Alternatív gázforrások tüzelési-biztonsági kockázata



Hasonló dokumentumok
SZINTETIKUS GÁZ BETÁPLÁLÁSA FÖLDGÁZELOSZTÓ RENDSZEREKBE A HIDRAULIKAI SZIMULÁCIÓ FONTOSSÁGA

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN :2003 SZABVÁNY SZERINT.

Gázkészülékek levegőellátásának biztosítása a megváltozott műszaki környezetben

zeléstechnikában elfoglalt szerepe

A BIOGÁZOK ADALÉKGÁZKÉNT TÖRTÉNŐ FÖLDGÁZHÁLÓZATI BETÁPLÁLÁSÁNAK PEREMFELTÉTELEI

MAGYAR KAPCSOLT ENERGIA TÁRSASÁG COGEN HUNGARY. A biogáz hasznosítás helyzete Közép- Európában és hazánkban Mármarosi István, MKET elnökségi tag

Tüzeléstan előadás Dr. Palotás Árpád Bence

Gázszivárgás kereső műszer

II. INNOVATÍV TECHNOLÓGIÁK

LNG felhasználása a közlekedésben április 15. Kirilly Tamás Prímagáz

Szennyvíziszap dezintegrálási és anaerob lebontási kísérlete. II Ökoenergetika és X. Biomassza Konferencia Lipták Miklós PhD hallgató

Tájékoztató. Használható segédeszköz: -

MSZ EN :2015. Tartalom. Oldal. Előszó...8. Bevezetés Alkalmazási terület Rendelkező hivatkozások...10

PONTSZÁM:S50p / p = 0. Név:. NEPTUN kód: ÜLŐHELY sorszám

A biometán előállítása és betáplálása a földgázhálózatba

e-gépész.hu >> Szellőztetés hatása a szén-dioxid-koncentrációra lakóépületekben Szerzo: Csáki Imre, tanársegéd, Debreceni Egyetem Műszaki Kar

Hőtechnikai berendezéskezelő É 1/5

FGSZ FÖLDGÁZSZÁLLÍTÓ ZÁRTKÖRŰEN MŰKÖDŐ RÉSZVÉNYTÁRSASÁG ÜZLETSZABÁLYZATA VÁLASZTHATÓ SZOLGÁLTATÁSOK ÉS DÍJAIK

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája

Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája

A Dräger PEX 1000 egy 4-20 ma távadó modul, amelyik a Dräger Polytron SE Ex DD szenzor fejek mv jeleit ma jelekké alakítja, és elküldi őket a

Biogáz betáplálása az együttműködő földgázrendszerbe

Az úszás biomechanikája

Szívókönyökök veszteségeinek és sebességprofiljainak vizsgálata CFD szimuláció segítségével

Paksi Atomerőmű üzemidő hosszabbítása. 4. melléklet

ÁRAMLÁSTAN MFKGT600443

Klórgáz kikerülésének, terjedésének, és kockázatának modellezése

Major Ferenc részlegvezető ACIS Benzinkúttechnika kft.

Ex Fórum 2009 Konferencia május 26. robbanásbiztonság-technika 1

INERT GÁZOK ALKALMAZÁSA AZ ÉPÜLETVÉDELEMBEN ÉS IPARI KOCKÁZATOKNÁL. Ramada Resort Aquaworld, Budapest június 4. Bischoff Pál

A MOL ENERGETIKAI TERMÉKEI

MŰANYAG HULLADÉK HASZNOSÍTÓ BERENDEZÉS

TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek

Feladatlap X. osztály

Szabadentalpia nyomásfüggése

Kommunális hulladéklerakón keletkező gázok hasznosítása

Tüzelőanyagok fejlődése

2. Milyen esetekben éghető, illetve robbanóképes valamely folyadék?

Mikor és mire elég a kéménymagasság? Dr. Barna Lajos. Budapesti Műszaki és Gazdaságtudományi Egyetem Épületgépészeti Tanszék

Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.

