Neumann Jánost ( 1903-1957) Kemény János ( 1926-1992) Wigner Jenő Gróf András ifj.simonyi Károly



Hasonló dokumentumok
A tanítási óra anyaga: Magyar tudósok a technika történetében. Koncentráció: Történelem, napjaink eseményei, földrajz, matematika, fizika

ATOMBOMBA FELTALÁLÓI Szilárd Leó ( )

Az Elméleti Fizikai Tanszék

Magnifice Rector! Tisztelt Dékán Asszony! Tisztelt Kari Tanács! Kedves Vendégeink! Hölgyeim és Uraim!

Gyászbeszédek Sebestyén Árpád ravatalánál

Informatikai Rendszerek Alapjai. A személyi és mobil számítástechnika kialakulása Meghatározó személyek a magyar informatikában

Bánki Donát Közlekedésgépészeti Szakközépiskola és Szakiskola (1138 Budapest, Váci út )

Vas Károly meghatározó szerepe a MÉTE Mikrobiológiai Szakosztály létrehozásában és működésében

A tudomány sokkal emberibb jelenség, mint gondolnánk

SZALAY SÁNDOR ÉS A DEBRECENI FIZIKA

Az Informatika Elméleti Alapjai

EURÓPAI PARLAMENT C6-0040/2007 HU PART.1. Közös álláspont. Ülésdokumentum 2003/0153(COD); 29/11/2006

A SZÁZ ÉV MÉLTATÁSA*

Koronikáné Pécsinger Judit

10193/12 KH/md DG E2

Okleveles mezôgazda, állatorvos, miniszteri tanácsos, a Magyar Tudományos

PÉCS MEGYEI JOGÚ VÁROS ÖNKORMÁNYZATA KÖZGYŰLÉSÉNEK MÁRCIUS 05-I ÜLÉSÉRE

RÖVID ÁTTEKINTÉS PROF. EM. DR. KOVACSICS JÓZSEF SZAKIRODALMI MUNKÁSSÁGÁRÓL

AZ EURÓPAI KÖZÖSSÉGEK BIZOTTSÁGA A BIZOTTSÁG KÖZLEMÉNYE AZ EURÓPAI PARLAMENTNEK ÉS A TANÁCSNAK

AZ ÉLELMISZERPIACI KUTATÓMUNKÁLATOK SZOCIÁLIS VONATKOZÁSAI ÍRTA:

AZ ILLEGÁLIS MIGRÁCIÓ MEGAKADÁLYOZÁSÁRÓL A BUDAPEST-FOLYAMAT ÖSSZEFÜGGÉSÉBEN, PRÁGÁBAN, 1997 OKTÓBER 14-ÉN ÉS 15-ÉN TARTOTT MINISZTERI KONFERENCIÁN

VÍGH ANTAL EMBERKERESKEDELEM ELLENI HARC A HATÁRİRSÉGNÉL EGY KONKRÉT BŐNCSELEKMÉNY BEMUTATÁSA ALAPJÁN. A Határırség nyomozó hatósági hatásköre

KUTATÁS, FEJLESZTÉS, PÁLYÁZATOK ÉS PROGRAMOK A FELSŐOKTATÁSBAN AZ OKTATÁSI MINISZTÉRIUM FELSŐOKTATÁS-FEJLESZTÉSI ÉS TUDOMÁNYOS ÜGYEK FŐOSZTÁLYÁNAK

185 éve született gróf Andrássy Manó

A nem önkormányzati fenntartásban működő médiumok Szentes városában.

Igaz Béla dr. 186 Illés József dr.

60 éves a klinikai laboratóriumi. társaságunk (I.) (KOLAB, KOLSZ, MKLDT, LDT, MLDT) Jobst Kázmér PTE ÁOK Laboratóriumi Medicina Intézet

TANSEGÉDLET a büntetés-végrehajtási jog tanulmányozásához

AZ EURÓPAI PARLAMENT ÉS A TANÁCS október 13-i 2003/87/EK IRÁNYELVE

T P T A L E N T P L A N Tervezõ, Szolgáltató és Kereskedelmi Kft.

