MTA TTK MFA. toth.attila.lajos @ ttk.mta.hu. mts.



Hasonló dokumentumok
Attila L Tóth CSc senior research fellow.

Elektronsugaras mikroanalízis restaurátoroknak. I. rész: pásztázó elektronmikroszkópia

Fókuszált ionsugaras megmunkálás

ELTE Fizikai Intézet. FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp

Kérdések: 02/10/2014. A SEM mint mikroszkóp. ttk.mta.hu. Tóth A. L. tud.főmts.

A nanotechnológia mikroszkópja

Havancsák Károly Nagyfelbontású kétsugaras pásztázó elektronmikroszkóp az ELTÉ-n: lehetőségek, eddigi eredmények

Fókuszált ionsugaras megmunkálás

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás

Fókuszált ionsugaras megmunkálás

Dankházi Z., Kalácska Sz., Baris A., Varga G., Ratter K., Radi Zs.*, Havancsák K.

Havancsák Károly Az ELTE TTK kétsugaras pásztázó elektronmikroszkópja. Archeometriai műhely ELTE TTK 2013.

Typotex Kiadó. Tartalomjegyzék

Quanta 3D SEM/FIB Kétsugaras pásztázó elektronmikroszkóp. Havancsák Károly

Nagyműszeres vegyész laboratórium programja. 8:15-8:25 Rövid vizuális ismerkedés a SEM laborral. (Havancsák Károly)

Mikroszerkezeti vizsgálatok

Modern fizika laboratórium

6-7. PÁSZTÁZÓ ELEKTRONMIKROSZKÓPIA MEGBÍZHATÓSÁGI HIBAANALITIKA VIETM154 HARSÁNYI GÁBOR, BALOGH BÁLINT

Nagyműszeres vegyész laboratórium programja. 9:15-9:25 Rövid vizuális ismerkedés a SEM laborral. (Havancsák Károly)

Szerkezetvizsgálat ANYAGMÉRNÖK ALAPKÉPZÉS (BSc)

A nanotechnológia mikroszkópjai. Havancsák Károly, január

Képalkotás a pásztázó elektronmikroszkóppal

Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek

Energia-diszperzív röntgen elemanalízis

FEI Quanta 3D. Nanoszerkezetek vizsgálatára alkalmas kétsugaras pásztázó elektronmikroszkóp az ELTE TTK-n

Röntgen-gamma spektrometria

Energia-diszperzív röntgen elemanalízis és Fókuszált ionsugaras megmunkálás FEI Quanta 3D SEM/FIB

Sugárzás és anyag kölcsönhatásán alapuló módszerek

Elektronmikroszkópia. Nagy Péter Debreceni Egyetem, Biofizikai és Sejtbiológiai Intézet 1/47

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Elektronsugaras mikroanalízis restaurátoroknak. II. rész: A röntgensugaras mérés és interpretációja

Milyen simaságú legyen a minta felülete jó minőségű EBSD mérésekhez

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Képrekonstrukció 2. előadás

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Pásztázó elektronmikroszkópia (SEM) Elektronsugaras mikroanalízis (EPMA)

A TÖMEGSPEKTROMETRIA ALAPJAI

MTA AKI Kíváncsi Kémikus Kutatótábor Kétdimenziós kémia. Balogh Ádám Pósa Szonja Polett. Témavezetők: Klébert Szilvia Mohai Miklós

Pásztázó elektronmikroszkóp (SEM scanning electronmicroscope)

Rövid ismertető. Modern mikroszkópiai módszerek. A mikroszkóp. A mikroszkóp. Az optikai mikroszkópia áttekintése

Technoorg Linda Ltd. Co. Budapest, Hungary. Innováció és Kommunikáció február 20.

Lakos István WESSLING Hungary Kft. Zavaró hatások kezelése a fémanalitikában

EBSD-alkalmazások. Minta-elôkészítés, felületkezelés

Ni és Ge felületi rétegekb l keltett K-Auger spektrumok elemzése Analysis of K-Auger spectra excited from surface layers of Ni and Ge

Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére

Sugárzások és anyag kölcsönhatása

Abszorpciós spektroszkópia

Új típusú anyagok (az autóiparban) és ezek vizsgálati lehetőségei (az MFA-ban)

Analitikai Elektronmikroszkópia (AEM)

Részecske azonosítás kísérleti módszerei

Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása

Török Zsófia, Huszánk Róbert, Csedreki László, Kertész Zsófia és Dani János. Fizikus Doktoranduszok Konferenciája Balatonfenyves,

JASCO FTIR KIEGÉSZÍTŐK - NE CSAK MÉRJ, LÁSS IS!

ATOMEMISSZIÓS SPEKTROSZKÓPIA

Abszorpciós fotometria

Mikro- és nanomechanika avagy mire IS lehet használni SEM/FIB-et. Lendvai János ELTE Anyagfizikai Tanszék

EDX EBSD. Elméleti háttér Spektrumok alakja Gyakorlati alkalmazása

A HÉLIUM AUTOIONIZÁCIÓS ÁLLAPOTAI KÖZÖTTI INTERFERENCIA (e,2e) KÍSÉRLETI VIZSGÁLATA

Mikroszkóp vizsgálata Folyadék törésmutatójának mérése

Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft

A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása

MIKRO- ÉS NANOTECHNIKA II

SZERKEZETVIZSGÁLAT. ANYAGMÉRNÖK BSc KÉPZÉS (nappali munkarendben) TANTÁRGYI KOMMUNIKÁCIÓS DOSSZIÉ

Geokémia gyakorlat. 1. Geokémiai adatok értelmezése: egyszerű statisztikai módszerek. Geológus szakirány (BSc) Dr. Lukács Réka

Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.