TECHNIKAI ADATLAP 1. SZAKASZ AZ ANYAG/KEVERÉK ÉS A VÁLLALAT/VÁLLALKOZÁS AZONOSÍTÁSA:

A diplomaterv keretében megvalósítandó feladatok összefoglalása

Épületgépészeti csőhálózat- és berendezés-szerelő Gázfogyasztóberendezés- és csőhálózat-szerelő É 1/5

Gázelosztó rendszerek üzemeltetése V. rész

ALKALMAZOTT ÁRAMLÁSTAN MFKGT600654

Hő- és füstelvezetés, elmélet-gyakorlat

Épületenergetika. Tervezett változások az épületenergetikai rendelet hazai szabályozásában Baumann Mihály adjunktus PTE PMMK

1. ábra Sztatikus gyújtásveszély éghető gázok, gőzök, ködök és porok esetében

Baris A. - Varga G. - Ratter K. - Radi Zs. K.

MCS. MCS - Gázérzékelők

TOXIKUS ANYAGOK. A toxikus anyagok gőzei vagy gázai, a levegővel elegyedve, a talaj mentén terjedve

Kitekintés az EU földgáztárolási szokásaira

H3515 Miskolc, Egyetemváros, HUNGARY Tel: ZÁRÓVIZSGA TÉTELEK

A BLOWER DOOR mérés. VARGA ÁDÁM ÉMI Nonprofit Kft. Budapest, október 27. ÉMI Nonprofit Kft.

Izotóphidrológiai módszerek alkalmazása a Kútfő projektben

Segédlet az ADCA szabályzó szelepekhez

SIGMAGUARD törtfehér, krém fényes

Acetilén és egyéb éghető gázok felhasználása pro és kontra. Gyura László, Balogh Dániel Linde Hegesztési Szimpózium Budapest,

Hidrosztatika. Folyadékok fizikai tulajdonságai

Mekkora az égés utáni elegy térfogatszázalékos összetétele

Gázégő üzemének ellenőrzése füstgázösszetétel alapján

1. Az éghetőségi határok közötti koncentráció elkerülése

MÉRÉSI JEGYZŐKÖNYV. A mérési jegyzőkönyvet javító oktató tölti ki! Kondenzációs melegvízkazám Tanév/félév Tantárgy Képzés

Karbantartási és Hibaelhárítási Szerződések - PMC ( Preventive Maintenance Contracts )

A HAG vezeték szerepe a hazai. földgázellátásban. Galyas Anna Bella, Ph.D. hallgató

Nyomás. Az az erő, amelyikkel az egyik test, tárgy nyomja a másikat, nyomóerőnek nevezzük. Jele: F ny

A PLAZMASUGARAS ÉS VÍZSUGARAS TECHNOLÓGIA VIZSGÁLATA SZERKEZETI ACÉL VÁGÁSAKOR

Hőtechnikai berendezéskezelő Ipari olaj- és gáztüzelőberendezés T 1/5

Fűtési rendszerek hidraulikai méretezése. Baumann Mihály adjunktus Lenkovics László tanársegéd PTE MIK Gépészmérnök Tanszék

Tájékoztató. Értékelés Összesen: 60 pont

Energiagazdálkodás és környezetvédelem 3. Előadás

Hő- és füstelvezetés, elmélet-gyakorlat

Épületenergetika EU direktívák, hazai előírások

HÍRLEVÉL. A Magyar Kereskedelmi Engedélyezési Hivatal közleménye

Proline Prosonic Flow B 200

Dr. Berta Miklós egyetemi adjunktus Széchenyi István Egyetem Fizika és Kémia Tanszék

Szakmai fizika Gázos feladatok

Gáz-elemzéstechnika már 30. Gyártás és szervíz A füstgázelemzés szakértői. éve a jövő biztonságáért! Összefoglaló az MRU műszereiről

A javítási-értékelési útmutatótól eltérő helyes megoldásokat is el kell fogadni.

Az Alföld rétegvíz áramlási rendszerének izotóphidrológiai vizsgálata. Deák József GWIS Kft Albert Kornél Micro Map BT

3. Gyakorlat Áramlástani feladatok és megoldásuk

GÁZTISZTÍTÁSI, GÁZNEMESÍTÉSI ELJÁRÁSOK ÖSSZEHASONLÍTÁSA

Hőszivattyúk - kompresszor technológiák Január 25. Lurdy Ház

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint

A biogázokkal kapcsolatos oktatási tevékenység, kutatási irányok és eredmények a Miskolci Egyetem Kőolaj és Földgáz Intézetében

Bodnár István PhD hallgató Miskolci Egyetem Sályi István Gépészeti Tudományok Doktori Iskola

BIZTONSÁGI ADATLAP 2. ÖSSZETÉTEL/ÖSSZETEVŐKKEL KAPCSOLATOS INFORMÁCIÓ. Tömegszázalék % CAS (TSCA) szám

a NAT /2013 nyilvántartási számú akkreditált státuszhoz

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.

