s Minimumérték: cos = 7. Paritás: Páros, mert cos = cos c) Jellemzés:. ÉT: R \ + k, k. ÉK: R. érushely: tg = 0 = l, l. Periódus: 5. Monotonitás: Szigorúan monoton növekvő:. Szélsőérték: Nincs 7. Paritás: Páratlan, mert tg = tg ( ) + m ; + m, m

Matematika A. évfolyam Tanári útmutató 0 Módszertani megjegyzés: Szakértői mozaik alkalmazása Alakítsunk ki négy fős csoportokat! Minden csoportban mindenki kap egy-egy kártyát. A kártyákon az A, B, C, D betűk szerepelnek. Ezután egy munkacsoportot alkotnak azok a tanulók, akik azonos betűt kaptak. A betűk a feladatok nehézségi fokát jelentik: A a legkönnyebb, a D pedig a legnehezebb. A munkacsoportok feldolgozzák a kapott mintapéldát, megoldják a. feladatból a megfelelő részt, majd visszamennek az eredeti csoportjukhoz. A négy fős csoportokban megbeszélik mind a négy feladat megoldását. Ezután közösen megbeszéljük a feladatokat. A trigonometrikus függvényekkel a fizikában is találkozhatunk. (Például a harmonikus rezgőmozgás, az elektromágneses rezgések, a hanghullámok tanulmányozásakor.) Azonban a gyakorlatban sokszor nem az egyszerű sin vagy cos függvény fordul elő, hanem ennél bonyolultabb, összetettebb alakokkal találkozunk, amelyek az alapfüggvényekből bizonyos függvénytranszformációval származtathatók. y tengely menti eltolás A jelűek feladata Mintapélda Ábrázoljuk a függvény grafikonját és jellemezzük az ( ) = cos f függvényt! Módszertani megjegyzés: Megállapodás, hogy ha nem adjuk meg az értelmezési tartományt, akkor az a valós számoknak az a legbővebb halmaza, amelyen a függvény értelmezhető. Jellemzés:. É.T.: R. É.K.: [ ; ]. érushely: cos = 0 cos = nincs zérushelye. Periódus:

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 5. Monotonitás: Szigorúan monoton növekvő: + k + k k Szigorúan monoton csökkenő: 0 + l + l l. Szélsőérték: Maimumhely: = k k Maimumérték: f ( ) = Minimumhely: = + l l Minimumérték: f ( ) = 7. Paritás: Páros y tengely menti nyújtás / zsugorítás B jelűek feladata Mintapélda Ábrázoljuk a függvény grafikonját és jellemezzük az f ( ) sin Jellemzés:. É.T.: R. É.K.: [ ; ]. érushely: = függvényt! sin = 0 sin = 0 = k, k. Periódus: 5. Monotonitás: Szigorúan monoton növekvő: + k + k k Szigorúan monoton csökkenő: + l + l l. Szélsőérték: Maimumhely: = + k k

Matematika A. évfolyam Tanári útmutató Maimumérték: f ( ) = Minimumhely: = + l l Minimumérték: f ( ) = 7. Paritás: Páratlan tengely menti eltolás C jelűek feladata Mintapélda f = sin függvényt! Ábrázoljuk a függvény grafikonját és jellemezzük az ( ) Jellemzés:. É.T.: R. É.K.: [ ; ]. érushely: sin = 0. Periódus: 5. Monotonitás: = + k Szigorúan monoton növekvő: Szigorúan monoton csökkenő:. Szélsőérték: Maimumhely: Maimumérték: ( ) Minimumhely: Minimumérték: ( ) = + k k f = 7 = + l l f = 7. Paritás: nem páros, nem páratlan k + k + k k 7 + l + l l

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató tengely menti nyújtás / zsugorítás D jelűek feladata Mintapélda 5 Ábrázoljuk a függvény grafikonját és jellemezzük az f ( ) cos Jellemzés:. É.T.: R. É.K.: [ ; ]. érushely: = függvényt! cos = 0 = + k k. Periódus: 5. Monotonitás: Szigorúan monoton növekvő: Szigorúan monoton csökkenő:. Szélsőérték: Maimumhely: = k k Maimumérték: f ( ) = Minimumhely: = + l l f = Minimumérték: ( ) 7. Paritás: Páros + k + k k 0 + l + l l Feladatok. Ábrázold és jellemezd, a valós számok halmazán értelmezett alábbi függvényeket! a) f ( ) = sin b) h( ) = sin ezek a függvények elemi függvénytranszformációkkal ábrázolhatók.

Matematika A. évfolyam Tanári útmutató. Ábrázold és jellemezd, a valós számok halmazán értelmezett alábbi függvényeket! a) g( ) = sin b) h( ) = cos ( ) ezek a függvények elemi függvénytranszformációkkal ábrázolhatók.. Ábrázold és jellemezd, a valós számok halmazán értelmezett alábbi függvényeket! a) f ( ) = sin b) g ( ) = cos + ezek a függvények elemi függvénytranszformációkkal ábrázolhatók.. Ábrázold és jellemezd, a valós számok halmazán értelmezett alábbi függvényeket! a) f ( ) = sin b) g ( ) = sin c) h ( ) = cos ezek a függvények elemi függvénytranszformációkkal ábrázolhatók. 5. Ábrázold közös koordináta-rendszerben a valós számok halmazán értelmezett következő függvényeket és a h függvényt jellemezd! A jelűek feladata a) f ( ) = sin g( ) = sin h ( ) = sin B jelűek feladata b) f ( ) = cos g( ) = cos h( ) = cos C jelűek feladata c) f ( ) = cos g ( ) = cos h ( ) cos + D jelűek feladata d) f ( ) = sin g( ) = sin h( ) = sin =

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 5 A függvények jellemzése az ábráról leolvasható. a) b) c) d). Ábrázold és jellemezd, a valós számok halmazán értelmezett alábbi függvényeket! a) f ( ) = sin b) h ( ) = sin ezek a függvények elemi függvénytranszformációkkal ábrázolhatók.

