Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II. kategória Megoldások és javítási útmutató 1. Határozzuk meg azokat az egész számokat, amelyekre az x + x + 64 polinom helyettesítési értéke egyenlő egy prímszám négyzetével! I. megoldás. Legyen x + x + 64 = p. Teljes négyzetté kiegészítéssel: (x + 16) + 00 = p. Ezt átrendezve, az ismert azonosság alapján a 00 = (p + x + 16) (p x 16) egyenlethez jutunk. Tehát 00-at kell felírnunk két egész szám szorzataként. Legyen egy ilyen lehetséges számpár (o 1 ; o ). Ekkor a p + x + 16 = o1, p x 16 = o egyenletrendszerhez jutunk. Az egyenleteket összeadva p = o 1 + o, tehát az osztópárok összege páros és pozitív. Ezeknek a feltételeknek a (; 1004), (4; 50) számpárok tesznek eleget (00 = 51). Így négy egyenletrendszert írhatunk fel: p + x + 16 = 1004, p x 16 = ; p + x + 16 =, p x 16 = 1004; p + x + 16 = 50, p x 16 = 4; p + x + 16 = 4, p x 16 = 50. A megoldások: p = 50; x = 45, p = 50; x = 517, p = 5; x =, p = 5; x = 65. pont A 5 nem prím, tehát a polinom helyettesítési értéke az x 1 = 45 és x = 517 egész számokra lesz egyenlő egy prímszám négyzetével. 1
II. megoldás. Legyen x + x + 64 = p. Ez x-re másodfokú egyenlet, melynek megoldása: x 1; = 16 ± p 00. x egész szám, ha p 00 = z, ahol z egész szám. Az egyenletet átrendezve a (p + z) (p z) = 00 egyenlethez jutunk. A megoldás innentől kezdve megegyezik az előzővel, a pontszámok ennek megfelelően adhatók. Megjegyzés: Természetesen teljes értékű megoldásnak kell elfogadni, ha a vizsgázó a paritás és az előjel vizsgálata helyett 00 összes osztópárját megadva megoldja az egyenletrendszereket és kiszűri a helyes megoldásokat. Ebben az esetben, ha valamelyik osztópár hiányzik, a feladat megoldására legfeljebb 4 pontot kaphat.. Tekintsük az 1+++4+...+00 összeget! Az összeg tetszőleges számú + előjelét -ra változtathatjuk. a) Bizonyítsuk be, hogy az előjelváltásokkal elérhető a 00 értékű összeg. b) Igazoljuk, hogy a 009 értékű összeg nem állítható elő előjelváltásokkal. Megoldás. a) Első lépésben ezt mutatjuk meg, hogy a 0 értékű összeg megvalósítható. Például a következő előjelváltási szisztéma célunknak megfelelő: (1 + 4+5 6+7... 1004)+( 1005+1006 1007+...+006 007+00). A felírt összeg első 1004 tagjának összege 50, mert számpáronként ( 1)-et adunk össze 50-szer. Hasonlóan a második 1004 db tag összege 50. Ha most az imént felírt összegben a 1004 előjelét pluszra változtatjuk, akkor a felírt 0 értékű összeg 00-cal nő, azaz 00 lesz. b) Egyetlen előjelváltás páros számmal változtatja meg a mindenkori összeget, hiszen ha az S értékű összegben az előjeles x szám előjelét megváltoztathatjuk, akkor az új összeg értéke S x lesz. Mivel az eredeti összeg értéke páros szám (009 1004), ezért bármely előállítható összeg csak páros lehet, tehát 009 nem. pont Megjegyzés: Az a) rész esetében bármely helyes konstrukció megadása és annak igazolása 4 pont értékű.