Effect of the different parameters to the surface roughness in freeform surface milling

SZILÁRD FÁZISÚ EXTRAKCIÓ MINDIG UGYANÚGY

Az elektromágneses sugárzás kölcsönhatása az anyaggal

VÍZGŐZKONCENTRÁCIÓ-MÉRÉS DIÓDALÉZERES FOTOAKUSZTIKUS MÓDSZERREL

Előzmények. a:sige:h vékonyréteg. 100 rétegből álló a:si/ge rétegrendszer (MultiLayer) H szerepe: dangling bond passzíválása

RONCSOLÁSMENTES VIZSGÁLATTECHNIKA

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia

Az NMR és a bizonytalansági elv rejtélyes találkozása

Röntgen. W. C. Röntgen. Fizika-Biofizika

FEI Quanta 3D SEM/FIB. Havancsák Károly december

Általános Kémia, BMEVESAA101

Alapvető eljárások Roncsolásmentes anyagvizsgálat

A villamos érintkező felületek hibásodási mechanizmusa*

Mikroszerkezet Krisztallitonként Tömbi Polikristályos Mintában

Nagy érzékenységű AMS módszerek hosszú felezési idejű könnyű radioizotópok elemzésében

62. MEE Vándorgyűlés, Síófok 2015 Szetember Csernoch Viktor, ABB Components. Vacuum Tap-Changers Minősítése

NÉHÁNY KÜLÖNLEGES FÉMES NANOSZERKEZET ELŐÁLLÍTÁSA ELEKTROKÉMIAI LEVÁLASZTÁSSAL. Neuróhr Katalin. Témavezető: Péter László. SZFKI Fémkutatási Osztály

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

elektronmikroszkóppal

Híradástechnikai anyagok és eszközök elektronmikroszondás vizsgálata

Szervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.

Spin Hall effect. Egy kis spintronika Spin-pálya kölcsönhatás. Miért szeretjük mégis? A spin-injektálás buktatói

Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia

Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,

A szubmikronos anyagtudomány néhány eszköze. Havancsák Károly ELTE TTK Központi Kutató és Műszer Centrum július.

Lehet-e tökéletes nanotechnológiai eszközöket készíteni tökéletlen grafénból?

Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35

NAGY ENERGIA SŰRŰSÉGŰ HEGESZTÉSI ELJÁRÁSOK

Pásztázó mikroszkópiás módszerek

FÉLVEZETŐ ESZKÖZÖK, MINT SUGÁRZÁSÉRZÉKELŐ DETEKTOROK

4. Szervetlen anyagok atomemissziós színképének meghatározása

József Attila Gimnázium és Eü. Szakközépiskola spec. mat.

A kerámiaipar struktúrája napjainkban Magyarországon

Supporting Information

Felületmódosító technológiák

Átírás:

Tóth A. L. tud.főmts mts. MTA TTK MFA Research Centre for Natural Sciences, Hungarian Academy of Sciences Institute of Technical Physics and Materials Science toth.attila.lajos @ ttk.mta.hu

Kérdések: 1./ OM-SEM-TEM összevetés, működési elvek min: rajz + elvek A hagyományos SEM (ágyú, oszlop, sugármenet, vákuum, mintakamra, stage, detektor) min: rajz 2 / A SEM-EMA mint analitikai mérőrendszer min: fő részei Jelképző folyamatok, gerjesztett & információs térfogatok min: szórási folyamatok, térfogatokról rajz 3./ BEI, detektálása, kontrasztmechanizmusok min: 2 det. -2 kontr. 4./ SEI, detektálása, kontrasztmechanizmusok min: 1 det. -2 kontr. 5./ XR, detektálása, (ED, WD, drift, ThXRS, PBS) min: 2 det 6./ XR kvantitativ analízis, korrekciós eljárások Csúcsazonosítás, min 2: korrekciós eljárás 7./ LV (FEG) SEM : LEO GEMINI (ágyú, oszlop, sugár-menet, vákuum, mintakamra, stage, detektor) min: a fejlesztés célja + rajz 8./ Pásztázó ion mikroszkópok : ECRIS (Orsay Ph.), ICIS (Vion), LMIS, ALIS (Orion) min: 2 forrás Tóth Attila Lajos, SEM és ami utána következik, OE, KKVK, 2013 sept.

A prezentáció a Nanoobjektumok megfigyelése, jellemzése és kialakítása pásztázó sugaras eszközök segítségével című előadássorozat 4 előadásának vázlata Olvasnivaló:. SEM: GoldsteiN-NEWBURY Scanning Electron Microscopy and X-Ray Microanalysis THIRD EDITION 2003 Springer. FIB: Giannuzzi-STEVIE Introduction to focused ion beams: instrumentation, theory, techniques, and practice, 2005 Springer. FESEM: google -> fe-sem, feg-sem & hitachi, fei, zeiss, jeol, tescan, etc.. Xe FIB: http://www.microscopy-analysis.com/news/orsay-physics-launches-i-fib-plasma-focused-ion-beam-column http://www.microscopy-analysis.com/news/fei-launches-vion-plasma-fib-system-advanced-ic-packaging. Ga FIB: http://www.orsayphysics.com/product-cobra-fib.html, http://www.fei.com/products/focused-ion-beams/ etc,. Alloy FIB: http://www.orsayphysics.com/product-exb-column.html etc. He ion micr.: http://www.smt.zeiss.com/orion Software: Magyarul: DC JOY: lehigh.exe (http://www.amc.anl.gov/anlsoftwarelibrary/02-mmslib/monte/montecarlo/) Pouchou:STRATAGem (http://www.samx.com) Drouin & Hovington CASINO (http://www.gel.usherbrooke.ca/casino/index.html), James Ziegler: SRIM (http://www.srim.org) Pozsgai Imre A pásztázó elektronmikroszkópia és az elektronsugaras mikroanalízis alapjai 1995 ELTE Eötvös Kiadó Tóth Attila Lajos, SEM és ami utána következik, OE, KKVK, 2012

A hagyományos SEM (pásztázó elektronmikroszkóp)

A SEM mint mikroszkóp 1x1 um 10x10 cm 100.000x

Cameca MBX (conventional) electron probe microanalyser Tóth Attila Lajos, SEM és ami utána következik, OE, KKVK, 2013 sept.