Matematika A. évfolyam Tanári útmutató II. Összefüggések a szögfüggvények között (ismétlés) Nevezetes szögek szögfüggvényei 8.. kártyakészlet alkalmazása Módszertani megjegyzés: Dominó játék A nevezetes szögek szögfüggvényeinek felelevenítésére minden csoportnak adjunk darab kártyát. Feladatuk felfelé fordítva kirakni a dominókat úgy, hogy minden nevezetes szögfüggvényhez megtalálják a hozzá tartozó értéket. Ha nem emlékeznének, segítségül felrajzolhatjuk a nevezetes szögeket tartalmazó derékszögű háromszögeket. sin 0 0 sin sin sin 0 cos cos 0 cos5 cos tg 5 tg tg 0 tg 0 ctg 5 ctg ctg 0 ctg α sinα cosα tgα ctgα 0 5 0

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 7 Pitagoraszi azonosság sin α + cos α = Pótszögek szögfüggvényei ( ) sin α = cos 90 α ( ) cos α = sin 90 α ( 90 α ) α 90 + k 80 tgα = ctg k ( 90 α ) α l 80 ctgα = tg l A tangens és kotangens szögfüggvényekre vonatkozó összefüggések sinα tgα = α 90 + k 80 k cosα cosα ctgα = α l 80 l sinα Mintapélda A számológép használata nélkül állítsuk növekvő sorrendbe az alábbi kifejezések pontos értékeit! a) sin 0 + cos 0 ; b) sin cos 7 ; 5 tg ; d) sin + sin. c) ( 5 ) ctg 5 Csak a nevezetes azonosságokkal meghatározott értékeket fogadjuk el. a) sin 0 + cos 0 = = b) sin sin( 90 7 ) = sin sin = 0 c) tg ( 80 5 ) ctg 5 = tg 5 ctg 5 =

Matematika A. évfolyam Tanári útmutató 8 5 d) sin + cos = sin + cos = = d) < a) < b) < c) Mintapélda 7 Az α szög meghatározása nélkül számítsuk ki a többi szögfüggvényértéket, ha cos α = 0, 8! Minden α szögre teljesül, hogy sin α + cos α =, ebből sin α = cos α. Behelyettesítve: sin α = 0,8 = 0,, ebből sin α = 0, sinα = 0, sinα = 0, sinα 0, sinα 0, tgα = = = 0,75 = tgα = = = 0,75 = cosα 0,8 cosα 0,8 ctgα = = = tgα 0,75 ctgα = = = tgα 0,75 Feladatok 8. Keresd meg a párját (számológép használata nélkül)! a) sin 0 A) b) cos ( 0 ) B) c) tg 0 C) d) ctg 0 D) e) ctg ( 50 ) E) f) tg 00 F) g) ctg 95 G) h) tg ( 5 ) H) i) cos ( 00 ) I)

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 9 j) sin ( 0 ) J) k) cos 5 K) l) sin 5 L) a) J), b) F), c) G), d) E), e) D), f) I), g) C), h) A), i) K), j) H), k) L), l) B). 9. Mennyi a következő kifejezések pontos értéke? a) sin cos 79 + sin 79 cos ; b) cos 0 sin 50 ; c) sin + cos 0 0 + sin cos. 0 0 a) sin sin + cos cos = sin + cos = b) c) = Módszertani megjegyzés: Szakértői mozaik alkalmazása A következő négy feladat megoldásához szakértői mozaik módszert javaslunk. A jelűek feladata 0. Az α szög meghatározása nélkül számítsd ki, sin α pontos értékét, ha cosα = 0,! A trigonometrikus pitagorasz azonosságot alkalmazva: sin = ( 0,) = 0, ebből sinα = 0,8 sinα = 0,8 sinα = 0, 8 α,

Matematika A. évfolyam Tanári útmutató 0 B jelűek feladata. Az α szög meghatározása nélkül számítsd ki, cos α pontos értékét, ha sin α = 0,! ( 0,) = 0, 870 cos α =, ebből cosα = 0,9 cosα = 0,9 cosα = 0,9 C jelűek feladata. Az α szög meghatározása nélkül számítsd ki, tg α pontos értékét, ha cos α =! sin α = = 5 9, ebből 5 5 sinα = sinα = sinα = 5 5 5 tgα = = tgα D jelűek feladata 5 = =. Az α szög meghatározása nélkül számítsd ki, ctg α pontos értékét, ha 5 sinα =! 5 cos α = =, ebből cosα = cosα = cosα = 5 5 5 5 5 5 ctgα 5 = = ctgα = = 5 5. Az α szög meghatározása nélkül számítsd ki a többi szögfüggvényértéket, ha a) sin α = b) 0 cosα = c) 7 tg α = 5 a) cos α = = cos = cos α α 9 =

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató tgα = = tgα = = ctgα = = ctgα = = Vagy felhasználható a következő derékszögű háromszög: b) 0 9 sin α = = sin = sin 7 α α 9 7 tgα 7 tg 7 = = α = = 0 0 0 0 7 7 = 7 0 0 ctgα = ctgα = Vagy felhasználható a következő derékszögű háromszög: c) 5 ctg α = sinα cosα cosα = sinα = + cos α = cos α = cosα 5 5 5 5 cosα = cosα = 5 9 sin α = = sinα = sinα = 5 5 Vagy felhasználható a következő derékszögű háromszög:

