Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008



Hasonló dokumentumok
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/364

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Magyar Matematika-Informatika Intézet Babeş Bolyai Tudományegyetem, Kolozsvár 2015/2016 1/370

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Modellezés Gregorics Tibor Mesterséges intelligencia

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Az Előadások Témái. Mesterséges Intelligencia. A mesterséges intelligencia. ... trívia. Vizsga. Laborgyakorlatok: Bemutatók (5 20 pont)

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

2. Visszalépéses stratégia

Algoritmizálás, adatmodellezés tanítása 7. előadás

III. Szabályalapú logikai következtetés

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

V. Kétszemélyes játékok

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

2. Visszalépéses keresés

Mesterséges intelligencia. Gregorics Tibor people.inf.elte.hu/gt/mi

ÖSSZEFOGLALÁS a Bsc záróvizsga mesterséges intelligenciáról szóló témaköréhez

1. Milyen hatással van a heurisztika általában a keresõ rendszerek mûködésére?

Keresések Gregorics Tibor Mesterséges intelligencia

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008

Bevezetés az informatikába

Mesterséges intelligencia

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon

A TANTÁRGY ADATLAPJA

Intelligens Rendszerek Elmélete IRE 4/32/1

Kereső algoritmusok a diszkrét optimalizálás problémájához

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Számítógépes döntéstámogatás. Genetikus algoritmusok

Az optimális megoldást adó algoritmusok

Kereső algoritmusok a diszkrét optimalizálás problémájához

za TANTÁRGY ADATLAPJA

Mesterséges Intelligencia MI

Problémamegoldás kereséssel. Mesterséges intelligencia március 7.

Számítógép és programozás 2

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Kétszemélyes játékok Gregorics Tibor Mesterséges intelligencia

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Eloadó: Dr. Várterész Magdolna

Új típusú döntési fa építés és annak alkalmazása többtényezős döntés területén

Amortizációs költségelemzés

Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9

Rekurzív logikai játékok

Rekurzió. Dr. Iványi Péter

Gráfok 2. Legrövidebb utak, feszítőfák. Szoftvertervezés és -fejlesztés II. előadás. Szénási Sándor

30. ERŐSEN ÜSSZEFÜGGŐ KOMPONENSEK

Mesterséges Intelligencia MI

Adatszerkezetek II. 1. előadás

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

Programozási módszertan. Mohó algoritmusok

Algoritmusok bonyolultsága

Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék

Számítógép és programozás 2

Buborékrendezés: Hanoi Tornyai: Asszimptótikus fv.ek: Láncolt ábrázolás: For ciklussal:

Adatszerkezetek 7a. Dr. IványiPéter

Adatszerkezetek 2. Dr. Iványi Péter

Automatikus következtetés

Cselekvési tervek generálása a robotikában

Funkcionális és logikai programozás. { Márton Gyöngyvér, 2012} { Sapientia, Erdélyi Magyar Tudományegyetem }

Programozási nyelvek 6. előadás

Logikai ágensek. Mesterséges intelligencia március 21.

Gráfalgoritmusok és hatékony adatszerkezetek szemléltetése

Mesterséges Intelligencia MI

Navigáci. stervezés. Algoritmusok és alkalmazásaik. Osváth Róbert Sorbán Sámuel

Diszkrét matematika 2. estis képzés

Kétszemélyes játékok

Programozási nyelvek a közoktatásban alapfogalmak I. előadás

9. előadás. Programozás-elmélet. Programozási tételek Elemi prog. Sorozatszámítás Eldöntés Kiválasztás Lin. keresés Megszámolás Maximum.

Hasonlósági keresés molekulagráfokon: legnagyobb közös részgráf keresése

Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.

Diszkrét matematika 2.C szakirány

1. AZ MI FOGALMA. I. Bevezetés. Ers mesterséges intelligencia (EMI) Gyenge mesterséges intelligencia. MI története. Els szakasz (60-as évek)

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/363

A félév során előkerülő témakörök

Mesterséges intelligencia 2. laborgyakorlat

VII. Keretalapú ismeretábrázolás

Diszkrét matematika 2.C szakirány

ÍTÉLETKALKULUS (NULLADRENDŰ LOGIKA)

Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2010/2011 1/364

Struktúra nélküli adatszerkezetek

Algoritmuselmélet. Legrövidebb utak, Bellmann-Ford, Dijkstra. Katona Gyula Y.