The conventional sample environment (vacuum system, stage) Tóth Attila Lajos, SEM és ami utána következik, OE, KKVK, 2013 sept.

Cameca MBX vacuum system Tóth Attila Lajos, SEM és ami utána következik, OE, KKVK, 2013 sept.

Electron optics : crossover demagnification Tóth Attila Lajos, SEM és ami utána következik, OE, KKVK, 2013 sept.

Electron optics : lens aberrations Tóth Attila Lajos, SEM és ami utána következik, OE, KKVK, 2013 sept.

Tóth Attila Lajos, SEM és ami utána következik, OE, KKVK, 2013 sept.

A SEM-EMA mint AMR (analitikai mérőrendszer)

Az AMR Application Tóth Attila Lajos, SEM és ami utána következik, OE, KKVK, 2013 sept.

A mérő egységben a vizsgálandó mintát egy δ reagenssel hozzuk köcsönhatásba, mely a minta χ anyagtulajdonságainak függvényében kelti a η analitikai jelet Electrons MR ME Reagens Minta és mennyisége Analitikai jel Detektor ÉE Analitikai információ Elektronsugaras mikroanalízis (EMA) Elektronsugár Elektronoptika + kamra Röntgen spektrométer Gerjesztett térfogat um 3 a szilárd mintafelületen Rtg.sugárzás karakt.csúcsok a gerjesztett térfogatból Számítógép + korrekciós software ZAF, P/B ZAF stb., A gerjeszett um 3 térfogat átlagösszetétele Igy működött Castaing ős-mikroanalizátora (más néven mikroszonda) 1948-ban, ahol optikai mikroszkóp segítségével lehetett a minta különböző részeit elektronokkal besugározni.

The SEM as Analytical Measuring System

Jelképző folyamatok, gerjesztett & információs térfogatok

Signal Technique Properties Studied e γ i backscattered secondary X-ray Optical junction ohmic bulk Sample current BEI SACP SEI EDS WDS XRI CLI EBIC EBIV AEI Qualitative composition Crystal structure Topography Local fields & potentials Qualitative composition Quantitative composition (electr.active) Xtal defects Carrier lifetime - Diffusion length - surface recombination Topography Qualitative composition

Analitikai jel (ÜZEMMÓD) Felbontás laterális mélységi ==================================================================== Szekunder elektron (SE) 1-10 nm 1-10 nm E: jó felbontás (=sugárátmérõ), topográfiai kontraszt H: komplex jelképzés (pl.be hozzájárulás) --------------------------------------------------------------------------------------------------------------------- Visszaszórt elektron (BE) 0.1-0.5 um 0.1-0.5 um E: rendszámkontraszt H: gyengébb felbontás (< sugárátmérõ) --------------------------------------------------------------------------------------------------------------------- Áram (EBIC) 50-500 nm 0.1-1 um E: Rácshibák és p-n átmenetek megfigyelhetõk H: Felületi rekombináció hatása --------------------------------------------------------------------------------------------------------------------- Fény (CL) 10nm-1 um 0.2-1 um E: fluoreszcens fázisok szelektiv leképzése H: kis intenzitás, sugárzási károsoodás halványit --------------------------------------------------------------------------------------------------------------------- Röntgen sugár (EDS) 0.1-0.5 um 0.1-0.5 um E: szimultán detektálás,nagy tömegérzékenység H: rossz felbontás, nagy holtidõ (WDS) 0.2-1 um 0.1-1 um E:jó felbontás, nagy intenzitás H: elemenkénti detektálás, rigorozus fókuszálásaes --------------------------------------------------------------------------------------------------------------------- Auger el. (AES, Eo=2-5 kev) 10-100 nm 0.2-2 nm E: Felületi monorétegek elemösszetétele H: Ultratiszta felület és ultrannagy vákuum ====================================================================

RUGALMAS SZÓRÁS AZ ATOMMAGON

Signal forming mechanisms : Rutherford scattering.

History: (micro- range) Conventional SEM Versatile 2-10 nm beam diameter BUT: Eo > 5 kev electron energy CONSEQUENCE: Deep penetration (100-10.000 nm) Large excited volume SEM basics (courtesy DC Joy)

Mit láttunk? Excited volume

Penetration depth

Excited volume

& information volumes

charge-up depth of focus

BEI detektálása, kontrasztmechanizmusok

Signals from elastic scattering: BE Def: E<50eV: secondary- (SE) / E>50eV backscattered (BE) LLE: low loss,- / ERE: single scattered electrons

BEI detectors : EHT without collecting field Large area scintillator SC diode array (2-4)

BEI contrast mechanisms angular distribution -> topography (BEI-TOPO)

BEI contrast mechanisms intensity -> mean Z (BEI-COMPO)

Backscattered electron signal (BE) High energy (E~Eo) Elastically scattered electrons Detection: EHT, diode arrays, scintillator (Robinson det.) Contrast: topography (TOPO) mean atomic No (COMPO) orientation local magnetic field