Matematika A. évfolyam Tanári útmutató III. Trigonometrikus egyenletek Azokat az egyenleteket és egyenlőtlenségeket, amelyekben az ismeretlen valamilyen szögfüggvénye szerepel, trigonometrikus egyenleteknek, illetve egyenlőtlenségeknek nevezzük. Ezeknek az egyenleteknek a megoldásához a tanult trigonometrikus azonosságok nyújtanak segítséget. Mintapélda 8 Oldjuk meg a sin = egyenletet a valós számok halmazán! A feladat megoldásában segítségünkre lehet akár a körben, akár az f ( ) sin = függvény grafikonja. sin definíciója az egységsugarú Két különböző egységvektor van, amelyek második koordinátája. Az ezekhez tartozó forgásszögek a A megoldások ívmértékben: sin = egyenlet megoldásai: = 0 + k 0 k = 50 + l 0 l = + k k 5 = + l l Ellenőrizhetjük, hogy és valóban gyökei a sin = egyenletnek.

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató Módszertani megjegyzés: Azokban a feladatokban, amelyekben nincs kimondva, hogy az eredményt fokban vagy radiánban várjuk, ott fogadjuk el a helyes megoldást, akár fokban, akár radiánban adja meg a tanuló, vagy jelezzük, hogy mit várunk. Az emelt szintű érettségin a valós számokon megoldandó trigonometrikus feladatok végeredményét radiánban kérik. Ha a feladatban radián szerepel, akkor a periódust is ívmértékben kell megadni, ha fokban mérik a szöget, akkor pedig fokban. Ha a tanár úgy látja, hogy a tanulók könnyebben dolgoznak fokokkal, akkor engedje meg, hogy az eredményt először fokban adják meg, még akkor is, ha a feladatban valós számok szerepelnek. Kívánjuk meg, hogy a végeredményt a feladatban előírtak szerint adják meg. Mintapélda 9 Oldjuk meg a cos + = 0 egyenletet a valós számok halmazán! Rendezzük az egyenletet: cos =. Az ezekhez tarto- Két különböző egységvektor van, amelyek első koordinátája zó forgásszögek a cos = egyenlet megoldásai: Az egyenlet megoldásai: A megoldások ívmértékben: = 50 + k 0 k = 0 + l 0 l 5 = + k k 7 = + l l melyek igazzá is teszik az eredeti egyenletet.

Matematika A. évfolyam Tanári útmutató Módszertani megjegyzés: A következő mintapéldában számológépet használunk, mert nem nevezetes szögre visszavezethető. Mintapélda 0 Oldjuk meg a tg = 5 egyenletet a valós számok halmazán! 5 Rendezzük az egyenletet: tg =. Számológéppel vagy függvénytáblázat segítségével kapjuk a megoldást: A feladat megoldásában segítségünkre lehet akár a tg definíciója az egységsugarú körben, akár az f ( ) tg = függvény grafikonja.,7 + k 80 k Ívmértékben: 0, + k k Ennek helyességéről az ellenőrzés során meggyőződhetünk. Megjegyzés: A trigonometrikus egyenletek gyökeit általában radiánban adjuk meg, mert az valós szám, és a megoldásokat nagy részben ezen a halmazon keressük. Vigyázzunk a számológép DRG beállítására! Feladatok Módszertani megjegyzés: Szakértői mozaik alkalmazása A következő négy feladat megoldásához szakértői mozaik módszert javaslunk. A jelűek feladata 5. Add meg azoknak a 0 és 0 közötti α szögeknek a nagyságát, amelyekre igaz az alábbi egyenlőség!

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 5 a) sin α = 0 b) sinα = a) α = 0, α = 80, α = 0 ; b) α = 0, α = 0. B jelűek feladata. Add meg azoknak az α szögeknek a nagyságát, amelyekre igaz az alábbi egyenlőség! a) cos α = 0 b) cosα = a) α =, α = ; b) α 8,, α, 85. C jelűek feladata 7. Add meg azoknak a 0 és 0 közötti α szögeknek a nagyságát, amelyekre igaz az alábbi egyenlőség! a) tgα = b) tg α = a) α = 0, α = 0 ; b) α 0,0 α 8, 0. D jelűek feladata 8. Add meg azoknak a 0 és közötti α szögeknek a nagyságát, amelyekre igaz az alábbi egyenlőség! a) ctg α = b) ctgα = 0 a) α,8, α 5, 59 ; b) nincs ilyen szög.

