Matematika tanmenet/4. osztály

Hasonló dokumentumok
Gyõrffy Magdolna. Tanmenetjavaslat. A matematika csodái 4. osztályos tankönyvcsaládhoz A KERETTANTERV SZERINT ÁTDOLGOZVA!

MATEMATIKA ÉVFOLYAM

Tanmenetjavaslat 5. osztály

MATEMATIKA évfolyam

COMENIUS ANGOL-MAGYAR KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA MATEMATIKA TANMENET

Tanmenetjavaslat Matematika 3. évfolyam Készítette: Csekné Szabó Katalin, 2015

MATEMATIKA 5 8. ALAPELVEK, CÉLOK

MATEMATIKA A és B variáció

TANMENET javaslat. a szorobánnal számoló. osztály számára. Vajdáné Bárdi Magdolna tanítónő

Tanmenet Matematika 8. osztály HETI ÓRASZÁM: 3,5 óra ( 4-3) ÉVES ÓRASZÁM: 126 óra

MATEMATIKA. Tildy Zoltán Általános Iskola és Alapfokú Művészeti Iskola Helyi tanterv 1-4. évfolyam 2013.

Tanmenetjavaslat a 6. osztályos matematika kísérleti tankönyvhöz

PEDAGÓGIAI PROGRAM ÉS HELYI TANTERV MÓDOSÍTÁSA

Fejlesztési követelmények, kompetenciák

Pedagógiai program. IX. kötet

A TANTÁRGYTÖMBÖSÍTETT OKTATÁS BEVEZETÉSÉNEK KIDOLGOZÁSA

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

Nemzeti alaptanterv 2012 MATEMATIKA

MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok

közti kapcsolatok, Ellenőrzés, Játék 21. modul

Matematika évfolyam. tantárgy 2013.

Add meg az összeadásban szereplő számok elnevezéseit!

Matematika tanmenet 2. osztály részére

1 3. osztály 4. osztály. minimum heti 4 óra évi 148 óra heti 3 óra évi 111 óra. átlagosan 2 hetente 9 óra évi 166 óra 2 hetente 7 óra évi 129 óra

Matematika évfolyam

értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják

Matematikai és matematikai statisztikai alapismeretek

I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)

Matematika. Padányi Katolikus Gyakorlóiskola 1

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11.E OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

Osztályozóvizsga követelményei

A HÁZIREND MELLÉKLETE AZ OSZTÁLYOZÓVIZSGA TANTÁRGYI KÖVETELMÉNYEI

Matematika 8. PROGRAM. általános iskola 8. osztály nyolcosztályos gimnázium 4. osztály hatosztályos gimnázium 2. osztály. Átdolgozott kiadás

HELYI TANTERV MATEMATIKA (emelt szintű csoportoknak) Alapelvek, célok

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 2. sz. melléklet Matematika az általános iskolák 5 8.

Tantárgytömbösítés a matematika tantárgyban 5. évfolyamon

Matematika évfolyam

Béres Mária TANÍTÓI KÉZIKÖNYV. Színes matematika tankönyvsorozat 2. osztályos elemeihez

43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HETEDIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ

Matematika 9. nyelvi előkészítő évfolyam. 1 óra/hét (37 óra) Kiselőadások tartása, interjúk készítése (matematikatörténeti

0653. MODUL TÖRTEK. Szorzás törttel, osztás törttel KÉSZÍTETTE: BENCZÉDY LACZKA KRISZTINA, MALMOS KATALIN

Matematika évfolyam. tantárgy 2013.

HELYI TANTERV MATEMATIKA tanításához Szakközépiskola évfolyam

MATEMATIKA ÉRETTSÉGI VIZSGA ÁLTALÁNOS KÖVETELMÉNYEI

KÖVETELMÉNYEK 2015/ félév. Informatika II.

Árvainé Libor Ildikó Murátiné Szél Edit. Tanítói kézikönyv. tanmenetjavaslattal. Sokszínû matematika. 4

5. évfolyam. Gondolkodási módszerek. Számelmélet, algebra 65. Függvények, analízis 12. Geometria 47. Statisztika, valószínűség 5

Matematika helyi tanterv 5 8. évfolyam számára Alapelvek, célok

hogy a megismert fogalmakat és tételeket változatos területeken használhatjuk Az adatok, táblázatok, grafikonok értelmezésének megismerése nagyban

SAKK-LOGIKA 1 4. évfolyam

9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.

Osztályozóvizsga követelményei

Az osztályozó vizsga tantárgyankénti, évfolyamonkénti követelményei

Matematika tanmenet (A) az HHT-Arany János Tehetségfejleszt Program el készít -gazdagító évfolyama számára

KOVÁCS BÉLA, MATEMATIKA I.

Számelméleti feladatok az általános iskolai versenyek tükrében dr. Pintér Ferenc, Nagykanizsa

148 feladat ) + ( > ) ( ) =?