. A T területű szabályos háromszög oldalaival párhuzamos egyenesek felezik a háromszög területét. A három egyenes által közrefogott háromszög területe t. Melyik két szomszédos egész szám közé esik T t értéke? Megoldás. Tekintsük a következő ábrát: Az AB = BC = CA = a jelöléssel T = a 4. Feltételeink alapján például a P BQ háromszög területére T P BQ = T = a teljesül. = P B 4 Innen pedig P B = a. A szimmetria miatt DE = P B (a P B) = P B a = a a = a ( ). A DEF szabályos háromszög oldala tehát a ( ), ezért t területe: t = a (17 1 ) ( ) 4 = a 17 1. Eredményünk alapján T t = a 4 a (17 1 ) = 17 1 = ( 17 + 1 ) = = 4 + 4 = 4 + 115. Mivel 4 = 1156 és = 109, ezért < 115 < 4, ezért 67 < T t < 6.
4. Azt mondjuk, hogy egy sorozat Fibonacci-típusú, ha tagjai pozitív egészek és a harmadik tagtól kezdve minden eleme az előző kettő összege. Például 1, 1,,, 5,,..., vagy, 1, 4, 5, 9, 14,.... Hány olyan Fibonacci-típusú sorozat van, amelynek. eleme 00? Megoldás. A sorozatot egyértelműen meghatározza az első két elem értéke, ezért azt kell vizsgálnunk, hogy mi lehet ez a két elem. Jelölje a sorozat első elemét x, a másodikat pedig y, továbbá a sorozat n. tagját a n. A képzési szabály szerint számolva kifejezhetjük a sorozat első elemét x és y segítségével: pont a 1 = x, a = y, a = x + y, a 4 = x + y, a 5 = x + y, a 6 = x + 5y, a 7 = 5x + y, a = x + 1y. Tehát a x + 1y = 00 egyenletet kell megoldanunk a pozitív egészek halmazán. Mivel x és 00 osztható -cal, ezért 1y is, amiből y = z valamilyen z pozitív egészre, hiszen 1 és relatív prímek. Az egyenlet -cal leosztva: x + 1z = 51. Innen x = 51 1z, ami z = 1,,,..., 19 esetén ad pozitív egész x értéket. Ezek mind jó megoldásra vezetnek, tehát 19 különböző Fibonacci-típusú sorozat létezik, aminek. eleme a 00. pont pont Megjegyzés: Az alábbi táblázatban megadtuk a megfelelő sorozatokat: z x = a 1 y = a a a 4 a 5 a 6 a 7 a 1 46 54 500 754 154 00 5 16 41 57 49 755 15 00 1 4 6 60 496 756 15 00 4 199 1 6 494 757 151 00 5 16 40 6 66 49 75 150 00 6 17 4 1 69 490 759 149 00 7 160 56 16 7 4 760 14 00 147 64 11 75 46 761 147 00 9 14 7 06 7 44 76 146 00 10 11 0 01 1 4 76 145 00 11 10 196 4 40 764 144 00 1 95 96 191 7 47 765 14 00 1 104 16 90 476 766 14 00 14 69 11 11 9 474 767 141 00 15 56 10 176 96 47 76 140 00 16 4 1 171 99 470 769 19 00 17 0 16 166 0 46 770 1 00 1 17 144 161 05 466 771 17 00 19 4 15 156 0 464 77 16 00 4
5. Tudjuk, hogy 44 = 6, 4444 = 66, 444 444 = 666. Ha n pozitív egész szám, akkor bizonyítsuk be, hogy az A = 444... 4 természetes szám! n-szer n-szer szám Megoldás. 444... 4 = 444... 4 10 n + 444... 4. pont n-szer n-szer n-szer n-szer n-szer Jelölje: x az 111... 1 számot! n-szer Ekkor 444... 4 = 4x 10 n + 4x x = 4x 10 n 4x = 4x (10 n 1) = n-szer n-szer = 4x 999... 9 = 4x 9x = 6x. pont n-szer Így A = 6x = 6 111... 1 = 666... 6, ami valóban pozitív egész, tetszőleges pozitív egész n esetén. n-szer n-szer 5