RUGALMATLAN SZÓRÁS AZ ATOMHÉJON

SEI detektálása, kontrasztmechanizmusok

Signals from inelastic scattering: SE Def: E<50eV: secondary- (SE) / E>50eV backscattered (BE) LLE: low loss,- / ERE: single scattered electrons

Glory, glory to Everhart & Thornley The Everhart-Thornley detector

SEI signal components & resolution

SEI contrast mechanisms: SEI: topography

Different images from the same surface SEI BEI compo BEI topo XRI Sn

Secondary electrons Low energy (E<50eV), Outer shell ionization Detection: EHT, channeltron Contrast: morphology coomposition (work f.) atomic number local electric field local magnetic field

RUGALMATLAN SZÓRÁS AZ ATOMHÉJON

kvalitativ XR analízis, detektálás

Analytical signal : characteristic X-rays Source: inner shell ionization Detection: Spectral (EDS, WDS) Information: point measurement ( 0 dim) energy: qualitative analysis intensity: quantitative analysis line profile (1 dim) and imaging (2 dim) distribution of elements

Signals from inner shell ionization: Auger-electron or X-Ray emission

X-ray transitions

H.G.J. Moseley (1887-1915) Kvalitativ és kvantitativ analizis foto-lemezen Phil.Mag. 26 1024 (1912) A röntgenspektroszkópia és analízis atyja

Röntgen detektorok

WDS n * λ = 2 * d * sin (θ )

EDS: Si(Li Li) Imax < 10.000 cps The solid state EDS utilizes the fact, that X-rays create electron hole pairs in the intrinsic region of the Si(Li) or drift detector (3.6 ev/pair).

Comparing spectra : WDS v/s Si(Li) EDS WDS EDS

EDS: DRIFT Imax ~ 200.000 cps

Comparing spectra : WDS v/s DRIFT EDS WDS EDS up to 1000 up to 1000

Thermal XRS The Thermal X-Ray Spectrometer measures the heat, generated by the absorption of the X-ray in a superconducting microcalori-meter, kept at liquid He temperature. When directly mounted to the SEM column, using a mechanical cooling system, vibration can become a serious problem- and the performance of the whole system has to be evaluated. The picture shows a trench line with a resolution of 5.3 nm. Note that the intrinsic resolution of the microscope in this case is 3 nm. Otherwise X-ray waveguides are used to direct the radiation to the remote detector, further increasing the price of the spectrometer.

Comparing spectra : ThXRS v/s EDS The basic energy resolution of the system, compared to that of a standard EDS detector can be seen in the X-ray spectrum of TiN, which is used as barrier layer or antireflective coating (see figure). Since the N-Ka-line (392 ev) and the Ti-La line (452 ev) are separated by 60 ev analysis with a standard tool is not successful, whereas the microcalorimeter detection shows a clear separation of the two peaks. The typical energy resolution is determined to be 10 ev@1kev.

Comparing: Spectral resolution: Detect.limit,, P/B ratio: Spectrum acq. time: Beam current : WDS / EDS 1/15 15 1/20 50-1000* 10-1000* EDS SI(LI) (LI): general EDS DRIFT*: general WDS: peak, LO speed, LO res. general use, LO general use,, HI speed,, LO res. peak-overlaps, trace elements, layers THERMAL XRS: best of both worlds,, EDS speed with WDS resolution. COST PB-WDS: integrated with EDS simply the BEST (but not cheap)

Paralell beam WDS Simply the BEST, EDS solid angle with WDS resolution

Comparing spectra : PB-WDS v/s EDS

kvantitativ XR analízis, korrekciós eljárások

Kvantitativ analizis: korrekció (ZAF) Alaphipotézis: a gerjesztés helyén k X = C X Probléma: a detektor helyén mérünk Fizikai folyamatok: melyek miatt k X C X - rugalmas elektronszórás -> változó gerjesztett térfogat (Z) - rugalmatlan elektronszórás -> változó ionizáció (Z) - anyagfüggő röntgenabszorpció a sugárzás kilépéséig (A) -belső röntgenfluoreszcencia a mintában (F) MR ME Reagens Minta és mennyisége Analitikai jel Detektor ÉE Analitikai információ Elektronsugaras mikroanalízis (EMA) Elektronsugár Elektronoptika + kamra Röntgen spektrométer Gerjesztett térfogat um 3 a szilárd mintafelületen Rtg.sugárzás karakt.csúcsok a gerjesztett térfogatból Számítógép + korrekciós software ZAF, P/B ZAF stb., A gerjeszett um 3 térfogat átlagösszetétele

Kvantitativ analizis: korrekció (etalonsor) A korrekció történhet etalonsor mérésével, vagy számításokkal. A minta összetételéhez közeli, ismert koncentrációjú etalonsor a legmegbízhatóbb segítség.

Quantitative analysis (iv): interpretation ( B&A ) The utilization of standards of known composition is still the most accurate method, but is limited both in qualitative and quantitative sense. A possible (limited) generalization was the use of empirical factors (BENCE-ALBEE)

Kvantitativ analizis: korrekció (ZAF) A ZAF típusú korrekció tapasztalati képletek alapján korrigálja a fenti folyamatokat (FRAME, MAGIC). Kiforrott, sokszorosan tesztelt módszer. Példa: az abszorbciós tényező (A) különböző közelítései:

ELTE Kvantitativ analizis: korrekció (nostd.zaf)

Kvantitativ analizis: korrekció (PUZAF) The RÖNTEC developed the (PUZAF) where instead of standards the measured background intensity is used as normalization factor

Kvantitativ analizis: korrekció (PUZAF) The RÖNTEC developed the (PUZAF) where instead of standards the measured background intensity is used as normalization factor

A Bruker Quantax EDS software (PUZAF) D1 SEM Visszaszórt elektronkép (BEI) D2 Cu,Sn és Pb vonalmenti elosztása D3 Cu,Sn és Pb röntgentérképe 5

Kvantitativ analizis: korrekció (φρz) A φρz típusú korrekció a Z és A komponenst együtt kezeli a behatolási függvény alapján. Továbbfejlesztett változat: réteg-szerkezetekre (STRATA) A Monte Carlo (MC) számítások elemi lépésekre bontva a folyamatot képesek bonyolult minta-geometriákon is korrekciót végezni.