Algoritmizálás, adatmodellezés tanítása 6. előadás

Problémamegoldási stratégiák

MESTERSÉGES INTELLIGENCIA DR. KOVÁSZNAI GERGELY JEGYZETE. Verziószám: május 19.

1. AZ MI FOGALMA. I. Bevezetés. Tulajdonságok. Kezdet ELIZA. Első szakasz (60-as évek)

út hosszát. Ha a két várost nem köti össze út, akkor legyen c ij = W, ahol W már az előzőekben is alkalmazott megfelelően nagy szám.

ELEMI PROGRAMOZÁSI TÉTELEK

NeMa: Fast Graph Search with Label Similarity

Diszkrét matematika 2.C szakirány

Partíció probléma rekurzíómemorizálással

1: Bevezetés: Internet, rétegmodell Alapok: aszimptótika, gráfok. HálózatokII, 2007

A MESTERSÉGES INTELLIGENCIA KÉRDÉSEI A KÖZÉPISKOLAI OKTATÁSBAN

Megerősítéses tanulás 2. előadás

Gráfok, definíciók. Gráfok ábrázolása. Az adott probléma megoldásához ténylegesen mely műveletek szükségesek. Ábrázolások. Példa:

Gráfkeresések A globális munkaterületén a startcsúcsból kiinduló már feltárt utak találhatók (ez az ún. kereső gráf), külön megjelölve az utak azon

... fi. ... fk. 6. Fabejáró algoritmusok Rekurzív preorder bejárás (elsőfiú-testvér ábrázolásra)

1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje

Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból

Átírás:

Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008

Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek Játékok modellezése Bizonytalanság kezelése Grafikus modellek Tanuló rendszerek Szimulált kifűtés, Genetikus algoritmusok Neurális hálók Gépi tanulás Nemparametrikus módszerek

Adminisztra...... trívia Előadások honlapja http://www.cs.ubbcluj.ro/ csatol/mestint Vizsga Szóbeli (60%) + Gyakorlat (40%) (v) Előadás (60%) Laborgyakorlatok: 1 Clean vagy Prolog - dedukciós algoritmus 30% C / C++ / C# / - genetikus algoritmus 10% vagy 3 Matlab - Neurális hálózatok vagy SVM 10%

Tudás reprezentáció Ismeretek számítógépes formában való tárolása vagy: Hanoi tornyok feladata C B A 1 3

Tudás reprezentáció Hanoi tornyok problémája C B A 1 3 = C B A 1 3 kezdeti vég (3, 3, 3) Állapotok = (1, 1, 1) Szabály: nem helyezhető egy korong egy nála kisebb korong tetejére. Szabály =

: a szabályos lépések sorozata. Ábrázolási mód: irányítatlan gráf mivel minden lépés megfordítható. Csúcs állapot Él lépés (1,1,) (1,1,3) (,1,3) (,3,3) (3,1,3) (3,3,3) (1,3,3) (3,,3) (1,,3) (,,3) (,,1) (3,1,) (,1,) (1,,1) (3,,1) (3,,) (,3,) (1,3,1) (3,1,1) Gráf (,,) (1,,) (1,3,) (3,3,) (3,3,1) (,3,1) (,1,1) (1,1,1)

Feladat Feladat: az állapottérben a kezdeti állapotból (3, 3, 3) a végső állapotba (1, 1, 1) eljutni. (,3,3) (3,3,3) 000 111 000 111 000 111 (1,3,3) (1,,3) (3,,1) (3,1,1) (,3,1) (,1,1) 000 111 000 111 000 111 (1,1,1)

Megoldáskeresés az állapottérben Hegymászó módszer Heurisztika: az állapotokhoz rendel egy numerikus függvényt, mely maximum a kezdeti állapotban és minimum a vég állapotban. Val(CS) = k Poz k kezdeti = 9 vég = 3