Matematika A. évfolyam Tanári útmutató 9. Oldd meg a következő egyenleteket! a) sin α = 0, b) sin α =, 5 c) 8 sinα = a) α,87 + k 0 k, α, + l 0 l b) nincs ilyen szög, mert minden -re: sin 5 c) α = 0 + k 0 = + k k, α = 50 + l 0 = + l l 0. Oldd meg a következő egyenleteket! a) cosα = 0, b) cos α = c) cosα + = 0 a) α,58 + k 0 k, α, + l 0 l b) α = 0 + k 0 = + k k, α = 0 + l 0 = + l l c) α = 0 + k 0 = + k k α = 0 + l 0 = + l l. Oldd meg a következő egyenleteket! a) tg =, 75 b) tg = c) tg = 0 a) 70,0 + k 80 k b),9 + k 80 k c),9 + k 80 k. Oldd meg a következő egyenleteket a valós számok halmazán! a) ctg =, 5 b) ctg = 5 c) ctg + = 0 a), + k 80 k b),80 + k 80 k c) 08, + k 80 k

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 7 Mintapélda Oldjuk meg Oszthatunk cos = sin egyenletet a valós számok halmazán! sin = = tg cos cos -szel, mert cos 0, ui. sin és cos nem lehet egyszerre 0. = 0 + k 80 = + k k Ez valóban megoldása az egyenletünknek. Mintapélda Oldjuk meg a sin cos + cos = cos egyenletet a valós számok halmazán! Rendezzük nullára az egyenletet: sin cos + cos = 0 Alakítsunk szorzattá: cos ( sin + ) = 0 Egy szorzat akkor és csak akkor nulla, ha valamelyik tényezője nulla, ezért vagy cos = 0 = 90 + k 80 = + k k 7 vagy sin = = 0 + l 0 = + l l, = 0 + m 0 = + m m Ez valóban megoldása az egyenletünknek. Feladatok Megjegyzés: A feladatok megoldásához az ellenőrzés vagy az ekvivalens lépésekre való hivatkozás hozzátartozik.. Oldd meg a következő egyenleteket a valós számok halmazán! a) cos = sin b) cos sin = 0 c) 5 sin + cos = cos a) 8, + k 80 k b), + k 80 k c) 58, + k 80 k

Matematika A. évfolyam Tanári útmutató 8. Oldd meg a következő egyenleteket a valós számok halmazán! b) cos + cos = 0 a) sin ( cos ) = 0 Nullára redukálunk. Szorzattá alakítunk. Egy szorzat akkor és csak akkor nulla, ha valamelyik tényezője nulla. a) sin = 0 = k 80 = k k cos = = 0 + l 0 = + l l, b) ( cos + ) cos = 0 5 = 00 + m 0 = + m m cos = 0 = 90 + k 80 = + k k cos = 0,8 + l 0 0,59 + l l, 55,5 + m 0, + m m 5. Oldd meg a következő egyenleteket! a) sin = b) sin = c) 9 a) sin = 9,7 + k 0 k cos = 0,5 + l 0 l 99,7 + m 0 m 0,5 + n 0 n b) sin = = 0 + k 80 = + k k 5 = 50 + l 80 = + l l c) cos = = 5 + k 90 = + k k

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 9 Mintapélda Oldjuk meg a 0 cos = + egyenletet a valós számok halmazán! Rendezzük az egyenletet: cos = Vezessünk be új változót: α = Ebből: cos = α + = k k α + = k + = k + = l l α + = l 9 8 + = l Az egyenlet megoldásai: ( ) + = + = k k k ( ) + = + = l l l 9 9 8 Ezek helyességéről ellenőrzéssel győződjünk meg.

Matematika A. évfolyam Tanári útmutató 0 Feladatok. Oldd meg a következő egyenleteket! a) sin ( ) = 0 b) sin ( + 5 ) = 0, 5 a) = k 90 = k k b),7 + k 80 k,, + l 80 l 7. Oldd meg a következő egyenleteket! 5 a) cos = 0, 5 b) cos = 5 a) = 0 + k 0 = + k k, = 00 + l 0 = + l l 9 9 5 b) = + k k 8. Oldd meg a következő egyenleteket a valós számok halmazán! a) tg = b) tg = a) = 5 + k 90 = + k k b) = + k k 9. Oldd meg a következő egyenleteket a valós számok halmazán! a) ctg = b) ctg + = a) = 5 + k 0 = + k k

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató b) = + k k 0. Oldd meg a következő egyenleteket a valós számok halmazán! a) sin = b) cos + = a) sin = = + k k 5 = + l l = + m m = + n n b) cos + = = + k k. Határozd meg, hogy mely valós számokra értelmezhetők a következő kifejezések! a) sin b) sin A négyzetgyök definíciója miatt: c) + cos d) sin a) sin 0 A határszögek: sin = 0 = 0 = 0 = 80 = Értelmezési tartomány: k 0 80 + k 0, vagy k + k k b) sin > 0 A határszögek: sin = 0 = 0 = 0 = 80 = Értelmezési tartomány: k 0 < < 80 + k 0, vagy k < < + k k c) + cos 0 cos ez minden valós számra telesül. Értelmezési tartomány: R d) sin 0 cos 0 ez minden valós számra telesül. Értelmezési tartomány: R

Matematika A. évfolyam Tanári útmutató Módszertani megjegyzés: Szakértői mozaik alkalmazása A következő négy mintapélda feldolgozásához szakértői mozaik módszert javaslunk. A jelűek feladata Mintapélda Oldjuk meg a sin( 0 ) = sin( + 00 ) egyenletet! Meghatározzuk azokat a szögeket, amelyeknek szinuszai egyenlőek: I. eset II. eset Ha a két szög megegyezik, illetve csak a periódus Ha a két szög egymás kiegészítő szögei, illet- egész számú többszörösével térnek el ve csak a periódus egész számú többszörösé- egymástól: vel térnek el egymástól: 0 = + 00 + k 0 k 0 = 80 ( + 00 ) + l 0 l = 0 + k 0 = 0 + k 80 = 00 + l 0 = 5 + l 90 Az egyenlet megoldásai: = 0 + k 80 k = 5 + l 90 l Ezek helyességéről az ellenőrzés során győződjünk meg. B jelűek feladata