Oktatáskutató és Fejlesztő Intézet TÁMOP / XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok

MATEMATIKA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNY A) KOMPETENCIÁK

Kulcskompetenciák fejlesztése az 1-4. évfolyamon

TANMENETJAVASLAT AZ ÚJ KERETTANTERVHEZ MATEMATIKA 1. ÉVFOLYAM KÉSZÍTETTÉK: KURUCZNÉ BORBÉLY MÁRTA ÉS VARGA LÍVIA TANKÖNYVSZERZŐK 2013

ÍRÁSBELI SZORZÁS ELŐKÉSZÍTÉSE; TÖBBTAGÚ ÖSSZEADÁSOK, TÖBBSZÖRÖZÉSEK. 37. modul

Munkaformák Módszerek Eszközök készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek

Matematika helyi tanterv,5 8. évfolyam

MATEMATIKA Emelt szint évfolyam

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

MATEMATIKA 1-2.osztály

Matematika. Specializáció évfolyam

Gyarmati Dezső Sport Általános Iskola MATEMATIKA HELYI TANTERV 1-4. OSZTÁLY

különösen a média közleményeiben való reális tájékozódást. Mindehhez elengedhetetlen egyszerű matematikai szövegek értelmezése, elemzése.

Matematika emelt szintû érettségi témakörök Összeállította: Kovácsné Németh Sarolta (gimnáziumi tanár)

F Ü G G E L É K E K 1. K Ö R N Y E Z E TI N E V E L É SI PR O G R A M O SZ TÁ L Y K IR Á N D U L Á SO K TE R V E 3.

MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 9.A-9.C-9.D OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA

MATEMATIKA évfolyam. Célok és feladatok. Fejlesztési követelmények

ÍRÁSBELI ÖSSZEADÁS, KIVONÁS. A MŰVELETI SORREND SZÁMÍTÁSOKBAN ÉS SZÖVEGES FELADATOK MEGOLDÁSA SORÁN. 9. modul

NIKerettanterv MATEMATIKA 1. évfolyan Éves óraszám: 180 óra, heti 5 óra

EMMI kerettanterv 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet Matematika az általános iskolák 1 4. évfolyama számára

2. Halmazelmélet (megoldások)

Apor Vilmos Katolikus Iskolaközpont. Helyi tanterv. Matematika. készült. a 51/2012. (XII. 21.) EMMI rendelet 1. sz. melléklet 1-4./1.2.3.

Kőszegi Irén MATEMATIKA. 9. évfolyam

Helyi tanterv. Batthyány Kázmér Gimnázium Matematika emelt ( óra/hét) 9-12 évfolyam Készült: 2013 február

Csordás Mihály Konfár László Kothencz Jánosné Kozmáné Jakab Ágnes Pintér Klára Vincze Istvánné. tankönyv. Mozaik Kiadó Szeged, 2013

Tantárgyi útmutató. 1. A tantárgy helye a szaki hálóban. 2. A tantárgyi program általános célja. Statisztika 1.

Az osztályozó, javító és különbözeti vizsgák (tanulmányok alatti vizsgák) témakörei matematika tantárgyból

TANMENET. KÉSZSÉGEK, CÉLOK Beszédkészség, kommunikációs képesség, figyelem fejl.

HELYI TANTERV BIOLÓGIA tanításához Szakközépiskola évfolyam

EMELT SZINTŰ ÍRÁSBELI VIZSGA

HELYI TANTERV TARTALOMJEGYZÉKE 3

AJÁNLÓ évfolyam Számtan, algebra... 24

INFORMATIKA 1-4. évfolyam

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

VIZUÁLIS KULTÚRA. 4 évf. gimnázium reál orientáció

Halmazok Halmazok, részhalmaz, halmazműveletek, halmazok elemszáma

1. Melyek azok a kétjegyű számok, amelyek oszthatók számjegyeik

Matematika évfolyam. Vass Lajos Általános Iskola Helyi tanterv Matematika 1 4. osztály

FEJSZÁMOLÁS A TÍZEZRES SZÁMKÖRBEN A KÉTJEGYŰEKKEL ANALÓG ESETEKBEN. AZ ÖSSZEADÁS ÉS KIVONÁS MONOTONITÁSA. 5. modul

A továbbhaladás feltételei fizikából és matematikából

képességgel és készséggel, hogy alkalmazni tudják matematikai tudásukat, és felismerjék, hogy a megismert fogalmakat és tételeket változatos

MATEMATIKA ÉRETTSÉGI május 9. EMELT SZINT

Átírás:

Comenius Angol-Magyar Két Tanítási Nyelvű Iskola 2015/2016. tanév Matematika tanmenet/4. osztály Tanító: Fürné Kiss Zsuzsanna és Varga Mariann Tankönyv: C. Neményi Eszter Wéber Anikó: Matematika 4. (Nemzeti Tankönyvkiadó) Éves óraszám: 148 óra (heti 4 óra) 4 óra/hét Tananyag: Taneszközök: Ismétlés (1 4. hét) 1. óra Ismerkedés a tankönyvvel, munkafüzettel. Számfogalom az 1000-es körben (Kb. 3 óra) Tk. 3 10.; Mf. 3 8. 2. óra 3. óra 4. óra 5. óra 6. óra Gyakorlás 7. óra Szám és valóság kapcsolata számlált, mért és gyűjtött adatok alapján Számok jellemzése, válogatása tulajdonságaik, kapcsolataik alapján; a számtulajdonságok tartalmának felújítása. (Számkitalálók, barkochbák, Gondoltam egy számot... ) Számok helye a számegyenesen; közelítő helyük keresése, ellenőrzése A számjegyek értelmezése. A számrendszeres, helyiértékes gondolkodás erősítése tízes és más számrendszerekben Műveletek és szöveges feladatok (Kb. 10 óra) Fgy.: Becslés, számlálás, mérés, adatgyűjtés; számok jellemzése Az összeadás és kivonás műveleti tulajdonságainak felújítása és alkalmazása pontos és közelítő számításokban. (Tagok felcserélhetősége, csoportosíthatósága; az összeadás és kivonás kapcsolata; az összeg és a különbség változásai.) A tagok, összeg, kisebbítendő, kivonandó, maradék, különbség kifejezések használata A szorzás és osztás műveleti tulajdonságainak felújítása és alkalmazása pontos és közelítő számításokban. (Tényezők felcserélhetősége, Tk. 10 28.; Mf. 9 12.

8. óra Gyakorlás 9. óra 10. óra Gyakorlás 11. óra 12. óra Gyakorlás 13. óra 14. óra Gyakorlás 15. óra csoportosíthatósága; a szorzás és osztás kapcsolata; a szorzat és a hányados változásai.) A tényezők, szorzat, osztandó, osztó, hányados, maradék kifejezések használata. A tanult számolási eljárások felelevenítése, tudatos használata A szöveges feladatok megoldási menetének gyakorlása (értelmezés, a kérdés mérlegelése, modellválasztás, megoldási terv készítése, végrehajtása, ellenőrzés, válaszadás). Adott és gyűjtött adatok felhasználása Egyszerű és összetett, egyenes és fordított szövegezésű, egy- és többmegoldású feladatok. Többféle megoldásmód keresése, megoldásmódok összevetése, értékelése Írásbeli műveletek (Kb. 3 óra) Tk. 29 34.; Mf. A tanult írásbeli eljárások felújítása. Hiányos műveletek az eljárás lépéseinek tudatosítására Becslés 16. óra Gyakorlás 17. óra Gyakorlás Hasonlóság és mérések (5 7. hét) Az alak (Kb. 4 óra) Fgy.: Az írásbeli műveletek gyakorlása 18. óra 19. óra 20. óra 21. óra 22. óra Az alak azonosítása, megkülönböztetése összképben és a részletek vizsgálatával (térben, síkban) Nagyítás, kicsinyítés: nagyított, kicsinyített hálókra másolással és nagyított kicsinyített testekből való építéssel. Ellenpéldák: zsugorítás, nyújtás, torzítás A hasonlóság és az egybevágóság fogalmának formálása Nagyítás, kicsinyítés mérések segítségével; alaprajzok, makettek olvasása, készítése Mérések, mértékek (Kb. 8 óra) Fgy.: A hasonlóság és egybevágóság felismerése, előállítása. Valóságos mérésekkel kapcsolatos problémák, feladatok értelmezése írott szöveg alapján is. Mennyiségek közti kapcsolatok keresése, kifejezése szavakkal, táblázatba foglalással, nyitott mondattal Különféle mennyiségek megnevezése: hosszúság (magasság, vastagság, szélesség, kerület), űrtartalom, tömeg, idő, terület Tk. 35 44.; Mf. 13 17. Tk. 45 55.; Mf. 18 22.

23. óra A mérés fogalma 24. óra 25. óra Összefüggések tudatosítása a mennyiség nagysága, a mértékegység és a mérőszám között A megismert szabványos mértékegységek használata és áttekintése 26. óra Mérések adott pontossággal 27. óra 28. óra Területmérés különféle egységekkel (lefedés, háló szemeinek számbavétele, egyszerűsítések a megszámlálásban) Alak, kerület és terület közti kapcsolatok Különböző alakú, azonos területű síkidomok Azonos kerület különböző terület Különböző kerület azonos terület Számok tízezerig (8 9. hét) Mit nevezünk természetes számnak, melyek a nem természetes számok? Mennyi a tízezer? (Kb. 1 óra) 29. óra 30. óra 31. óra Tapasztalatok nagy számokról: számlálás egyesével, tízesével, százasával, ezresével, ötvenesével, ötszázasával. Miből mennyi a tízezer? Mérések egységgel és többszöröseivel Adatok gyűjtése, értelmezése a tízezres számkörben. A számok nagyságának többféle érzékelése. Egyszerű (arányos) következtetések Tízes számrendszer: átváltások, beváltások (Kb. 2 óra) Fgy.: A számnevek értelmezése; számlálás, mérés, adatgyűjtés a tízezres számkörben A helyiértékrendszer kiterjesztése az ezreseken túl és a törtszámok felé. Számok helyiértékes alakja; abakusz Nagyobb számok helyesírása Számok számtáblázatban Számok írása, olvasása helyiérték-táblázat segítségével és anélkül. A számjegyek alaki-, helyi- és valódi értéke Átváltások, beváltások tízes és más alapszám szerint is; számok felépítése adott számú egyesből, tízesből, százasból, ezresből váltással is. Számírás, számolvasás nem helyiértékes alakban; a római számírás továbbépítése, az építés módjának tudatosítása Számok nagysága; növelés, csökkentés 1-gyel, 10-zel, 100-zal, 1000-rel: mely helyiértéken történik változás? Tájékozódás a számegyenesen (Kb. 1 óra) Fgy.: Számrendszeres, helyiérték-rendszeres Tk. 56 60.; Mf. 23 24. Tk. 61 63.; Mf. 25 26., 31 34. Tk. 63 64.; Mf. 27 29.