Megoldás a hegymászó módszerrel Hegymászó módszer Hill climbing Hegymászó: (3,3,3) (,3,3) (1,3,3) ÁLLAPOT kezdőállapot Amíg ÁLLAPOT nem CÉLÁLLAPOT Válassz ÚJ_ÁLLAPOT-ot ÁLLAPOT ÚJ_ÁLLAPOT A következő lépés: a Val(CS) legkisebb szülőtől különböző csúcs. (1,,3) (,,3) (3,,3) (,,1) (1,,1) (3,,1) (1,3,1) (3,1,1) (3,3,1) (,3,1) (,1,1) (1,1,1)

Hegymászó módszer (,3,3) (3,3,3) (1,3,3) (1,,3) Heurisztika nem bizonyítható a konvergencia, Nem kerüli el a ciklusokat, függ a választott paraméterezéstől: a (,, )-be nem írható fel algoritmus. (,,3) (3,,3) (,,1) (1,,1) (3,,1) (3,1,1) (1,1,1 (,3,1) (,1,1)

I Visszalépéses keresés Visszalép: ÚT kezdőállapot Amíg ÚT vég nem CÉL (,3,3) Válassz SZ az út végére alkalmazható műveletek v. visszalép ÚT SZ(ÚT) (3,3,3) (3,,3) (1,3,3) (1,,3) (,,3) (,,1) A választásnál lehet a definiált célfüggvényt használni. (1,,1) (1,3,1) (3,,1) (3,1,1) SZ = szabály (3,3,) (3,3,1) (,3,1) (,1,1) (1,1,1)

II Visszalépéses keresés (,3,3) (3,3,3) (1,3,3) Fontos: a heurisztika hatékonyság, maximális úthossz meghatározása, jobb megoldás de nem optimális. (1,,3) (,,3) (3,,3) (,,1) (1,,1) (3,,1) (1,3,1) (3,1,1) (3,3,) (3,3,1) (,3,1) (,1,1) (1,1,1)

I gráfban Algoritmus: GRÁF kezdőállapot Amíg GRÁF CÉL Válassz SZ GRÁF-ra alkalmazható műveletek GRÁF SZ(GRÁF) A választásnál lehet a definiált célfüggvényt használni. (3,3,3) 7 1 (,,3) (3,,3) (,,1) 6 (1,3,3) (1,,1) (3,,1) (1,3,1) (1,,3) 3 4 5 8 (3,1,1) 9 SZ = szabály (3,3,1) (,3,1) (,1,1) (1,1,1)

II gráfban Felépíti a gráfot, A legköltségesebb, nem találja meg a legrövidebb utat; Elérhetjük a célcsúcsot úgy is, hogy olyan csúcso(ka)t hagyunk ki, melyek a legrövidebb út részei lennének. (3,3,3) 7 (3,,3) 6 1 (1,3,3) (1,,1) (1,3,1) (1,,3) 3 (,,3) 4 (,,1) 5 (3,,1) 8 (3,1,1) 9 (3,3,1) (,3,1) (,1,1) (1,1,1)

Feladat dekompozíció I Rekurzív függvényhívás iskolapéldája Jelölje: n, i, j, k a műveletet, melyben a legfelső n korongot az i-edik rúdról a j-edik rúdra helyezzük a k-adik rúd segítségével A feladat dekomponálható: n, i, j, k n 1, i, k, j 1, i, j, k n 1, k, j, i ha n > 1 n = 1 nem kell tovább bontani a feladatot

Feladat dekompozíció II <3,3,1,> <,3,,1> <1,3,1,_> <,,1,3> <1,3,1,_> <1,3,,_> ÉS/VAGY gráf: <1,1,,_> csúcs = probléma <1,,3,_> <1,,1,_> köteg - a részfeladatok, melyeket meg kell oldani a feladat megoldásához. Itt nincs VAGY csúcs. <1,3,1,_> megoldás = részgráf, melyben minden részprobléma csupa megoldható problémára vezethető vissza.

I Szabályalapú következtetés t(i, j) legfelső korong i j mozgatása. A feladat megoldása mozgatások sorozata lista Lista: a.b.c.nil Lista axiómái: (1) A(nil, r, r) () A(u, v, w) A(s.u, v, s.w) (1) Üres lista nem változtat az eredményen () Ha w az u és v összetétele, ez érvényes egy s előtaggal is.