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató Mintapélda 5 Oldjuk meg a cos + = cos egyenletet a valós számok halmazán! Meghatározzuk azokat a szögeket, amelyeknek koszinuszai egyenlőek: I. eset II. eset Ha a két szög megegyezik, illetve csak a periódus egész számú többszörösével térnek el a periódus egész számú többszörösével térnek Ha a két szög egymás ellentettje, illetve csak egymástól: el egymástól: + = + k k + = + l l 5 = + k = + l l = + Az egyenlet megoldásai: 5 = + k k l = + l Ezek helyességéről az ellenőrzés során győződjünk meg. C jelűek feladata

Matematika A. évfolyam Tanári útmutató Mintapélda Oldjuk meg a tg ( 8 )= tg ( 5 + ) egyenletet! Két szög tangense csak akkor egyenlő, ha a két szög megegyezik, illetve csak a periódus egész számú többszörösével térnek el egymástól: 8 = 5 + + k 80 k = 7 + k 80 = 58 + k 0 Az egyenlet megoldásai: = 58 + k 0 k, melyek igazzá is teszik az eredeti egyenletet. D jelűek feladata Mintapélda 7 7 Oldjuk meg a sin = sin egyenletet a valós számok halmazán! 5 5 I. eset II. eset Ha a két szög megegyezik, illetve csak a periódus egész számú többszörösével térnek el ve csak a periódus egész számú többszörösé- Ha a két szög egymás kiegészítő szögei, illet- egymástól: vel térnek el egymástól: 7 7 = + k k = + l l 5 5 5 5 9 8 = + k = + l 5 = + l

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 5 9 = + k 0 Az egyenlet megoldásai: 9 = + k k 0 = + l l Ellenőrizzük, hogy és valóban gyökei az eredeti egyenletnek. Feladatok. Oldd meg a következő egyenleteket! a) sin = sin b) sin + = sin c) cos cos = cos 5 cos = d) ( ) l a) = k 0 = k k, = 0 + l 0 = + l 5 l b) = + k k, = + l 8 l c) = k 80 = k k, = l 90 = l 5 d) = + k 0 k, = 5 + l 7 l. Oldd meg a következő egyenleteket! a) tg = tg b) 5 tg tg = c) tg = tg ( + 70 )

Matematika A. évfolyam Tanári útmutató a) = k 80 = k k b) = k 90 = k k c) = 7,5 + k 5 k. Oldd meg a következő egyenleteket a valós számok halmazán! a) sin = sin 5 b) cos = cos k a) = k, = + l l k l b) = + k, = l 8 cos 90 0 = cos. Mintapélda 8 Oldjuk meg a sin ( + 0 ) = cos egyenletet! Az egyenlet mindkét oldalát úgy alakítjuk át, hogy mindkét oldalon azonos szögfüggvények szerepeljenek. Felhasználjuk, hogy egy szög koszinusza megegyezik pótszögének szinuszával: sin ( + 0 ) = sin( 90 ) Fordítva is gondolkodhatunk. Egy szög szinusza megegyezik pótszögének koszinuszával: ( ) Meghatározzuk azokat a szögeket, amelyeknek szinuszai egyenlők: I. eset II. eset Ha a két szög megegyezik, illetve csak a periódus Ha a két szög egymás kiegészítő szögei, illet- egész számú többszörösével térnek el ve csak a periódus egész számú többszörösé- egymástól: vel térnek el egymástól: + 0 = 90 + k 0 k + 0 = 80 ( 90 ) + l 0 l = 70 + k 0 = 70 + l 0 = 7,5 + k 90 k = 5 + l 80 l

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 7 Az egyenlet megoldásai: = 7,5 + k 90 k = 5 + l 80 l A megoldások helyességéről ellenőrzéssel győződjünk meg. Feladatok 5. Oldd meg a következő egyenleteket! (A megoldáshoz használd fel a pótszögek szögfüggvényei közötti összefüggéseket!) 5 a) sin = cos b) cos = sin + a) =,5 + k 90 = + k k, = 5 + l 80 = + l l 8 b) = + k k Mintapélda 9 Oldjuk meg a tg tg + = 0 egyenletet a valós számok halmazán! Az egyenletnek csak ott van értelme, ahol a cos 0, azaz + k k Ez tg -ben másodfokú egyenlet. Vezessük be az tg = y új ismeretlent, ekkor y y + = 0, majd oldjuk meg az így kapott másodfokú egyenletet: y = y =. tg = = 0 + k 80 = + k k tg = = 0 + k 80 = + k k

Matematika A. évfolyam Tanári útmutató 8 Mintapélda 0 Oldjuk meg a 8 + 7cos = sin egyenletet! A pitagoraszi összefüggés alapján: sin = cos Ezt helyettesítsük be az eredeti egyenletbe: 8 + 7cos = ( cos ) Rendezzük az egyenletet: cos + 7cos + = 0 Ez cos -ben másodfokú egyenlet. Vezessük be az y = cos új ismeretlent, ekkor y + 7y + = 0 majd oldjuk meg az így kapott másodfokú egyenletet: y = y = cos = = 0 + k 0 = + k k = 0 + l 0 = + l l cos =,8 + m 0 m 88,9 + n 0 n Ezek helyességéről az ellenőrzés során győződjünk meg. Mintapélda Oldjuk meg a cos = sin egyenletet a valós számok halmazán! Emeljük négyzetre az egyenlet mindkét oldalát: cos = sin sin + A négyzetre emelés nem ekvivalens átalakítás, ezért bővülhet a gyökök halmaza, és hamis gyökök léphetnek fel. Ezért fontos, hogy a kapott értékeket ellenőrizzük. Mivel cos = sin, ezért ( sin ) = sin sin + Rendezzük az egyenletet: 7sin sin = 0 Ez sin -ben másodfokú egyenlet. Vezessük be az y = sin új ismeretlent, ekkor 7y y = 0 majd oldjuk meg az így kapott másodfokú egyenletet: y =,898 y = 0, 0. 0 sin = 0, 898,0 + k 0 k,90 + l 0 l sin = 0, 0, + m 0 m