Nagyágyús tűzoltás logisztikai problémái. Előadó: Török Tamás tűzoltóparancsnok-helyettes TMM Tűzoltó és Műszaki Mentő Kft Tiszaújváros

I. A CFD alkalmazási területei Néhány érdekes korábbi CFD projekt

Hajdúnánás geotermia projekt lehetőség. Előzetes értékelés Hajdúnánás

KF-II-6.8. Mit nevezünk pirolízisnek és milyen éghető gázok keletkeznek?

BIZTONSÁGI ADATLAP. 1. Az anyag/készítmény és a társaság/vállalkozás azonosítása

SHD-U EURO GARAT SZÁRÍTÓ CSALÁD

Plazmasugaras felülettisztítási kísérletek a Plasmatreater AS 400 laboratóriumi kisberendezéssel

MESSER INNOVATION FORUM AUTOGÉNTECHNIKAI VESZÉLYFORRÁSOK, TANULSÁGOS PÉLDÁK

Gáznyomás-szabályozás, nyomásszabályozó állomások

MEGÚJULÓ ENERGIA MÓDSZERTAN CSG STANDARD 1.1-VERZIÓ

Veszteségek elemzése az elosztó hálózaton Bali Gábor ENERGIQ Kft. / BALIQ Bt.

Átírás:

Miskolci Egyetem Műszaki Földtudományi Kar Kőolaj és Földgáz Intézet Alternatív gázforrások tüzelési-biztonsági kockázata Szerzők: Prof. Dr. Tihanyi László, egy. tanár Dr. Szunyog István, egy. adjunktus Dr. Turzó Zoltán, egy. docens Horánszky Beáta, egy. tanársegéd XX. DUNAGÁZ SZAKMAI NAPOK 2012. Visegrád, 2012. április 18.

Probléma felvetés

A propán, mint gázforrás Egyre több ipari létesítmény dönt úgy, hogy a földgáz mellett alternatív energiahordozót is alkalmaz tipikus példa a földgázt használó fogyasztók csúcsigény levágására a propán-levegő-földgáz (PSG) keveréke előny: megfelelő keverék esetén nem szükségesek új égők és az ellátó rendszer átalakítása Európában már megjelent a biometán földgázhálózati betáplálása a Magyarországon szolgáltatott földgázminőségek esetén azonban szükség lehet a biometán minőségének javítására a betáplálás előtt várhatóan hamarosan megindulnak az első betáplálási projektek nálunk is 3

A kockázat PSG alkalmazása esetén a keverékben a földgáz mellett propán és levegő is megjelenik a földgáz-sng keverékben megjelenő propán és levegő okozhat tüzeléstechnikai, vagy a relatív sűrűség emelkedéséből adóan biztonsági kockázatot, és a keverék szaghatása is gyengülhet a bekevert hígító levegő miatt a szolgáltatott gáz szénhidrogén-harmatpontjára is hatással lehet A biometán minőségjavítása esetén a keverékben a földgáz mellett csak propán jelenik meg túl nagy arányú bekeverés esetén hatással lehet az eltüzelésre Kockázat: ha a gáz szivárog, a levegőben feldúsulhat, meggyulladhat, azaz gyors, szabályozatlan energia felszabadulás formájában (robbanás) jelentkezhet! Vizsgálni kell tehát: a keverék energiatartalmát (hőértékét) a tüzeléstechnikai viselkedését (szükséges, de nem elégséges feltételként a Wobbe-számát) a relatív sűrűségét a szivárgás környezetét (helyiség geometriája, kiáramlás sebessége, iránya, stb.) 4

Felvetődő kérdések Az így előállításra kerülő, és földgázhoz adott tiszta propán, illetve propán-levegő keverék milyen arányban keverhető a földgázhoz (biometánhoz), hogy ne jelentsen tüzeléstechnikai kockázatot? milyen arányban keverhető a földgázhoz (biometánhoz), hogy ne jelentsen szénhidrogén-kondenzáció kockázatot? a keverék megváltozott relatív sűrűsége milyen megváltozó biztonságtechnikai elveket követel? hogyan befolyásolja a szivárgási hely környezete a környezetbe kikerülő gáz terjedését és koncentrációjának feldúsulását? milyen körülmények között alakulhat ki robbanás veszély? 5