II Hanoi tornyai axiómái: (3) H(1, i, j, k, t(i, j).nil) (4) H(n 1, i, k, j, y) H(1, i, j, k, t(i, j).nil) H(n 1, k, j, i, z) A(y, t(i, j).z, x) H(n, i, j, k, x) (3) 1 elemet átteszünk: t(i, j) (4) n elem áttételéhez előbb n 1 elemet mozgatunk y sorozattal, egy elemet t(i, j)-vel, majd n 1-et vissza. Kérdés: (5) ( x) H(, 1,, 3, x) (5) azon mozgatások, melyek megvalósítják korong mozgatását.

III Algoritmus: GRÁF = célállítás Amíg GRÁF-ban nincs ellentmondásmentes levezetés Válassz SZ a GRÁF-hoz alkalmazható illesztések vagy visszalépés GRÁF = SZ(GRÁF) Egy ÉS/VAGY gráfot járunk be és keresünk egy gráfot, mely tényekben végződik és nem ellentmondóak az illesztések.

Rezolúció I Két elemű Hanoi-toronyra a kérdés: ( x) H(, 1,, 3, x) Rezolúció: bizonyítani, hogy az axiómákból következik a célállítás. A B A B A B (1) () (3) (4) (5) kielégíthetetlen

Rezolúció II Bizonyítás: ellentmondásos axiómarendszer: (1) A(nil, r, r) () A(u, v, w) A(s.u, v, s.w) (3) H(1, i, j, k, t(i, j).nil) (4) H(n 1, i, k, j, y) H(1, i, j, k, t(i, j).nil) H(n 1, k, j, i, z) A(y, t(i, j).z, x) H(n, i, j, k, x) (5) H(, 1,, 3, x) Cáfolati gráf: létezik út, melyre fennáll az (1) (4) és (5).

I (Production systems) Különválasztják a feladat adatait ; az adatokon értelmezett műveleteket ; a vezérlést, mely a műveleteket algoritmussá szervezi. Keresőrendszer: (Adat,Szabály,Vezérlés)

II Általános stratégia: ADAT Kezdeti adatbázis AMÍG ADAT nem terminális Válassz SZ az ADAT-ra alkalmazható szabályok közül, ADAT SZ(ADAT) i stratégia: az alkalmazható szabályok közül egyet kiválaszt. i stratégia: előrehaladó visszafelé haladó kétirányú bidirectional hegymászó, visszalépés, gráf szabályalapú

II Általános stratégia: ADAT Kezdeti adatbázis AMÍG ADAT nem terminális Válassz SZ az ADAT-ra alkalmazható szabályok közül, ADAT SZ(ADAT) i stratégia: az alkalmazható szabályok közül egyet kiválaszt. i stratégia: előrehaladó visszafelé haladó kétirányú bidirectional hegymászó, visszalépés, gráf szabályalapú

II Általános stratégia: ADAT Kezdeti adatbázis AMÍG ADAT nem terminális Válassz SZ az ADAT-ra alkalmazható szabályok közül, ADAT SZ(ADAT) i stratégia: az alkalmazható szabályok közül egyet kiválaszt. i stratégia: előrehaladó visszafelé haladó kétirányú bidirectional hegymászó, visszalépés, gráf szabályalapú

Ismeretábrázolás Ismeretek osztályozása: deklaratív ismeret állapot,részprobléma,axiómák procedurális ismeret művelet, dekompozíció vezérlési ismeret VAL függvény Közös vonás: gráf = gráfreprezentáció. ADAT = a reprezentációs gráf egy részgráfja. = Ablak, melyet a szabályok módosítanak, egy csúcs, egy részgráf.

i stratégiák i stratégiák: Elsődleges stratégia nem-módosítható stratégia (hegymászó, rezolúció) módosítható stratégia (szabályok választása) másodlagos stratégia figyelembe veszi az adott reprezentációt. Módosítható stratégiák: visszalépéses backtracking gráfkereső graphsearch

A heurisztika szerepe koltseg szabalyalk. szama futasi ido valasztas koltsege informacio No free lunch. Nehéz a futási időt optimizálni. Közelítő megoldások javasoltak.