Az alapvető jogok biztosának Jelentése az AJB-1378/2014. számú ügyben

TÁJÉKOZTATÓ ÉRETTSÉGI VIZSGAELNÖKÖK SZÁMÁRA

A Német Szövetségi Posta (DBP) útja a kísérleti üzemen át a 64 kbit/s-os ISDN-hez és a szélessávú ISDN-hez

Kutatási jelentés. ELTE-ÁJK Politikatudományi zet politológus diplomás hallgatói kutatás (2011) Kónya Márton

BESZÉLGETÉS MELLÁR TAMÁSSAL

AZ EURÓPAI KÖZÖSSÉGEK BIZOTTSÁGA

MAGYAR-KÍNAI KÉT TANÍTÁSI NYELVŰ ÁLTALÁNOS ISKOLA ÉS GIMNÁZIUM

A Közbeszerzési Dönt bizottság (a továbbiakban: Dönt bizottság) meghozta az alábbi. V É G Z É S - t.

Igazgatói beszámoló. a tatabányai Árpád Gimnázium között végzett munkájáról

Az oktatás célja előidézni azt a lelki legnagyobb mértékű neurózist, amit az egyén még összeroppanás nélkül kibír. W.H. Anden angolszász költő

Állatorvos, bölcsészdoktor, a Magyar Tudományos Akadémia rendes és tiszteleti

Beszélgetés Pongrácz Tiborné demográfussal

Tátyi Tibor. Az alapszervezet története

Ügyvitel ágazat Ügyvitel szakmacsoport Ügyviteli titkár Szakközépiskola 9-12.évfolyam Érettségire épülő szakképzés

~5~. számú előterjesztés

IKTATÓSZÁM: 24-24/45-6/2014. TÁRGY: A FÖLDRAJZI NEVEK MEG- ÁLLAPÍTÁSÁRÓL SZÓLÓ 23/2006. (VI. 30.) ÖNKORMÁNYZATI REN- DELET MÓDOSÍTÁSA MELLÉKLET: 5 DB.

Budapest Főváros Települési Esélyegyenlőségi Programja ( ) Munkaanyag Munkaanyag zárása első társadalmi egyeztetés előtt:

Nem tagadjuk a változás szükségességét, de...

EMLÉKEZTETŐ. az MTA Közlekedéstudományi Bizottság november 14-i üléséről

ZÁRÓJELENTÉS Vasúti baleset Csorna július 23.

NEMZETKÖZI SZEMLE. Engler Lajos STOCKHOLMI ÉRTEKEZLET KIÚTKF.RKSF.S

J/4723. számú JELENTÉS

A ZRÍNYI-SZOBOR ALKOTÓJA, BARBA PÉTER EMLÉKÉRE

Úti beszámoló EU 2020 Stratégia szakszervezeti akciók november 1-5., Runö (SE)

A ÉVI EÖTVÖS-VERSENY ÜNNEPÉLYES EREDMÉNYHIRDETÉSE

TÁMOP I. KÖZÖS KÉRDŐÍVMODUL

Éves JlentésÉ. Nemzeti Adó- és Vámhivatal Központi Hivatala Pénzmosás Elleni Információs Iroda FÉLÉVÉS TÁJÉKOZTATÓ 2014.

EURÓPAI PARLAMENT. Egységes szerkezetbe foglalt jogalkotási dokumentum EP-PE_TC1-COD(2008)0035 ***I AZ EURÓPAI PARLAMENT ÁLLÁSPONTJA

Az Európai Unió Hivatalos Lapja L 302/ ÉVI NEMZETKÖZI MEGÁLLAPODÁS AZ OLÍVAOLAJRÓL ÉS AZ ÉTKEZÉSI OLAJBOGYÓRÓL.

1. A Neumann-elvű számítógép felépítése

Zsidó népiskola Hódmezővásárhelyen

A Semmelweis Egyetem Biofizikai és Sugárbiológiai Intézetének története

ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET.