32. óra gondolkodás fejlesztése. Számírás, olvasás Analógiák: két-két szomszédos ezres közti szakasz azonos felépülése; az egyesek, tízesek, százasok, ezresek azonos felépülése A számegyenes adott szakaszain található számok. Számok pontos helyének megkeresése a számegyenes egyre finomodó szakaszain A számjegyek szerepének megfigyelése a számok nagyságában és abban, hogy a számegyenesnek mely szakaszán van a szám helye Számok közelítő értékei, kerekítés (Kb. 4 óra) Fgy.: Számlálás, mérés, adatgyűjtés. A tízes számrendszerben a helyek szerinti értéknövekedés 33. óra Pontos és közelítő adatok 34. óra Számlálás pontosan és szükséges pontossággal 35. óra 36. óra 37. óra 38. óra Mérés adott pontossággal; a mértékegység célszerű megválasztása a szükséges és kívánt pontosság szerint Kerekítés: a legközelebbi kerek ezressel százassal, tízessel való helyettesítés Számok nagysága (Kb. 2 óra) Fgy.: Táblázatok, grafikonok készítése, olvasása, értelmezése Számok összehasonlítása, sorbarendezése nagyság szerint Számok tízszerese, százszorosa, tizede, százada. Melyik hányszor akkora, körülbelül hányszor akkora? Számképzések adott feltételek szerint A szám nagysága és alakja közti kapcsolat tudatosítása (a számjegyek száma; a legnagyobb helyiértéken álló számjegyek összehasonlítása) Képzeletjáték nagy számokkal (10 12. hét) Nagy számok elképzelése (Kb. 6 óra) Fgy.: Számrendszerek, helyiértékrendszerek; a számjegyek értékei. A számok nagysága és 39. óra 40. óra Gyakorlás alakja közti kapcsolat Nagy számok elképzelése ezredrészükre zsugorítással ( Minden ezer helyett 1. ) Ezreseket kifejező táblázatok és grafikonok olvasása, készítése Tk. 65 68.; Mf. 30. Tk. 68 71.; Mf. 34 38. Tk. 72 79.; Mf.

41. óra 42. óra Gyakorlás 43. óra 44. óra Gyakorlás 45. óra 46. óra 47. óra 48. óra 49. óra A többszörözés értelmezése érték szerint pénzzel, mértékegységekkel (amikor nem a darabszámot többszörözzük, hanem minden egyes darab értékét); az osztás értelmezése érték szerint (nem valahányszor kevesebb darabot, hanem ennyiszer kisebb értékű darabokat veszünk) Szorzás, osztás tízzel, százzal, ezerrel (a számjegyek helyiértékének változtatása) A mértékrendszerek áttekintése, használata: mérések és következtetések (Kb. 6 óra) Mérés; a szabványos mértékegységek használata. Azonos mennyiségek kifejezése különféle mértékegységekben. (A mértékegység megválasztása kifejezi a pontosság mértékét is.) Hosszúságmérések; következtetés nagyon kicsi és nagyon nagy hosszúságokra Kicsinyített ábra mért adatairól következtetés a valóságos adatokra Átváltások és beváltások. Ellenőrzés a mennyiségek kimérésével Mérőszámok tízszerezése, százszorozása, ezerszerezése, mérőszámok tizedének, századának, ezredének keresése a mértékegység változtatásával Űrtartalommérés szabványos egységekkel is. A hektoliter elképzelése. Át- és beváltások a helyiérték-táblázat használatával. Tömegmérés szabványos egységekkel is. A tonna elképzelése Át- és beváltások helyiérték-táblázattal és anélkül. Mennyiségek összehasonlítása Következtetések 50. óra Gyakorlás Műveletek 10 000-ig (13 16. hét) Fejszámolás pontosan (Kb. 6 óra) Fgy.: Mérések alkalmi és szabványos egységekkel; összefüggések további vizsgálata A kisegyszeregy és a megfelelő osztások 51. óra 52. óra gyakorlása Összeadás és kivonás 00-ra végződő négyjegyű számokkal; analógiák a 2 3. osztályban tanult eljárások szerint Az összeg, különbség változásai; az összeadás és a kivonás kapcsolata Tk. 80 87.; Mf. Tk. 88 98.; Mf. 39 43., 45 49.