Kvantitativ analizis: korrekció (STRATA) A MINTAKÖRNYEZET egyik leglátványosabb modulálása a gerjesztett térfogat környezetében gázatmoszféra ( GIS ) létrehozása. Ennek célja lehet marás, antikontamináció,esetünkben a prekurzor gáz bomlása után a besugárzott területen Pt leválasztás. A prekurzor organometallikus vegyület, a gáztérből is leválhat karbon, célszerű tehát alaposan megvizsgálni a deponátumot. A LEO GIS prekurzor-bevezető csövei a target felett Egy virtuális összetétel méréssorozat : 5 kev, 1-5 Pt pogácsa + Si, SiO2, Pt és C etalonok EDS spektrumai tothal Elektronsugár által leválasztott Pt jellemzése Az 1-5 perces elektron-besugárzás alatt levált Pt tartalmú pogácsák AFM képe vastagság meghatározásához

STRATA-gem: Rel. XR int.=f(eo).-> összetétel (wt% at%) & tömegvastagság (ug/cm2) A leválasztott ismeretlen vastagságú, összetételű és sűrűségű pogácsáknak először a vastagságát határoztuk meg AFM méréssel. Ezután 5, 7.5 és 10 kev primer energiával EDS mérést végzünk. Az eredmények természetesen csak virtuális kocentrációk, hiszen a gerjesztés belelóg a szubsztrátba, de már ezek az adatok is használhatók gyakorlati in-situ vastagságmérésre. Egy speciális program a különböző energiákkal mért relatív intenzitásokból kiszámolja a réteg összetételét és tömegvastagságát, amiből az AFM adatok segítségével a sűrűség meghatározható. Az eredmények: tömegvastagság (ug/cm2) >> AFM vastagság (nm) >> sűrűség (g/cm3) tothal - konstans lerakódási sebesség: (73->277 nm) - magas széntartalom (41- > 31 - > 34 wt%) - változó sűrűség (4,2- > 5,5 - > 4,9 g/cm3) - virtuális Si koncentráci ció (60- > 2,5 wt%) Ez átvezet a nano-technológia SEM megoldásaihoz

1024 Kvantitativ analizis: korrekció ( MC ) 153 5 kev 10 nm dia 20 nm dia Al2O3 tothal nanogömbök kvantitativ EDS analízise

(8.példa): nanogömbök kvantitativ EDS analízise Szörényi, tothal & al. Fém alumínium céltárgy desztillált víz alatti ablációjával készült nano-részecskék.nd:yag lézer (532 nm); 9,6 Jcm -2 energiasűrűségű impulzusok.

nanogömbök kvantitativ EDS analízise tothal

1024 5 kev 10 nm dia SPH P ox/al = f(d) 200keV TEM geom on FOIL Al 2 O 3 153 1.00 0.10 1 10 100 1000 10000 D sphere (nm ) tothal nanogömbök kvantitativ EDS analízise

1024 5 kev 10 nm dia SPH P ox/al = f(d) 5keV SEM geom on BULK Al 2 O 3 153 1.60 1.50 1.40 1.30 1.20 1.10 1.00 1 10 100 1000 10000 tothal nanogömbök kvantitativ EDS analízise

1024 Al x O? 153 tothal nanogömbök kvantitativ EDS analízise Ez átvezet a nano-technológia SEM megoldásaihoz

Summary (XR) Source: inner shell ionization Detection: Spectral (EDS, WDS) Information: point measurement ( 0 dim) energy: qualitative analysis intensity: quantitative analysis line profile imaging FIB peeling (1 dim) (2 dim) (3 dim) distribution of elements

LV (FEG) SEM LEO GEMINI ágyú, oszlop, sugármenet, vákuum, SE detektor

Ryssel A hagyományos SEM tipikusan 30 kev körül éri el a maximális felbontást, ki-használva szekunder elektronok kis szökési mélységét ( 5λSE ). Az 1980-as évektől a félvezetőipar azzal a látszólag ellentmondásos igénnyel állt elő, hogy egyre kisebb méretű integrált áramköreit potenciálkontraszt üzemmódban akarják vizsgálni, vagyis a gerjesztett térfogat nem lehet mélyebb mint a védőüveg vastagsága (~100nm). A céget Gordon E. Moore, Andrew Grove és Robert Noyce alapította 1968-ban. Kezdetben négy alkalmazottjuk volt, beleértve magyar származású Vadász Lászlót, aki 1975-től a cég elnökhelyette-se, 1988-2002 között pedig az igazgatói tanács tagja. Az ő irányítása alatt készült el 1971-ben a világ első mikro-processzora, az l4004. Grove az 1960-as évektől az 1990-es évekig (nyugdíjazásáig) azon munkálkodott (sikerrel), hogy Ryssel az egy nagy nemzetközi cég legyen.