Különös Közzétételi Lista Rumi Rajki István ÁMK Általános Iskolája

A Nyíregyházi SZC Széchenyi István Közgazdasági, Informatikai Szakközépiskolája és Kollégiuma szakképzési tájékoztatója érettségizettek számára

1995L0057 HU

ELŐTERJESZTÉS a Magyar Tudományos Akadémia 185. közgyűlésére május 6.

Pedagógiai Program Kiskunfélegyházi Móra Ferenc Gimnázium Kiskunfélegyháza 2015.

Bírálat Petrik Péter "Spektroellipszometria a mikroelektronikai rétegminősítésben" című MTA doktori értekezéséről.

ERKEL FERENC Pedagógiai Program TARTALOMJEGYZÉK MAGYAR NYELV ÉS IRODALOM TANTERV MATEMATIKA KÖRNYEZETISMERET

BÓBITA ÓVODA Pedagógiai Programja Környezeti nevelés a fenntarthatóság jegyében

67 Czető Krisztina: Az ír oktatási rendszer és társadalmi partnerség. 121 Jakab György: Szocializáció és média a diákok és az internet

I r á n y e l v A L A C S O N Y K I B O C S Á T Á S Ú Z Ó N Á K

Pedagógiai Program 1-1

Javaslat: AZ EURÓPAI PARLAMENT ÉS A TANÁCS..././EU RENDELETE AZ IDEGENFORGALOMRA VONATKOZÓ EURÓPAI STATISZTIKÁKRÓL. (EGT-vonatkozású szöveg)

A munkanélküli-járadékot kimerítők

Nemzeti Szakképzési és Felnőttképzési Intézet André Lászlóné Kerékgyártó László

OKTATÁSI ÉS KULTURÁLIS MINISZTER /2006.

TARTALOMJEGYZÉK. 2. A mővészetoktatási intézmény küldetése 5. oldal. 4. Az intézmény környezete, ebbıl adódó profilja 8. oldal

A körút és a sugárút szerepe és funkciói a várostestben

Kereskedelmi Iskolai Tanárképző Intézet sorsának alakulása a század fordulóján

A FÉNY NEMZETKÖZI ÉVE 2015 eseménysorozat oktatási intézményekhez kapcsolódó vonatkozásairól

Életünk az energia 2.

J/ A Magyar Köztársaság legfőbb ügyészének. országgyűlési beszámolója. az ügyészség évi tevékenységéről

Az ÓBUDAI EGYETEM FENNTARTHATÓ FEJLŐDÉSI STRATÉGIÁJA

A magyar börtönügy arcképcsarnoka

S Z E L L E M I T U L A J D O N - K E Z E L É S I

B e s z á m o l ó ja

Kaleidoscope Művelődés-, Tudomány- és Orvostörténeti Folyóirat Journal of History of Culture, Science and Medicine ISSN:

A KŐZETMECHANIKAI LABORATÓRIUM AKKOR ÉS MA"

Szekeres Bernadett * A MAGYAR ÉS A NÉMET KÖNYVVIZSGÁLÓI KAMARA MINİSÉG-ELLENİRZÉSI SZABÁLYZATÁNAK ÖSSZEHASONLÍTÓ ELEMZÉSE

A múzeumok oktatást támogató tevékenysége*

Az alapvető jogok biztosának Jelentése az AJB 1940/2014. számú ügyben

I. Összegző megállapítások, következtetések, javaslatok II. Részletes megállapítások

A közigazgatási ügyintézés társadalmi megítélése a magyarországi vállalkozások körében

Az óvodapedagógus és tanító ideát szolgáló gyakorlati képzés fő jellemzőinek meghatározása, alapelvek

I. A légfékrendszer időszakos vizsgálatához alkalmazható mérő-adatgyűjtő berendezés műszaki

Fejér megye szakképzés-fejlesztési koncepciója Felülvizsgálat Összeállította: Fejér Megyei Fejlesztési és Képzési Bizottság 2014.