53. óra 54. óra Szorzás kerek tízessel, kerek százassal két lépésben (pl.: 70 7 10 ) Kerek számok osztása egyjegyűvel, kerek tízessel, kerek százassal (a kisegyszeregynek megfelelő esetekben) Szorzás kétjegyű számmal többféle módon: a szorzó szorzatra bontásával a szorzó összegalakjával, különbségalakjával 55. óra Gyakorlás 56. óra Tudáspróba Fejszámolás közelítéssel (Kb. 7 óra) Fgy.: Számok kerekítése ezresekre, százasokra, tízesekre 57. óra Összeg és különbség becslése a számok ezresekre kerekített értékével végzett művelettel 58. óra Pontosabbá tevés százasokra kerekítéssel 59. óra A becslés pontosabbá tevése más módokon (pl. a tagok ellentétes irányú változtatásával vagy egymást kb. kerek ezresre kiegészítő tagok összefogásával; a kisebbítendő és a kivonandó azonos irányú változtatásával) 60. óra A szorzat és a hányados változásai 61. óra A szorzat becslése 62. óra Gyakorlás 63. óra Gyakorlás Zárójelek (Kb. 3 óra) Fgy.: Szöveges feladatok, műveletsorok eredményének előrevetítése ; a becsült és a tényleges eredmény összevetése 64. óra Zárójel a szöveges feladatokban 65. óra 66. óra A műveletsor eredményét befolyásolhatja a sorrend A zárójel használata; az elhagyására vonatkozó megállapodás kimondása és gyakorlása A negatív számok (17. hét) Készpénz adósság, meleg hideg... (Kb. 3 óra) Fgy.: A fejszámolás gyakorlása 67. óra A negatív számok értelmezésének felújítása 68. óra 69. óra 70. óra Összefoglalás Az egész számok (a természetes számok és a negatív egészek) nagyság szerinti összehasonlítása a különféle értelmezések szerint; helyük a számegyenesen Az egész számok sokféle neve. Közös jellemző keresése a különféle számalakokban Tk. 99 103.; Mf. 44. Tk. 104 107.; Mf. Tk. 108 112.; Mf. 50 54.

71. óra Félévi felmérés Tervezz, rajzolj, építs! (18 19. hét) Testek építése lapokból, élekből (Kb. 4 óra) 72. óra 73. óra 74. óra Testek építése lapokból; megfelelő lapok összekeresése (milyenekből, hányból lehet?) Síkra tükrös testek keresése; testek tükörképének megépítése; eltolt és elforgatott testek építése Egybevágóság (eltolva, elforgatva, tükrözve létre lehet hozni az egyikből a másikat) Testek lapjainak, éleinek, csúcsainak megszámlálása, a lapok, élek méretének, kölcsönös helyzetének megfigyelése A téglatest: lapok, élek párhuzamossága, merőlegessége, lapok egybevágósága, élek egyenlősége, az egy csúcsba futó élek száma, lapok, élek, csúcsok száma. A kocka különleges téglatest Testhálók kiterítése; a téglatest és a kocka testhálóinak vizsgálata Tk. 113 121.; Mf. 55 57. 75. óra A téglatest és a kocka tükrössége, szimmetriái A téglalap és a négyzet (Kb. 1 óra) Tk. 122 124.; Mf. 58 60. 76. óra 77. óra 78. óra 79. óra 80. óra Párhuzamos szélű papírcsíkból a szélekre merőleges vágással előállított négyszögek A téglalap tengelyes tükrössége; a négyzet az átlóira is tükrös téglalap. A téglalap tulajdonságainak vizsgálata A téglatest és a téglalap, a kocka és a négyzet tulajdonságainak rendszerezése (Kb. 1 óra) A kézbe vett test, illetve síkidom tulajdonságainak bemutatása. (Annak tudatosítása, hogy miféle tulajdonságaival jellemezhető egy test, egy síkidom.) Síkidomok és síkminták alkotása kirakással, nyírással, hajtogatással, rajzzal, színezéssel; tulajdonságaik vizsgálata (Kb. 3 óra) Fgy.: Alakzatokat (testeket, síkidomokat) jellemző tulajdonságok gyűjtése, tudatosítása Alkotások síklapok összeillesztésével; egybevágóság; tengelyes tükrösség Adott feltétel szerint az összes lehetséges alkotás létrehozása kirakással, rajzzal. A megalkotott síkidomok összehasonlítása: megegyező és eltérő tulajdonságok keresése Síkminták, parketták kirakással, rajzzal; a ritmus megőrzése. Eltolással, tükrözéssel, elforgatással egymásba vihető részletek keresése. (A sík mozgatása másolópapír- Tk. 124 125.; Mf. Tk. 126 128.; Mf. 60 67.