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 9 98,9 + n 0 n Behelyettesítéssel meggyőződhetünk arról, hogy és valóban gyökei az eredeti egyenletnek, és azonban nem. Ez abból is látható, hogy ezekre az értékekre sin és cos előjele különböző, továbbá sin >. Feladatok Módszertani megjegyzés: Torpedójáték A játékban páros számú csoportra bontjuk az osztályt, majd megbeszéljük, hogy melyek a szembenálló csoportok. A csoportok egy-egy hadiflottának a parancsnokai; céljuk az ellenfél flottájának elsüllyesztése. Az első teendő a flotta elhelyezése a bal oldali 00-es táblán úgy, hogy a többi csoport ne láthassa. Minden csoportnak db -mezős, db -mezős, - db -, - és 5 mező nagyságú hajója van (a vagy többmezős hajóknak a mezőknek legalább egy oldalával érintkezniük kell). Ügyeljünk arra, hogy az elhelyezett hajók ne érintsék egymást. Ha az összes csoport minden hajóját elhelyezte, kezdődhet a munka. Minden csoportnak az a feladata, hogy a. feladatot legjobb tudása szerint megoldja. Minden jó feladatért adjunk 5 torpedót. Ha a feladatok megoldása nem tökéletes, de bizonyos része értékelhető adhatunk érte résztöltényeket is. Ezután összegezzük, hogy melyik csoport hány lövéssel rendelkezik, majd kezdődhet az ütközet. A csoportok felváltva indítják a torpedóikat, és bemondják az éppen célzott mezőt (pl. C). Válaszul az ellenfél bemondja, hogy sikeres volt-e a találat (pl.: nem talált, talált, süllyedt). A jobb oldali táblán jelölhetik a csoportok az ellenfél flottájának elhelyezkedését. A játék nyertese az a csoport, aki előbb lövi ki az ellenfél összes hajóját. Természetesen aki nem akarja a torpedót használni, az frontális munka formájában is megoldhatja az ott található egyenleteket.

Matematika A. évfolyam Tanári útmutató 0 5 7 8 9 0 A B C D E F G H I J 5 7 8 9 0 A B C D E F G H I J. Oldd meg a következő egyenletet a valós számok halmazán! a) sin + 9sin 5 = 0 b) 5 + 8cos = cos c) cos + cos = 5cos + d) cos + 7cos = sin + e) 5sin cos + = sin + f) ( sin ) ( sin ) = g) tg = cos h) tg + ctg = i) ctg = tg j) sin = cos 5 a) = 0 + k 0 = + k k, = 50 + l 0 = + l l b) = 0 + k 0 = + k k, = 0 + l 0 = + l l c) = 80 + k 0 = + k k d) Alkalmazzuk a sin + cos = pitagoraszi összefüggést! Megoldjuk az így kapott másodfokú egyenletet. 5 = 0 + k 0 = + k k, = 00 + l 0 = + l l e) Alkalmazzuk a sin + cos = pitagoraszi összefüggést! Megoldjuk az így kapott másodfokú egyenletet. = 0 + k 0 = + k k, = 0 + l 0 = + l l f) Nincs olyan valós szám, amely az egyenletet kielégíti.

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató sin g) Alkalmazzuk a tg = azonosságot! cos cos 0, azaz 90 + k 80 = + k k 5 = 0 + k 0 = + k k, = 50 + l 0 = + l l h) Alkalmazzuk a ctg = azonosságot! tg sin 0, cos 0, azaz k 90 = k k = 5 + k 80 = + k k i) sin 0, cos 0, azaz k 90 = k k 0,9 + k 80 k, 9,09 + l 80 l j) Négyzetre emelünk. = k 0 = k k, = 90 + l 0 = + l l 7. Derékszögű háromszögben az α hegyesszögre teljesül, hogy tg α + ctgα =,. Határozd meg az α szöget? ctg α =, y = tg α, ekkor y,y + = 0 y,77, y 0,. tg α α 70, α 0

Matematika A. évfolyam Tanári útmutató IV. Trigonometrikus egyenlőtlenségek Megjegyzés: Trigonometrikus egyenlőtlenségek megoldásakor célszerű először megkeresni a határszögeket, majd ezután az egységkörön szemléltetni a megoldást. Mintapélda Oldjuk meg a cos egyenlőtlenséget! Legyen = α. A határszögek: cosα = α = 0 = α = 0 = 0 + k 0 0 + k 0, vagy + k + k k Az egyenlőtlenség megoldása: 5 + k 80 5 + k 80, vagy + k + k k Megjegyzés: A határszögeket elég az első négy negyedben meghatározni, de utána ne feledkezzünk meg a periodicitásról.