Elméleti alapok Forrás: R.J. Harris: Gas explosions in buildings and heating plant; E&FN Spon, London, New York, 1989. ISBN 0-419-13220-1 Lautkaski, R.: Understanding vented gas explosions; Technical Research Centre of Finland, ESPOO, 1997. Tihanyi, L. Szunyog, I.: Csúcsfedezés szintetikus földgázzal; Magyar Energetika 2004/5. (21-27. o.)

Gázkoncentráció zárt térben Keveredés: molekuláris diffúzió révén: igen lassú (a gyakorlatban ez az eset szinte kizárható nincs levegő áramlás) turbulens módon: intenzív folyamat a szivárgási forrástól távolodva a konventráció hígul ha nagy a kiáramló gáz sebessége ( lendületi gázsugár ), levegőt injektál a sugárba, intenzívebben csökken a gázkoncentráció a sugárban, de egyúttal a helyiségben is hamarabb érhetjük el a veszélyes koncentrációt (ARH) ha a kiáramló gáz sűrűsége lényegesen eltér a környezet sűrűségétől, a gázsugár lendülete hamar elvész ( könnyű csóva ) ha kicsi a kiáramló gáz sebessége, könnyű csóvaként viselkedik 7

Terjedési viszonyok Ha nincs légáramlás a helyiségben: Levegőnél könnyebb gáz: a gázsugár vagy csóva a plafonhoz fog felemelkedni szétterjed egy réteget kialakítva majd függőlegesen lefelé terjed, mivel túlnyomást nem tud létesíteni növekedni kezd a koncentráció mind a plafonnál, mind a rétegben lassan egy egyenletes koncentrációjú réteg alakul ki a beömlési pont és a plafon között a kialakuló réteg meggátolja, hogy a gáz a helyiségben lévő teljes levegőmennyiséggel keveredjen, ez által befolyásolja azt az időt amire szükség van a robbanóképes keverék koncentráció kialakulásához a rétegben a gázkoncentráció függ a gázkiengedés mértékétől és a friss levegő betáplálás mértékétől Levegőnél nehezebb gáz: a gázsugár a padlóhoz fog süllyedni, és ott alakít ki egy réteget a többi hatás megegyezik a könnyebb gázoknál leírtakkal értelem szerűen alkalmazva azokat 8

Befolyásoló tényezők A beömlés irányának hatása levegőnél nehezebb gáz (pl. propán) esetén: a felfelé irányuló beömlés esetén intenzívebb a levegővel a keveredés, ezért kisebb koncentrációjú, de jobban kevert réteg alakul ki (magasabb réteg) a lefelé irányuló beömlés esetén nincs intenzív keveredés a teljes térfogatban, a padlóhoz közelebb magasabb koncentrációjú réteg alakulhat ki A kilépő gáz sebességének hatása: magasabb sebesség = intenzívebb keveredés A szellőztetés hatása: jellemzően a gázkoncentráció szellőztetés hatására bekövetkező hígulása tudja meggátolni a gyúlékony gázlevegő keverék kialakulását 9

Mintaösszetételek Földgáz: G20 (100% metán) Alsó hőértéke: 33,948 MJ/m 3 Relatív sűrűsége: 0,555 Felső Wobbe-száma: 50,724 MJ/m 3 Biometán: 95% metán; 5% szén-dioxid Alsó hőértéke: 32,320 MJ/m 3 Relatív sűrűsége: 0,603 Felső Wobbe-száma: 46,219 MJ/m 3 Propán: 100% Alsó hőértéke: 86,420 MJ/m 3 Relatív sűrűsége: 1,550 Felső Wobbe-száma: 76,839 MJ/m 3 Levegő: 78% N 2 ; 21% O 2 ; 1% Ar Relatív sűrűsége: 1,0 Keverési feltétel: azonos hőértékre, vagy azonos Wobbe-számra 10