használattal) Írásbeli műveletek (20 22. hét) A tanult eljárások kiterjesztése (Kb. 6 óra) Fgy.: Pozitív és negatív számok nagyság szerinti összehasonlítása, sorbarendezése konkrét tartalmak szerint. Számok sok neve Szorzótáblák és a megfelelő osztások gyakorlása, 81. óra 82. óra 83. óra gyorsítása. Maradékos osztás Az írásbeli összeadás és kivonás eljárásának felújítása, kiterjesztése akárhány jegyű számokra. Becslés. Ellenőrzés; az ellenőrzés különféle (célszerű) módjai Műveleti tulajdonságok alkalmazása a számolások során (az összeg, különbség változásai, a tagok felcserélhetősége, csoportosíthatósága; az azonos helyiértékű számjegyek felcserélhetősége, csoportosíthatósága); az összeadás és kivonás kapcsolatának tudatos alkalmazása; műveletek hiányzó elemének megkeresése Írásbeli szorzás egyjegyű szorzóval. A szorzat becslése (a szorzandó kerekített értékét szorozzuk) 84. óra A szorzatok utolsó jegyének megfigyelése 85. óra Szorzás összeg alakú számmal Nagyobb szorzatok megkeresése a szorzó 86. óra tényezőkre bontása segítségével Szorzás két- és háromjegyű számmal (Kb. 6 óra) 87. óra 88. óra 89. óra Az új eljárás bevezetése (a teljes részletszorzatokat kiírjuk!); becslés Egyszerűsítő lépések kidolgozása (a hosszabb eljárás nagyon alapos megértése esetén): a 0 elhagyása a részletszorzatban; 1-es a szorzóban Szöveges feladatokban az írásbeli szorzás gyakorlása 90. óra Szorzás háromjegyű szorzóval. 0 a szorzóban 91. óra 92. óra Gyakorlás Az osztás (23 25. hét) 93. óra Nyitott mondatok szorzással: becslés, próba, módosítás (az írásbeli osztás előkészítése) Tk. 129 136.; Mf. 68 79. Tk. 137 147.; Mf. Válogatások (Kb. 1 óra) Tk. ; Mf. 80 81. Tárgyak, személyek, szavak, alakzatok, számok szétválogatása egy és több tulajdonság szerint: Kétfelé válogatás; tulajdonság és tagadása (Minden adott tulajdonságú elem belekerül a jelölt halmazba, de csak az ilyenek kerülhetnek bele; ezért a többi elem meghatározó tulajdonsága az előbbi

94. óra 95. óra 96. óra 97. óra 98. óra 99. óra 100. óra tulajdonság tagadása) Két halmaz közös részébe kerülő elemek meghatározó tulajdonsága; a logikai és használata A két halmaz közül legalább az egyikbe beletartozó elemekre a vagy -gyal összekapcsolt tulajdonság értelmezése Osztható? Nem osztható? (Kb. 5 óra) Fgy.: Szétválogatás, kétfelé válogatás, kétszer kétfelé válogatás; és, vagy A kisegyszeregynek megfelelő osztások; maradékos osztás és analóg esetek nagyobb számok körében Az osztható, osztója, többszöröse szavak értelmezése Számok szétválogatása, osztályozása: osztható 2-vel, 3-mal, 4-gyel,... vagy nem 3-mal osztva 0, 1 vagy 2 a maradék; 4-gyel osztva 0, 1, 2 vagy 3 a maradék... Adott szám osztóinak keresése (osztópárok); két szám osztóinak halmazokba válogatása, közös osztóik Adott szám többszöröseinek keresése; két szám többszöröseinek halmazokba válogatása, közös többszöröseik Két, három szám többszörösei közti kapcsolat keresése (a páros és a 4-gyel osztható számok; a páros, a 3-mal osztható és a 6-tal osztható számok viszonya...) Számok építőkövei (prímek); építés prímszámok szorzásával; prímszámok szorzatára bontás Írásbeli osztás egyjegyű osztóval (Kb. 6 óra) Fgy.: Osztók, közös osztók; halmazokba válogatás. Számok felbontása prímek szorzatára, építés prímekből. Írásbeli szorzás; írásbeli kivonás pótlással. Egyenlő részekre osztás tárgyi tevékenységgel: színesrudakkal, Dieneskészlettel, pénzzel (váltás nélkül és váltással) Az írásbeli osztás eljárásának megismerése: becslés a tényleges osztozkodásban jól megértett visszaszorzás, maradék megállapítás, váltás ciklikus ismétlődése a helyiérték megnevezésével, majd anélkül 101. óra a bennfoglaló osztással való értelmezés 102. óra A visszaszorzás és pótlás összevonása egy lépéssé (esetleg elhagyható ez a lépés) 103. óra Az osztás gyakorlása: Tk. 148 151.; Mf. 82 93. Tk. 152 161.; Mf. 94 96.