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató Mintapélda Oldjuk meg a sin cos < sin egyenlőtlenséget! Rendezzük az egyenlőtlenséget, úgy hogy a jobb oldalon 0 legyen: sin cos sin < 0 Kiemelünk sin -et: sin ( cos ) < 0 Egy két tényezős szorzat akkor negatív, ha tényezői ellenkező előjelűek, ezért a következő két eset fordulhat elő: I. eset: Ha sin > 0 és cos < 0 sin > 0 A határszögek: sin = 0 = 0 = 0 = 80 = 0 + k 0 < < 80 + k 0, vagy k < < + k k cos < A határszögek: cos = = 0 = 5 = 00 = 5 0 + k 0 < < 00 + k 0, vagy + k < < + k k A két intervallum metszete:

Matematika A. évfolyam Tanári útmutató 0 + k 0 < < 80 + k 0, vagy + k < < + k k II. eset: Ha sin < 0 és cos > 0 sin < 0 A határszögek: sin = 0 = 80 = = 0 = 80 + k 0 < < 0 + k 0, vagy + k < < + k k cos > A határszögek: cos = = 0 = = 0 = 0 + k 0 > > 0 + k 0, vagy + k > > + k k A két intervallum metszete:

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 5 5 00 + k 0 < < 0 + k 0, vagy + k < < + k k Összefoglalva, az egyenlőtlenség megoldása: 0 + k 0 < < 80 + k 0, vagy + k < < + k k 5 00 + k 0 < < 0 + k 0, vagy + k < < + k k Mintapélda Oldjuk meg a tg ( + 5 ) > egyenlőtlenséget! Értelmezési tartomány: 5 + k 0 k Legyen α = + 5. A határszög: tgα = α = 5 Ebből: 5 + k 80 < + 5 < 90 + k 80 k

Matematika A. évfolyam Tanári útmutató 0 + k 80 < < 75 + k 80 k Az egyenlőtlenség megoldása: 0 + k 0 < < 5 + k 0 k Ezt mutatja az első négy negyedben az alábbi ábra: Feladatok 8. Oldd meg a következő egyenlőtlenségeket, majd keresd meg a feladathoz tartozó ábrát! a) sin 0 A) b) cos < B) c) sin C)

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 7 d) cos > D) e) tg > E) f) ctg F) a) A határszögek: sin = 0 = 0 = 0 = 80 = k 0 80 + k 0, vagy k + k k b) A határszögek: cos = = 0 = 5 = 00 = 5 0 + k 0 < < 00 + k 0, vagy + k < < + k k 5 c) A határszögek: sin = = 0 = = 00 = 5 0 + k 0 00 + k 0, vagy + k + k k d) A határszögek: cos = = 5 = = 5 =

Matematika A. évfolyam Tanári útmutató 8 5 + k 0 < < 5 + k 0, vagy + k < < + k k e) A határszög: tg = = 0 = 0 + k 80 < < 90 + k 80, vagy + k + k k f) A határszög: ctg = = 5 = 5 + k 80 80 + k 80, vagy + k + k k 9. Oldd meg a következő egyenlőtlenségeket a valós számok halmazán! a) sin > b) cos c) sin < d) cos 5 a) 0 + k 80 < < 50 + k 80, vagy + k < < + k k 5 b) 0 + k 80 50 + k 80, vagy + k + k k c) 5 + k 80 < < 5 + k 80, vagy + k < < + k k d) 0 + k 80 0 + k 80, vagy + k + k k 0. Oldd meg a következő egyenlőtlenségeket a valós számok halmazán! a) sin b) cos a) 5 + k 80 05 + k 80, vagy másképp 7 + k + k k k 5 k b) 5 + k 0 75 + k 0, vagy + + k

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 9 V. Vegyes feladatok. Ábrázold és jellemezd, a valós számok halmazán értelmezett alábbi függvényeket! a) g ( ) = cos + b) f ( ) = cos ezek a függvények elemi függvénytranszformációkkal ábrázolhatók.. Ábrázold és jellemezd, a valós számok halmazán értelmezett alábbi függvényeket! a) f ( ) = tg ( ) b) g( ) = tg ezek a függvények elemi függvénytranszformációkkal ábrázolhatók.. Ábrázold és jellemezd, a valós számok halmazán értelmezett alábbi függvényeket! a) g( ) = cos b) i ( ) = cos + + ezek a függvények elemi függvénytranszformációkkal ábrázolhatók.. Mennyi a következő kifejezések pontos értéke? a) ( 5 + cos 0 ) sin 0 tg ; b) + tg tg ; sin c) sin 70 tg55 ctg55 cos 0 ; d) sin 5 sin 5 cos55 + cos 55. a) ( + 0,5) 0,5 = 0, 75 b) + = 8 c) sin 70 sin 70 = d) ( sin 5 cos55 ) = ( sin 5 sin 5 ) = 0

Matematika A. évfolyam Tanári útmutató 50 5. Add meg azoknak a 0 és 0 közötti α szögeknek a nagyságát, amelyekre igaz az alábbi egyenlőség! a) sin α = b) sinα = a) α = 0, α = 0 b) α = 5, α = 5. Add meg azoknak a 0 és közötti α szögeknek a nagyságát, amelyekre igaz az alábbi egyenlőség! a) cos α = b) cosα = 5 a) α =, α = b) α = 7. Add meg azoknak a 0 és 0 közötti α szögeknek a nagyságát, amelyekre igaz az alábbi egyenlőség! a) tgα = b) tgα = a) α = 5, α = 5 b) α = 0, α = 00 8. Add meg azoknak a 0 és közötti α szögeknek a nagyságát, amelyekre igaz az alábbi egyenlőség! a) ctgα = d) ctgα = 5 7 a) α =, α = b) α =, α =