Nanotechnology is a X road of disciplines 1nm barrier

SEM a 2000-es években: a végső határ (?) FEI Helios nanolab (Elstar): Electron beam resolution @ coincident point 1.0 nm @ 15 kv 1.6 nm @ 5 kv 2.5 nm @ 1 kv RAITH Pioner (GEMINI): Electron Beam Lithography main specifications: Beam size (resolution) 2.5 nm ( 1.6 nm) A B C (D) Annak ellenére, hogy a pásztázó elektronmikroszkópok az elérhető minimális felbontást ostromolják ( a teljesség igénye nélkül például a FEI Elstar 2011-ben 1.0-2.5 nm ZEISS Gemini 2008-ban: 1.6 nm ) a nanotechnológia igénye,és a konkurens módszerek (AFM) paraméterei arra sarkalják a nanosugaras eszközök gyártóit, hogy nézzenek körül. Miért? A választ a (D) ábra mutatja. Az elektronoptikai lencsehibák közül az elektron λ hullámhosszával arányos diffrakciós hiba az eredő sugárátmérő minimumértékéért felel. Ugyanis a más oldalról megkívánt kis energia nem teszi lehetővé, hogy a λ csökkentésének szokásos módját, az energia növelését használják. Marad tehát a lencsehibák lefaragásának fáradságos útja, vagy pedig túllépni az elektronmikroszkóp korlátain, vagyis szakítás az elektronokkal! FEI, ZEISS, Raith, Koops

A konstrukőrök az évek folyamán a fizikusi és mérnöki lelemény egész arzenálját vetették be a sugár átmérőjének és energiájának egyidejű csökkentése érdekében. Elérve az 1keV energiát), a behatolás 30 nm-re csökken, a sugár energiájának 95%-a pedig 25nm-en belül disszipálódik (A4). A kisenergiás sugár fókuszálása azonban problematikus, ezért különböző cégek más -és más trükkhöz folyamodtak. CASINO, tothal SEM a 90-es években: a nanokorszak kihívásai

Ryssel

ZEISS Lencsehibák : a végső határ (?) (D) FEI, ZEISS, Raith, Koops Annak ellenére, hogy a pásztázó elektronmikroszkópok az elérhető minimális felbontást ostromolják, a nanotechnológia igénye,és a konkurens módszerek (AFM) paraméterei arra sarkalták a nanosugaras eszközök gyártóit, hogy nézzenek körül. Miért? A választ a (D) ábra mutatja. Az elektronoptikai lencsehibák közül az elektron λ hullámhosszával arányos diffrakciós hiba felel az eredő sugárátmérő minimumértékéért. Ugyanis a más oldalról megkívánt kis energia nem teszi lehetővé, hogy a λ csökkentésének szokásos módját, az energia növelését használják.

HITACHI

HITACHI

SEM a 2000-es években: FEI Helios nanolab (Elstar): Electron beam resolution @ coincident point 1.0 nm @ 15 kv // 1.6 nm @ 5 kv 2.5 nm @ 1 kv RAITH Pioner (GEMINI): Electron Beam Lithography main specifications: Beam size (resolution) 2.5 nm ( 1.6 nm) FEI, ZEISS, Raith, Koops

FEI

FEI

FEI

1500XB CrossBeam with GEMINI column Tothal & ZEISS

Gemini column: low beam noise < 1 % cross over free beam path, no significant Boersch effect, high depth of field highly stable thermal FEG< 0.2 % /h variation superb image resolution fhroughout the complete beam energy range, particularly down to 100 ev. high resistance to ambient magnetic stray fields constant conditions at sample surface eliminates ion-beam shift LEO ZEISS GEMINI column ZEISS

A téremissziós SEM Gemini közbülső fókuszpont mentes sugármenete, és hibrid objektiv lencséje (mely a fókuszálás mellett detektor és a sugár fékező tér is) kisenergiás működésre lett optimálva (ZEISS). Az eredmény a egy 1.000.000x nominális nagyítású képe egy (szigetelő) Al2O3 pórusairól. A zöld markerek távolsága 7 nm. GEMINI objektív LEO ZEISS GEMINI column Tothal & ZEISS

Zeiss Merlin with GEMINI-2 column

Zeiss Merlin with GEMINI-2 column

Zeiss Merlin with GEMINI-2 column

Zeiss Merlin with GEMINI-2 column

Zeiss Merlin with GEMINI-2 column

Pásztázó ion mikroszkópok LMIS, ECRIS (Orsay Ph.), ICIS (Vion), ALIS (Orion)

Új Remény : három fókuszált ionsugaras bajnok : Ga, Xe, He Mivel a Ga ion hullámhossza két és fél, a He ioné pedig két nagyságrenddel kisebb mint a hasonló energiájú elektronoké, az eredő lencsehiba apertúra függése alapvetően módosul, - a határoló összetevő az minta felületére leképzett ionforrás mérete lett. Eo: 1 10 100 kev Ráadásul (látszólag) semmit sem kellett feltalálni. Az ionoptikát ha máshonnan nem a gyorsítókból ismertük. A kisméretű, elektrosztatikus részecskeoptikát elektronokr a hamarabb használták mint a mágneses lencséket. A félvezető ipar a hetvenes évek óta használta a fókuszált ionsugárzást (FIB) maszkjavítási és egyedi áramkör módosításra. A kérdés inkább az, miért ily későn? A félvezető ipar 90-es évek beli megtorpanása kellett ahhoz, hogy a cégek ne csak méregdrága monstrumokat gyártsanak, másrészt most lett rá igény előbb a nanomegmunkálás később az ionmikroszkópiák területén. ZEISS