104. óra osztások maradék nélkül maradékkal; ellenőrzés oszthatóság megállapítása osztással (van-e maradék?) -szöveges feladatok, nyitott mondatok néhány szám számtani közepe Törtszámok; Véletlen; valószínűbb, kevésbé valószínű (26 29. hét) Törtszámok leolvasása és Tk. 161 165, 172; Mf. 97 99. megjelenítése különféle mennyiségek különféle egységválasztása esetén (Kb. 4 óra) Fgy.: Írásbeli osztás egyjegyűvel 105. óra 106. óra 107. óra 108. óra 109. óra 110. óra 111. óra 112. óra Gyakorlás 113. óra 114. óra 115. óra Oszthatósági vizsgálatok Az egész felosztása; a részek egyenlősége; az egységtörtek megnevezésének felújítása Az egységtört és az egész viszonya; törtrészből következtetés az egészre. Becslés, ellenőrzés Az egységtört többszöröseinek előállítása, leolvasása (megmérése egységtörttel); a megnevezések felújítása Törtek kiegészítése 1 egésszé; az 1-nél nagyobb törtek többletének elvétele (a törtszám és az egész viszonya) Törtek és szabványos mértékegységek Beszélgetés és tapasztalatok a véletlenről; valószínűségi megfigyelések gyűjtése Törtek összehasonlítása nagyság szerint (Kb. 6 óra) Valószínűségi játékok a valószínűbb, kevésbé valószínű érzékelésére Két törtszám összehasonlítása azonos egységválasztás után (adott, illetve önállóan megválasztott egység) A törtjelölés bevezetése. A tört alakú egész szám és a törtszám megkülönböztetése Minden számnak sok neve van : a törtek leolvasása különféle mennyiségekről többféle egységtört többszöröseként; mennyiségek kirakása különféle egységtörtekkel Törtek egymáshoz való viszonya (hányszor akkora, hányad akkora) Számok törtrészei (Kb. 6 óra) Adott mennyiség törtrészének előállítása, megmérése kisebb mértékegységgel (pl. egyméteres zsineg ötödrészének megkeresése hajtogatással, mérése deciméterrel, centiméterrel) 116. óra Gyakorlás 117. óra Számok ábrázolása szakasszal, területtel; Tk. 166 168., 173 176.; Mf. 100 105., 109 111. Tk. 169 171, 176 178.; Mf. 106 108., 112 114.

törtrész keresése két lépésben (egyenlő részekre osztás, a rész többszörözése) 118. óra Számok törtrésze szöveges feladatokban 119. óra Gyakorlás 120. óra Valószínűségi játékok és kísérletek. A kísérlet jegyzése; annak megállapítása, hogy az összes próbának mekkora (kb. mekkora) törtrészében következett be a várt (figyelt) esemény Írásbeli osztás két- és háromjegyű számmal (30 31. hét) A kétjegyűvel való írásbeli osztás előkészítése; a számtani közép (átlag) (Kb. 2 óra) 121. óra 122. óra 123. óra Az átlag fogalmának kiterjesztése több szám esetére Hányados keresése becsléssel és visszaszorzással A hányados változásai (tízszer, százszor ezerszer nagyobb számot osztunk ugyanannyi felé...; tízszer, százszor, ezerszer több részre osztunk...) Az eljárás megismerése, alkalmazása (Kb. 6 óra) Becslés; a becsült hányados jegyeinek kipontozása A pontos számításban a visszaszorzás és a különbség megállapítása két lépésben (visszaszorzás, pótlás) (A rövidített eljárás megmutatása jobb képességű gyerekeknél) 124. óra Osztás háromjegyű osztóval 125. óra Gyakorlás 126. óra Osztások maradékkal; ellenőrzés 127. óra Egyenletesen növekvő, csökkenő számsorozat néhány elemének számtani közepe Szöveges feladatok az osztás gyakorlására 128. óra Gyakorlás Sorozatok, táblázatok, nyitott mondatok (32 35. hét) Növekedés, csökkenés a sorozatokban (Kb. 4 óra) Tk. 188 192.; Mf. 120 121. 129. óra Sorozatok felírása tapasztalatok jegyzésére (kombinatorikus feladatok, geometriai megfigyelések, időben lejátszódó események, mérések adatainak lejegyzése. Ilyen sorozatokban a változás figyelése, értelmezése; megfigyelhető összefüggések magyarázatának keresése Tk. 179 180.; Mf. 115 117. Tk. 180 187.; Mf. 118 119. Év végi ismétlések Geometriai ismeretek (Kb. 4 óra) Csoportonként egy test megépítése lapokból; a test jellemzése a megismert tulajdonságok szerint, összehasonlítása a téglatesttel, kockával (lapok száma, alakja, egybevágósága, kölcsönös helyzete; élek száma, egyenlősége, kölcsönös helyzete; csúcsok száma, az egy csúcsban találkozó élek száma; szimmetriák; testháló kiterítése) Ennek kapcsán a testeket jellemző tulajdonságok összegyűjtése