51. A 2009-es svéd elnökség programjának kulturális vonatkozásai

Az alapvető jogok biztosának Jelentése az AJB-2648/2015. számú ügyben

Átírás:

Neumann Jánost ( 1903-1957) nem lehet semmilyen iskolához sorolni vagy valaki tanítványának nevezni. Az ő tudományos munkássága olyan széles körű,hogy nem lehet egyik tudományágba sem bersorolni.elsősorban matematikus volt, első fontos eredménye a halmazelmélet egyik axiómarendszerének kidolgozása volt, a halmazelmélet bizonyos alapokra helyezése után a kvantummechaniak matematikai alapjait dolgozta ki az 1932-ben megjelent a Kvantummechanika matematikai alapjai című művében. a jétékelmélet eredetileg olyan úgynevezett stratégiai játékok matematikai elemzésével foglalkozott,amelynek kimenetele csak részuben függhet a v életlentől.később az elméletet kiterjesztették a konfliktushelyzetek elemzésére a gazdaságban, a hábrorúban és az élet egyéb tetrületén.neumann János Oscar Morgenstern osztrák közgazdásszal írta meg a játlékelmélet első monográfiáját 1944-ben Játékelmélet és gazdasági magatartás címmel ( Game theory and economic behavior). A mű megjelenésének ötvenedik évfordulóján 1994- ben adtak először közgazdasági Nobel-díjat játékelméleti kutatásokért: a magyar Harsányi János kapta ( 1920-2000)megosztva a német Rochard Seltenel és az amerikai John Nashelel. Neumann János volt a megalapozója a számítógép-tudománynak is. Kidolgozta az elektronikus számítógépek működésének alapelveit.legfontosabb újítása a tárolt program elve, vagyis a programozhatóság volt. a programokat ( szoftvert) a gép legfontosabb hardveregysége a processzor tárolja és dolgozza fel.az első Neumann-féle számítógép öt v alatt készült el Princetonban és az alkotó tiszteletére Johniacnak ( Jancsinak) nevezték el. A számítógépek továbbfejlesztésében az egyik döntő lépést Kemény János ( 1926-1992) tette meg, akinek tanára Neumann János is volt. Egy ideig Albert Einstein matematikus asszisztense is volt az ő ajánlására lett a Dartmouth College professzora.ahhoz, hogy a számítógépen egyszerre többen tudjanak dolgozni kidolgozta az időosztásos rendszert: a felhasználók a saját termináljukon dolgoznak a processzor pedig felosztja munkaidejét közöttük Kemény János és Thomas Kurz nevéhez fűződik a BASIC programozási nyelv megalkotásais. Kemény egyébként a ma közkedvelt elektronikus levelezés ( e-mail ) úttörője volt.felesége egy 200 km távolságban lévő főiskolán dolgozott. A két főiskola központi gépének összekapcsolásával létrejött az első "internet",amelyen keresztül levelezhettek. A számítógépek elterjedésének ezután már csak a nagy méretük állt az útjában a bennük alkalmazott sok elektroncső miatt. Ezen részben segített a tranzisztor,amit Wigner Jenő egyik tanítványa John Bardeen talált fel. A következő lépést Gróf András tette meg az egyetlen integrált áramkörből álló memória, a mikrochip megalkotásával. Gróf András mikrochipjei megváltoztatták a világot és a világgazdaságot.a számítógéphazsználók neki köszönhetik az egyre kisebb gépeket, a mobiltelefonokat és egyéb mikroprocsessorokat. 1956-os menekült! Ausztriába majd az USA-ba menekült 56-ban, vegyészdoktorátust az USA-ban szerzett. Az INTEL vállalat,melyet 1968-ban alapítottak neki köszönheti világhírét.kezdetben csak szilicium mikrochip-eket gyártott, de ajapán konkurencia miatt átértek mikroporcesszorok gyártására.kiemelkedő tudományos mű A félvezető eszközök fizikája és technológiája című könyve is. A mai számítógépekben túlnyomó részt Intel processzorokat, valamint a Microsoft cég Windows operációs rendszerét találjuk. Ma szinte mindenkinek ismerős Bill Gates-nek a Microsoft elnökének a neve, de aki a Microsoft-ot óriásvállalattá tette az magyar volt ifj.simonyi Károly.Amikor a Microsoft cég még kis cég volt Simonyi felkereste bill Gatest és meigsmertette vele a billentyűzetet helyettesítő grafikus menü használatát.ennek alapján dolgozta ki Simonyi a jól ismert windows operációs rendszert.simonyi fejlesztette ki többek közt az Excel és a World programot.simonyi a Microsopft fő szoftverfejlesztőjeként Az USA egyik leggazdagabb embere lett. Kéd díjat is alapított a magyar kutatók támogatására-kutatói ösztöndíjat, melyet évente három kutató kaphat meg és édesapja id. Simonyi Károly a neves fizikus emlékét őrző díjat. ifj.simonyi Károlyról ( szül.: 1949-ben) még kiegészítésképpen illik anyit elmondani, hogy nem csupán zseniálisan tehetséges ember, hanem tanult ember is, tehát megküzdött azért amit elért.