FIB képalkotás A Ga ionsugár gerjesztett és térfogata (SRIM) Az LMIS és az ionpotika eredménye egy fókuszált nagy mélységélességű ion sugár a mintán melynek mérete ~ 6 nm 30 kv ~100 nm 2 kv ionenergián Az ionbombázás hatására bekövetkező köcsönhatások: -Porlódás (sputtering) Semleges atomok Szekunder ionok Visszaszórt ionok Implantált ionok Rácshibák ( vakanciák, intersticiósok, diszlokációk ). Szekunder elektronok Secondary Electron images (SE~10 5 xsi) jó mélységélesség FIB Voltage Contrast (SE) előfeszítés és töltődés egyaránt Secondary Ion imaging (SI) szigetelő mintákhoz FIB Channelling contrast (SE & SI) bár nem ugyanaznaz eredmény. FIB ~ 4x erősebb kontraszt mint a SEM BEI FIB Deformation Contrast az orientációs kontraszt egy változata (SE & SI) a vezetőképesség változását mutatja, FIB Chemical Contrast (SE & SI) pl. oxidháló szemcsehatáron http://www.fibics.com/fib/tutorials/ Gianuzzi Intro SEM SE FIB SI tothal, fibics.com

A folyékony fém ionforrás (LMIS) Különféle Ga + LMIS FIB oszlopok A1 A2 B 1 4 : Micrion 5 nm 50 kev FEI Magnum 30 kev Orsay Canion31 30 kev Raith NanoFIB 35keV A hetvenes évekig a gyorsítókban megszokott plazmaforrást használták (pl az ARL scanning SIMS duoplazmotron ágyúja). Azóta viszont a mikroszkópiai célú FIB a folyékony fém ionforrást használja (LMIS ). (Eskovitz, Levi-Setti. Orloff, Swanson) Sokféle fémet használnak (Au, Be, Pd,Ni, Sb, és ötvözeteik) de a legelterjedtebb a Ga. Előnye hogy olvadáspontja alacsony (29 C), ráadásul könnyű túlhűteni, ezáltal az ágyú szobahőmérsékleten használható. A nagy atomtömege (69,7 g/mol) miatt jól használható porlasztáshoz (sputtering). Az ágyúban egy (általában hideg) fűtőszálhoz egy W tűt hegesztenek, melyet egyik végén kihegyeznek ( d<100 nm ) másik végére pedig egy spirált helyeznek, melyet folyékony Ga-ba mártanak (A1). A W-ot jól nedvesítő Ga megtölti a spirált, és befedi a felületet, így a csúcsot is. Az ágyú kihúzó tere az olvadt galliumot tovább hegyezi (A2), míg az emittáló felület nagysága 10 nm alá nem csökken. Mivel az LMIS emittáló felülete kicsi, az elektrosztatikus ionoptika nem túl bonyolult, kétlencsés, és kompakt (B1-4). A Gemini oszlophoz hasonlóan sugáráramot elsődlegesen itt is apertúrákkal szabályozzák, valamint igyekeznek elkerülni a Coulomb kölcsönhatást a sugárban. Ez a Boersch-hatás ami kiszélesíti a sugár energiaeloszlását (ΔE= 5 ev-ra) ami által a kromatikus aberráció válik a meghatározó lencsehibává (különösen alacsony energiákon ahol a ΔE/E nagy). Az eltérítést és a sugár kitakarását (blanking) szintén elektrosztatikusan oldják meg. FEI, Koops

A félvezetőipar és a nanotechnológia egyre inkább a 3 dimenziós megoldások irányába halad: (device stacking,, wafer bonding) ami nagyobb porlasztási sebességeket és porlasztott anyagmennyiséget jelent, mint ami Ga forrást használva ésszerű marási időkkel megold-ható. Az LMIS konstrukció limitálja a kihúzható maximális áramot, az elkerülhetetlen Ga implantáció pedig lehetetlenné teszi a technológiaközi vizsgálatokat. Mondhatni feltámadt a nosztalgia a jó öreg gáz-alapú plazma ionforrások után,- persze fókuszált sugárral. Az eredmény:. Xe sugaras FIB a nehézsúlyú ionsugaras megmunkáló ECR plazmaforrással és ICP plazmaforrással [Orsay Physics] [FEI] A hűtést nem igénylő ECR (electron cyclotron resonance) mikrohullámú Xe ionforrás átlépi a 2 μa küszöböt, és a korábbi LMIS FIB méreteivel csereszabatos ágyúval a gyártó 40x gyorsabb porlasztást jelentett Ga kontamináció nélkül ( Orsay Physics) Az ICP (inductively coupled plasma) Xe ionágyúra épített FIB berendezés paramétereit a következő oldalon foglaljuk össze.(fei) Orsay Physics, FEI

Vion : MIKROSZKÓP? IONSUGARAS MEGMUNKÁLÓ? A Xe sugaras berendezés hozza amire tervezték: 30-40x több anyag kimarására képes adott idő alatt int a Ga sugaras LMIS. Mint mikroszkóp elég jó ahhoz, hogy egysugaras FIB berendezésben 10 pa sugáráram mellett 30 nm felbontással láthassuk munkánk eredményét. Ez azonban az LMIS 1 pa mellett mutatott 7nm sugárátmérőjével együtt messze van attól az 1 nm álomhatártól, amivel az ionsugaras eszközök lencsehibáit bemutató grafikon kecsegtet bennünket. ZEISS, SEMATECH, tothal

FIB (microscopy) in nanorange A LEO 1540XB cross beam ( Ga+ + & e ) microscope and preparation system tothal@mfa.kfki.hu