130. óra 131. óra Tapasztalatok alapján lejegyzett és adott sorozatok szabályának felismerése, jellemzése különbségsorozataikkal; a növekedés, csökkenés gyorsaságának vizsgálata Elkezdett sorozatok folytatása többféle szabály szerint; összehasonlításuk 132. óra Gyakorlás Gyakorlás Adatok táblázatba rendezése; összefüggések keresése (Kb. 5 óra) Tk. 192 197.; Mf. 122 123. 133. óra 134. óra 135. óra Tapasztalt (megszámlált, mért, kiszámított) adatok táblázatba rendezése; annak megfigyelése, hogy az egyik mennyiség hogyan függ a másiktól. Statisztikai adatok összefüggésének (pl. időbeli változásoknak) figyelése; oknyomozás Gépjátékok szabályainak keresése; leírása nyíljelöléssel, többféle nyitott mondattal Olyan gépjátékok vizsgálata, amelyek az egyesével növekvő bemenő értékekre egyenletesen változó kijövő értékkel válaszolnak; az egyenletes változás kapcsolata a nyíllal adott szabállyal (pl. ha a bemenő értéket 3- mal szorozzuk, akkor akár hozzáadunk még egy Négyszögek alkotása kis (háromszor hármas) négyzet-pontrácson; az összes téglalap, összes négyzet, az összes négyszög keresése. Egybevágóság, hasonlóság kutatása. A négyszögek jellemzése oldalaik nagysága, egyenlősége és kölcsönös helyzete a szögeik egyenlősége, a derékszögek, derékszögnél kisebb, (nagyobb) szögek száma szerint; a szimmetriák szerint (ugyanilyen helyzetű marad-e elforgatással, tükrözéssel) Egy-egy parkettaminta folytatása tükrözéssel, eltolással, forgatással kirakás, rajz, színezés. A tükrözés jellemzőinek tudatosítása: helyzet, tengelytől való távolság, a tengelyre eső pont tükörképe önmaga; az eltolás jellemzése az iránnyal és az eltolás nagyságával; az elforgatás középpontjának és szögének keresése próbálgatással Számok (Kb. 5 óra) Természetes számok körülöttünk (számlálás, mérés, statisztikai adatok; pontos szám, közelítő szám. Nagyságuk.) Egy-egy szám felírása különféle számrendszerekben; egy számalak értelmezése más-más számrendszerben. A természetes szám írott alakja; római számírás, számrendszer, helyiértékrendszer; kiterjesztés nagyobb számok felé, törtszámok felé. Számok nagysága és alakja közti kapcsolat. Szomszédok, kerekített értékek, helyük a számegyenesen. Néhány számtulajdonság felújítása számok válogatása egy vagy egyszerre két tulajdonság szerint Törtszámok megjelenítése különféle mennyiségek különféle egységei mellett; tört mérőszám megállapítása összeméréssel. Törtek és törtszámok helye a számegyenesen: egyenlő számok különféle alakban; nagyság

136. óra 137. óra 138. óra 139. óra 140. óra számot, akár elveszünk, hármasával növekszik a kijövő érték). A felismert kapcsolat alkalmazása összefüggések keresésében. Ellenpéldák Gyakorlás Kérdések, problémák, szöveges feladatok leírása nyitott mondattal (7 óra) Tk. 198 203.; Mf. 124 130. Gyakorlati problémák megfogalmazása szavakkal, a kérdések ábrázolása egyszerű ábrákkal, szakaszokkal, diagramokkal, leírása nyitott mondattal. Ábrák, nyitott mondatok (egyenletek, egyenlőtlenségek) értelmezése, hozzájuk gyakorlati és elvontabb kérdések megfogalmazása; szöveges feladatok keresése, készítése Az egyenlet és az egyenlőtlenség fogalma; a nem kisebb, nem nagyobb, kisebb vagy egyenlő, nagyobb vagy egyenlő, nem egyenlő, legalább, legfeljebb kifejezések, kapcsolatok értelmezése konkrét feladatokban, problémákban Az egyenlet és egyenlőtlenség megoldása: a szóba jöhető értékek közül az összes olyan érték megkeresése, amely igazzá teszi. A megoldás keresése tervszerű próbálgatással Fordított szövegezésű feladatok; a bennük adott reláció megfordítása ; leírás egyenlettel is szerinti rendezések (tapasztalati úton) Negatív számok különféle tapasztalati alapon; nagyság szerinti rendezésük; egy-egy szám különféle neve Számolás fejben, írásban; szöveges feladatok Műveletek értelmezése képpel, szöveges feladattal. Számolás fejben: pontosan a százas számkörben végzett műveleteknek megfelelő, 00-ra végződő számok esetében és közelítéssel célszerű kerekítésekkel A műveletek sorrendje. A zárójel megegyezés szerinti használata (szorzásnál, osztásnál az elhagyás) Számolás írásban; hangsúllyal a kétjegyűvel való szorzás gondolati lépéseinek, a becsléseknek, az írásbeli osztásnak a felújítása. Hiányos műveletek az eljárások tudatosítására 141. óra Szöveges feladatok megoldása; a megoldás teljességének vizsgálata; az eredmény összevetése a feltételekkel, valósággal Tudásszintmérések; differenciált korrekciók (36 37. hét) 142. óra Ismétlés, gyakorlás, pótlás 143. óra Ismétlés, gyakorlás, pótlás 144. óra Ismétlés, gyakorlás, pótlás 145. óra Év végi teljesítménymérések, értékelés 146. óra Év végi teljesítménymérések, értékelés 147. óra Játék Nyitott mondatok kiegészítése igazzá; adott alaphalmazon az összes ilyen elem (szám) megkeresése. Azonos igazsághalmazú nyitott mondatok keresése a műveletek tulajdonságainak alkalmazásával