Simonyi már budapesti középiskolás korában megismerkedett a számítógépekkel, későb Dániában majd az Egyesült Államokban tanult. 1972-ben végzett a Berkeley Egyetemen, öt évvel később pedig ledoktorált Stanfordban, mindkét helyen számítógép-tudományból. A nevezetes Szilícium-völgyben kezdett dolgozni a Xerox-nál.Ott tervezte meg az első olyan szövegszerkesztőt, amely a képernyőn mutatta a kinyomtatandó szöveg képét. Bevezette a programozásba az úgynevezett "magyar kódolást" az adatblokk elnevezésére. Értelmetlen betűsorok vagy hosszú értelmező mondatok helyet olyan szót javasolt,amelynek első része az adatblokkra a második része pedig a konkrét adat jelentésére utal. Tehát,ha újra felteszem a kérdést, hogy mit adtunk a világnak azt lehet válaszolni, hogy a számítógépet, a mikroprocesszort, a mikrochipet a mobiltelefon elméleti működésének alapjait, a Windows operációs rendszert,world, Excel programot, az első működő internetet és e-mail-t és még sok mást is mi adtunk. Mit adott nekünk ezért cserébe a Világ, Európa? Trianont és 56-ot a 20. században, magyarveréseket a 21. században. Akik rászolgáltak a Nobel-díjra ( a teljesség igénye nélküli felsorolás): Eötvös Loránd (Buda, 1848. VII. 27. - Budapest, 1919. IV. 8.) A heidelbergi egyetemen végezte tanulmányait, itt is doktorált. 1872-tôl a budapesti egyetemen elôször az elméleti, majd a kísérleti fizika tanára volt. A folyadékok felületi feszültségével és a gravitációval kapcsolatban alapvetô törvényszerûségek felfedezése fûzôdik nevéhez. Az Eötvös-inga mind a tudományos kutatásban, mind pedig a kôolajlelôhelyek felderítésében rendkívüli szerepet játszott, a Nobel-díjra három évben is felterjesztették. Polányi Mihály (Budapest, 1891. III. 11. - Oxford, 1976. II. 22.) A Trefort utcai Mintagimnáziumban érettségizett, a budapesti egyetemen szerzett orvosdoktori diplomát, majd a Karlsruhei Egyetemen doktorált kémiából. 1919-ben Németországba, onnan 1933-ban Angliába ment, a Manchesteri Egyetemen volt a fizikai kémia, majd 1949 után a filozófia professzora. A kémia három területén, az adszorpció elméletének kidolgozásában, a makromolekulák röntgendiffrakciós szerkezetvizsgálatában és a kémiai reakciók mechanizmusának felderítésében is rendkívüli jelentôségû eredményeket ért el. A magyar kultúrához és a magyar tudományhoz sok szállal kapcsolódott. Berlini intézetében több magyar kutató, köztük Wigner Jenô is dolgozott. Szilárd Leó (Budapest, 1898. II. 11. - La Jolla, 1964. V. 30.) Budapesten, a VI. kerületi Reálgimnáziumban érettségizett, egyetemi tanulmányait a Budapesti Mûegyetemen végezte. A berlini egyetemen doktorált. Doktori értekezésében az entrópia és az információ kapcsolatát értelmezte. A század egyik legjelentôsebb és legsokoldalúbb tudósa. Ô fedezte fel a nukleáris láncreakció lehetôségét, és kapott szabadalmat az atomreaktorra. Az elemi részek gyorsítására szolgáló berendezés elvét is ô fedezte fel. (Lényegében a ciklotron felfedezésért kapott Nobel-díjat 1939-ben Lawrence.) Alapvetô eredményeket ért el a biológiai folyamatok értelmezése terén is. Többször jelezte, hogy gondolatainak alakulásában meghatározó szerepe volt Az ember tragédiájának. (Madách neve így került be egy, az atombomba kifejlesztésével foglalkozó könyvbe!) Kármán Tódor (Budapest, 1881. V. 11. - Aachen, 1963. V. 7.) Budapesten, az édesapja, Kármán Mór alapította Trefort utcai Mintagimnáziumban