1. mintapélda Határozzuk meg ipari felhasználó esetén a metán propán+levegő (SNG) keverék keverési peremfeltételeit, hogy a keverék (PSG) még éppen megfeleljen az MSZ 1648 szabvány előírásainak! Feltételek: legyen a cserélhetőség az elsőrendű feltétel (Wobbeszám azonosság) a fűtőérték nagyobb mértékű eltérése üzemben belül legyen megengedhető a keverék relatív sűrűsége legyen < 1,0 11

Mintapélda megoldása Milyen arányban kell keverni a propánt és a levegőt, hogy a metán felső Wobbe-számával legyen azonos a keverék Wobbe-száma? 61,8 : 38,2 (propán : levegő) (Wo=50,724 MJ/m 3 ) a keverék összetétele: 61,80% C 3 H 8 ; 29,80% N 2 ; 8,02% O 2 ; 0,38% Ar relatív sűrűsége: 1,333 Milyen arányban lehet ezt az SNG-t bekeverni a földgázhoz, hogy a keverék megfeleljen az MSZ 1648 követelményének? 65,5 : 34,5 (metán : SNG) H a =40,81 MJ/m 3 (MSZ 1648 határérték!) a keverék összetétele: 65,50% CH 4 ; 21,32% C 3 H 8 ; 10,28% N 2 ; 2,77% O 2 ; 0,13% Ar ekkor a tényleges Wobbe-szám: 49,52 MJ/m 3 (azaz -2,4% az eltérés) változás az alsó hőértékben: +20,2%! (MSZ 1648-ban max. +/- 5%!) relatív sűrűsége: 0,82 (EASEE-Gas ajánlásban: max. 0,70) 12

Mintapélda megoldása Következtetés: Azonos felső Wobbe-számra történő szabályozás esetén a metán részaránya min. 65,5% kell legyen! A keverést követően a propán tartalom 0,00% és 21,32% között változhat a keverési aránytól függően! Ilyen összetétel mellett CH kondenzáció 5 bar-on -42,5 0 C; 25 bar-on -4,7 0 C alatt következik be, azaz a felhasználó berendezés szempontjából nincs valós CH kondenzációs veszély! A keverékre nem alkalmazhatók 100%-ban a földgázra vonatkozó biztonsági előírások, de (később még visszatérünk a kérdésre!) 13

2. mintapélda Határozzuk meg a biometán+propán keverék keverési feltételeit, hogy az megfeleljen az MSZ 1648 szabványnak, és elérje az egyik legmagasabb fűtőértékű hazai földgáz paramétereit! Feltételek: legyen a cserélhetőség az elsőrendű feltétel (Wobbe-szám azonosság) a keverék alsó hőértéke nem térhet el +/-5%-nál nagyobb mértékben a hálózati gázétól a keverék relatív sűrűsége ne haladja meg az EASEE-Gas ajánlást (0,70) a hálózati gáz felső Wobbe-száma: 50,14 MJ/m 3 a hálózati gáz alsó hőértéke: 34,21 MJ/m 3 (+5%=35,92 MJ/m 3 ) a hálózati gáz relatív sűrűsége: 0,57 14

Mintapélda megoldása Milyen arányban kell keverni a propánt a tiszta biometánhoz, hogy a keverék felső Wobbe-számával legyen azonos a keverék Wobbe-száma? 93,4 : 6,6 (biometán : propán) (Wo=48,78 MJ/m 3 ) Megjegyzés: nem érhető el a hálózati gáz Wobbe-száma, mivel a hőérték kilép a +5%-os határból! a keverék összetétele: 88,73% CH 4 ; 6,60% C 3 H 8 ; 4,67% CO 2 alsó hőértéke: 35,92 MJ/m 3 (+5%! MSZ 1648) relatív sűrűsége: 0,665 Következtetések: Szénhidrogén-kondenzáció nem következik be az elosztás nyomás-tartományában A keverék földgáznak tekinthető! A keverékre a földgáz biztonsági előírásai alkalmazandók! Megjegyzés: a fenti megállapítások nem igazak a biogázok adalékgáz minősére történő előkészítésekor! 15

Mintapélda animációk A kiáramló gázok tényleges viselkedése

Alapadatok a helyiség mérete: 12x6x6 m a helyiség térfogata: 432 m 3 a szivárgás helye: 1 m magasságban a terem közepén a szivárgás mérete 0,1 m 2 (hogy a szimuláció látványos legyen!) a terem tetején 0,6x0,6 m szellőzőnyílás (minimális természetes szellőzés ) a szivárgási hely felfelé irányul a kiáramló gáz sebessége: 1 m/s, 10 m/s, 20 m/s a kiáramló gáz: tiszta propán az eredmények a kiáramlott gáz koncentrációit mutatják a helyiség levegőjében 17