Ga + LMIS FIB képalkotás és marás A B Acél minta FIB-SEI képe (88 O ion-beesési szög) SEM-SEI kép ugyaninnen (45 O elektron-beesési szög) Kihasználva a Ga ionok nagy tömegét a képalkotás mellett nem elhanyagolható a lokális ionporlasztás (sputtering). A dózistól függően ez lehet felülettisztítás, -polírozás, rétegeltávolítás valamint árkok, gödrök kialakítása és nano-objektumok lokális továbbalakítása (TEM lamella kivágás, AFM tű hegyezés, egyedi nanomanipulátorok és szondák kifaragása). X-beam : A SEM és FIB célirányos összeépítésével ugyanazt a területet vizsgálhatjuk akár szimultán is (így lehetséges a FIB marás egyidejű SEM nyomonkövetése). Az ( A ) FIB és ( B ) SEM SE képek ugyanazon, polírzott acél felületről készültek. Megfigyelhetők az orientációs kontraszt eltérései, valamint a porlódási hozam orientációfüggése, egészen addig, hogy a kevésbé porlódó szemcsék határai ferdén rajzolódnak ki. A 10x10 μm négyzeteken mérhető mélységekből három jól elkülönülő porlódási hozam (sputtering yield) mérhető 0,06-0,18 μm 3 /nc között tipikusan 0,01 μm 3 /nc szórással (táblázat). A ( C ) ábrán látható, hogy az orientációs kontraszt (ezáltal egy EBSD ábra minősége) annál jobb, minél kisebb ion-energiával polírozzuk, és minél nagyobb energiájú elektronsugárral készítjük a felvételt. Hátrányok: A Ga LMIS mivel egyensúlyt kell tartani a Taylor kúp stabilitása, az emisszió, és a felületi Ga utánpótlás között- csak i X ~ 0.45-2 μa kihúzott ionáram-intervallumban stabil. Ezáltal a vele készült FIB praktikus, kompakt, viszonylag egyszerű és tartós (4-6 ma*h), leképezésre és marásra egyaránt alkalmas. Igazi tízpróbázó, de egyik versenyszámban sem világcsúcstartó. JEOL tothal, ZEISS, fibics.com C SEM E o FIB E o

A pásztázó ionsugaras mikroszkóp : He+ ionokkal Előzmény: a tér-ion-mikroszkóp (FIM) hűtött és előfeszített W csúcsának kiemelkedő részeinél ionizálódik a gáz, majd az ernyő felé gyorsulva M FIM ~10 7 nagyítással jeleníti meg a csúcs képét. Az Atomic Level Ion Source ( ALIS ) a FIM leszármazottjának tekinthető. A kémiailag kialakított FIM csúcsot (feltehetően FIB segítségével) tovább hegyezik mindaddig, míg csak 9 esetenként 3 atomra nem redukálják az emissziót. Ebből egyet kiválasztva kapjuk a GFIS (Gas Field Ion Source) emitterét. TULAJDONSÁG He GFIS+SIM Ga LMIS+FIB Virtual source radius ( pm ) 150 25.000 Energy spread: ( ev ) 1 5 Extraction voltage ( kv ) 20 10 Predicted spot size ( nm ) 0,25 6 ZEISS

A pásztázó ionsugaras mikroszkóp : He+ ionokkal 150 pm virtuálisforrás esetén az ionoptika feladata nem annyira a kicsinyítés minta a sugár kondícioná-lása. A 4-15 mm munkatávolság kiváló mélység-élességet eredményez. Ahogy a műszer terjed, a használt kontrasztmechanizmusok száma hónapról hónapra nó. Az élvonal (MIT, HP és a svájci EMPA) a litográfiához fejlesztett ELPHY MultiBeam (Raith) mintatartót és softwaret használja He-SIM alapú megmunkáló kisérleteihez, ami pontos dozimetrálást és nanométeres mintamozgatást tesz lehetővé. ZEISS

A pásztázó ionsugaras mikroszkóp : He+ ionokkal Összehasonlítva a 35 kev energiájú fókuszált He+ ionsugár gerjesztett térfogatát (SRIM, ZEISS) egy kisenergiás téremissziós LV-FEG-SEM 1 kev-es elektronjai által keltett gerjesztett térfogattal látható, hogy az elektronok adják a legkisebb, a He ionok pedig a legnagyobb térfogatot. A morfológiai vizsgálatokra leggyakrabban használt szekunder elektronok azonban csak a felület alatti 1-10 nm mélységből képesek kilépni, ami a He ionok javára szól. Ebben a mélységben a ugyanis szinte kizárólag kisszögű rugalmas szórás megy végbe, a SE információs térfogatának átmérője tehát gyakorlatilag a sugárátmérővel egyenlő. Ennek köszönhető a 0,24 nm felbontás, amivel beléptünk a PICOPROBE tartományba. ZEISS

Kontrasztmechanizmusok a pásztázó He ion mikroszkópban: SEI : anyagkontraszt! SEI : mélységélesség SEI & Rutherford Backscattering Image Channelling Voltage Contrast

Kontrasztmechanizmusok: RBI : anyagkontraszt

FαB grafén milling

FαB milling

αbad

Jó hír: A készülék ára : 1 800 000 Rossz hír: 1 800 000 USD Jó hír: Az első eladott készüléket magyar ember, egykori ifjú kollégám Vladár András vette meg Rossz hír: Washingtonba, az NIST metrológia laborjába. Azóta sincs sokkal több.

Kérem az ELSŐ csoport hozza fel az ÖSSZESET! beérkezett dolgozat nélkül nincs jegy tothal @ mfa.kfki.hu toth.attila.lajos @ ttk.mta.hu

tothal @ mfa.kfki.hu toth.attila.lajos @ ttk.mta.hu

KFKI XXIII ép. Fszt 22a