érettségizett, mérnöki oklevelet a Budapesti Mûegyetemen szerzett. Elôbb a göttingeni egyetemen dolgozott, az aacheni mûegyetemen, majd az Egyesült Államokban, a CalTechen volt professzor, és számos állami és magánmegbízás alapján is végzett kutatómunkát. Meghatározó szerepe volt a modern aerodinamika, a hangsebességnél gyorsabb repülôgépek és a rakéták kifejlesztésében. Elsôként kapta meg a legnagyobb amerikai tudományos kitüntetést, a National Medal of Science-t. Mint az önéletrajzából is kiderül, a magyar kultúrához és irodalomhoz ezernyi szállal kötôdött egész életében. E könyvében egy teljes fejezetet szentel gimnáziumának és a magyar iskolarendszernek. E fejezet címe az angol kiadásban is The Minta! Goldmark Péter Károly (1906-1977) mérnök, szintén úttörő munkát végzett a televízió fejlesztése és alkalmazása területén.1935-től az amerikai CBS hírközlési társaságnál dolgozott, 1952-től mint igazgató. Kidolgozta a színes televízió első, gyakorlatban használható elektromechanikus megoldását- ezt 1940 augusztusában mutatta be a CBS-, majd a tévé orvosi alkalmazásának számos lehetőségét. 1948-ban kifejlesztette a "hosszan játszó" (LP),népszerű nevén a mikrobarázdás hanglemezt. Az 1960-as években kidolgozta azt a távközlési rendszert,amely lehetővé tette a Holdról készített képek továbbítását a Földre. A magyar Nobel-díjasok Röviden azokról akik megkapták ezt az elismerést: Annak megítélése, hogy ki a magyar, illetve magyar származású a legfontosabb elem - legalábbis véleményem szerint - az, hogy valaki milyen mélyen gyökerezik a magyar kultúrában, és mennyire tekinti magát magyar származásúnak. Lénárd Fülöp (Pozsony, 1862. VII. 7. - Messelhausen, 1947. V. 20.) Pozsonyban jár gimnáziumba. Kiváló tanárával Klatt Virgillel, késôbb tudományos kérdésekben is együttmûködött. Egyetemi tanulmányait Budapesten, Berlinben és Heidelbergben végezte. Rövid ideig Eötvös Loránd tanársegédje volt, ezt követôen haláláig Németországban élt. A Magyar Tudományos Akadémia 1897-ben választotta levelezô tagjává, ekkor még biztosan magyar állampolgár volt. 1901 és 1905 között minden évben javasolták a díjra, melyet 1905-ben ítélték oda a katódsugárzással kapcsolatos munkáiért. 1907-ben az Akadémia tiszteletbeli tagjává választotta. Köszönôlevelét "hazafias üdvözlettel" fejezi be, de ekkor már valószínûleg nem magyar állampolgár. Lénárd a századforduló és a századelô kétségkívül egyik legjelentôsebb fizikusa. Einstein 1922-ben az 1921. évi Nobel-díjat a fényelektromos hatás kvantitatív értelmezéséért kapta bár magát a fényelektromos hatást pedig Lénárd fedezte fel. Bárány Róbert (Bécs, 1876. IV. 22. - Uppsala, 1936. IV. 8.) Magyar származása kétségtelen, apja vándorolt ki Rohoncról Bécsbe, ma is élnek rokonai Magyarországon. Valószínûleg ô köszönhetett a legtöbbet "a vesztibuláris apparátus (azaz az egyensúlyszerv) élettanával és kórtanával kapcsolatos munkáiért" neki ítélt 1914-es Nobel-díjnak, mert az elsô világháborúban orosz hadifogságba került, és onnan, mint Nobel-díjas, a svéd kormány közbenjárására szabadult. A háború után Bécsbe ment, de nem kapott egyetemi tanszéket. Ezután Svédországban telepedett le, az Uppsalai Egyetemen kapott katedrát. Zsigmondy Richárd (Bécs, 1865. IV. 1. - Göttingen, 1929. IX. 23.) Szülei mindketten magyarok.amikor az 1925. évi Nobel-díjat 1926-ban neki ítélték "a kolloid oldatok heterogén természetének magyarázatáért, és a kutatásai során alkalmazott, a modern kolloidkémiában alapvetô jelentôségû módszereiért" (az ultramikroszkóp felfedezésért), a Természettudományi Közlöny meg sem emlékezett az eseményrôl. Szent-Györgyi Albert (Budapest, 1893. IX. 16. - Woods Hole, 1986. X. 22.) A Budapesti Tudományegyetem Orvostudományi Karán 1917-ben nyert orvosdoktori diplomát. Ezután hollandiai, németországi, angliai és amerikai egyetemeken dolgozott. 1928-