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 5 9. Oldd meg a következő egyenleteket! a) sin α = b) sinα = 0, 7 c) sinα = 0 a) α = 90 + k 0 = + k k b) α,9 + k 0 k, α, + l 0 l c) α = 0 + k 0 = + k k, α = 0 + l 0 = + l l 50. Oldd meg a következő egyenleteket! a) cosα = b) cos α = 0, 9 c) cosα = 0 a) nincs ilyen szög, mert minden -re: cos b) α 9,5 + k 0 k, α 90, + l 0 l c) α 5,7 + k 0 k α 05, + l 0 l 5. Oldd meg a következő egyenleteket a valós számok halmazán: a) cos sin = sin b) cos = c) sin = 9 a) Nullára redukálunk. Szorzattá alakítunk. Egy szorzat akkor és csak akkor nulla, ha valamelyik tényezője nulla. sin = 0 = k 80 = k k cos = = 80 + k 0 = + k k b) cos = = 0 + k 80 = + k k c) sin = nincs megoldás = 0 + l 80 = + l l

Matematika A. évfolyam Tanári útmutató 5 5. Oldd meg a következő egyenleteket! a) sin = b) sin + = 0 8 a) = 0 + k 0 k, = 70 + l 0 l 5 b) = + k k, = + l l 8 8 5. Oldd meg a következő egyenleteket! a) cos ( ) = b) cos( + 5 ) = 5 a) = k 90 k b), + k 80 k, 5,0 + l 80 l 5. Oldd meg a következő egyenleteket a valós számok halmazán! a) tg + = b) ctg = a) = + k k ; b) = k k. 8 55. Egy háromszög α szögére a következő összefüggést kaptuk: sin ( + 0 ) = 0, 89 α. a) Mekkora lehet α? b) Mekkora a harmadik. szög, ha a háromszög derékszögű? a) α 5, α 95 ; b) α 5. 5. Egy derékszögű háromszög α és β hegyesszögeire fennáll, hogy sin α + cosβ =,85. Mekkorák a háromszög hegyesszögei? ( 90 α ) = sinα + sinα = sinα sin 0, 8 sin α + cos α = α 0, β 50

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 5 57. Igazoljuk, hogy minden derékszögű háromszögben α + cosα > ( α < 90 ) Derékszögű háromszögben sin! b a b sin α + cosα = a + = + (a és b befogók, c az átfogó). c c c a + b A háromszög egyenlőtlenség miatt a + b > c, ezért >, vagyis sin α + cosα >. c 58. Egy háromszög területe 9, cm, két oldala 5 cm és cm. Mekkora lehet a két oldal által közbezárt szög? a b sinγ 5 sinγ T = 9, = sinγ = 0, 57 γ 5, γ 5 59. Egy paralelogramma egyik oldalának hossza cm, a másik oldalhoz tartozó magasság hossza 5,9 cm. Mekkorák a paralelogramma szögei? 5,9 sinα = 0, 9 γ 5, γ 55 0. Egy 5 m hosszú létrát a ház falának támasztottak, úgy hogy a lába,5 m-re volt a faltól. Mekkora szöget zár be a létra a talajjal? Milyen magasan van létra a falhoz támasztva?,5 cosα = = 0, α 7, 5 5 sin 7,5 =,77 m 5. Sík terepen egy férfitől 50 m távolságban van egy 0 m magas torony. Mekkora szögben látja a férfi a tornyot, ha szemmagassága 80 cm-re van a földtől?

Matematika A. évfolyam Tanári útmutató 5,8 tgα = = 0,0 α, 0 50 0,8 tgβ = = 50 β 9, 8, 50 = 0,5 α + β =,0 + 9, =, 8 Megjegyzés: Az ábra nem méretarányos.. Egy pontra ható két, egymásra merőleges erő nagysága F = 570 N, F = 80 N. Mekkora az eredő erő nagysága és F -gyel bezárt szöge! 80 tgα =,5 α 55, 5 570 80 F = 00,89 N sin 55,5. Oldd meg a következő egyenleteket! b) cos = cos + a) sin = sin( + 8 ) a) = 9 + k 80 k, = 0,5 + l 90 l l b) = k k, = + l 5 5. Oldd meg a következő egyenleteket! a) sin5 cos = b) sin( + 5 ) = cos( 0 ) 90 k 0 k l a) = + = + k, = 0 + l 0 = + l 7 7 7 b) = 7,5 + k 80 k

8. modul: Egyszerűbb trigonometrikus egyenletek, egyenlőtlenségek Tanári útmutató 55 5. Oldd meg a következő egyenlőtlenségeket a valós számok halmazán! a) ( sin + ) cos > 0 b) sin sin c) cos < cos a) 90 + k 0 < < 90 + k 0, vagy + k < < + k k b) 80 + k 0 0 + k 0, vagy + k + k k c) 90 + k 0 < < 90 + k 0, vagy + k < < + k k

Matematika A. évfolyam Tanári útmutató 5 Kisleikon Pitagoraszi azonosság: sin α + cos α = Pótszögek szögfüggvényei ( ) sin α = cos 90 α ( ) cos α = sin 90 α tg α = ctg ( 90 α) α + k k ( 90 α ) α l 80 ctgα = tg l Összefüggés egy szög tangense és kotangense között tgα = ctgα = ctg α tg α tg α ctgα = α k 90 k Trigonometrikus egyenlet (egyenlőtlenség): Az olyan egyenleteket és egyenlőtlenségeket, amelyekben az ismeretlen valamilyen szögfüggvénye szerepel, trigonometrikus egyenleteknek, illetve egyenlőtlenségeknek nevezzük. Megjegyzés: A fogalmak definíciói részletesebben a 0. évfolyam. moduljának kisleikonában találhatók.