A kiáramlás sebessége Az a kritikus 0,84 bar túlnyomás nagyon kicsi kiáramlási keresztmetszetnél (szivárgás) az áramlás hasonlítható egy adiabatikus, tartályból történő kiáramláshoz (kvázi fúvókához) ha a fúvóka két oldala közötti nyomásarányra teljesül a következő egyenlőtlenség, akkor a kiömlési keresztmetszetben kritikus állapot alakul ki, és a gáz kiáramlási sebessége egyenlő lesz a rá jellemző hangsebességgel p p 2 1 2 κ+ 1 κ κ 1 ez földgáz esetén kb. 400 m/s körülire tehető tehát fontos szerepe van a szivárgó hálózat nyomásának! 18

Tiszta propán, 1 m/s kiáramlási sebesség 19

Tiszta propán, 10 m/s kiáramlási sebesség 20

Tiszta propán, 20 m/s kiáramlási sebesség 21

Megállapítások

Minőségre vonatkozó megállapítások a propán és PB keverékek földgáz rendszerekben történő megjelenésére reálisan számítani kell a bekeverés mennyisége alapvető információt hordoz a biztonsági követelmények vizsgálatakor az eltüzelés biztonsága szempontjából a Wobbe-szám egyezősége kívánatos a Wobbe-szám és a hőérték soha nem egyezik meg együttesen az adott helyen szolgáltatott földgáz értékeivel (valamelyik paraméter el fog térni) a SNG csúcsfedezés céljaira jellemzően 70%-nál magasabb földgáz részarány esetén ajánlható ekkor a keverési pont után a levegőnél kisebb sűrűségű, a földgázéhoz közel álló Wobbe-számú gázkeverék áll rendelkezésre szénhidrogén-kondenzációs veszély ilyen esetben gyakorlatilag nem lép fel a legfeljebb elosztó-hálózati nyomású rendszerekben biometán minőségjavítása esetén gyakorlatilag földgázminőséggel 23 lehet számolni

Biztonságtechnikai megfontolások a földgáztól eltérő biztonságtechnikai kockázatot csak a jelentősebb mértékben bekevert SNG jelenthetne, DE az ipari fogyasztó berendezések helyiségeiben legalább természetes szellőzés van, azaz van légáramlás a szivárgó forrás kiáramlása turbulenciát generál a környezetében, ami keveredéshez vezet már kicsi rendszerbeli túlnyomás is (0,84 bar) jelentős kiáramlási sebességet generálhat ahhoz, hogy a tökéletesen elkeveredett metán és propán elkülönüljön egymástól a térben (felfelé, illetve lefelé) tökéletesen hermetikus tér és idő! szükséges (a gyakorlatban ez az eset nem valószínűsíthető) mivel a lehetséges összetétel tartományokban a metán részaránya a legmagasabb (min. 3/4-ed része a keveréknek) a metán érzékelők fognak először jelt adni (a metán relatív sűrűsége -0,44-el, a propáné +0,55-el tér el az 1,00-tól, azaz közel azonos sebességgel terjednek függőlegesen) 24

Összegezve 30%-nál nem nagyobb arányú SNG földgázhoz történő keverésével, és a felhasználói tér szellőztetésének átgondolt kialakításával, valamint metánra kalibrált gázérzékelők elhelyezésével a tűz- és robbanás veszély megelőzhető A helyiség mélyebb, kevésbé átszellőző részein elhelyezett PB gázérzékelők tovább növelik a biztonságot, azonban nem valószínűsíthető azok működésbe lépése a felvázolt feltételek mellett. 25

Köszönjük a figyelmet! Elérhetőség: A szakmai előadás a TÁMOP-4.2.1.B-10/2/KONV-2010-0001 jelű projekt részeként - az Új Magyarország Fejlesztési Terv keretében - az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósulhatott meg. Miskolci Egyetem Kőolaj és Földgáz Intézet 3515 Miskolc- Egyetemváros Tel: 06-46-565-078 Web: www.gas.uni-miskolc.hu