ban hívta meg Klebelsberg Kúnó kultuszminiszter a szegedi egyetemre. Katedráját 1930-ban foglalta el, és folytatta korábban megkezdett kutatásait a biológiai oxidációs folyamatok mechanizmusával és az általa felfedezett C-vitaminnal kapcsolatban. Nagyon jelentôs volt annak a felfedezése, hogy a szegedi zöldpaprikában különlegesen nagy az aszkorbinsav koncentrációja. Ez lehetôvé tette, hogy addig elképzeléhetetlenül nagy mennyiségben állítsák elô, és mind biológiai, mind pedig kémiai szempontból sokoldalú kísérleteket végezzenek vele. A fiziológiai és orvostudományi Nobel-díjat 1937-ben ítélték neki oda "a biológiai égésfolyamatok, különösképpen a C-vitamin és a fumársavkatalízis szerepének terén tett felfedezéseiért". Szent-Györgyit már 1934-ben is jelölték, akkor a kémiai Nobel-díjra, de ez a jelölés érvénytelen volt, mivel megosztva javasolták mellette Haworthnak, Reichsteinnek és Karrernek. A statútumok szerint pedig, legfeljebb háromfelé lehet megosztani a díjat. Haworth és Karrer megosztva nyerték el ugyancsak 1937-ben a kémiai, Reichstein pedig 1950-ben a fiziológiai Nobel-díjat. Az MTA levelezô tagjává elôször 1931-ben jelölték, de nem kapta meg a szükséges támogatást. 1935-ben nyerte el a levelezô, majd 1938-ban a rendes tagságot. Még szegedi évei alatt kezdett el az izommozgás biokémiájával foglalkozni. Ezen a területen a Nobel-díjjal értékelt munkájával egyenértékû eredményeket ért el. Elkötelezett humanista polgár volt. A szovjet-finn háború idején Nobel-érmét a finneknek ajánlotta fel. Szerencsére az érmet egy gazdag finn kiváltotta, és a Magyar Nemzeti Múzeumnak ajándékozta. A Kállay kormány idejében titkos diplomáciai küldetése volt a háborúból való kiugrás elôkészítésére. 1944. március 19-e után ezért illegalitásba vonult. A háború után a budapesti egyetemre nevezték ki. A Magyar-Szovjet Társaság elsô elnöke lett. Magyarországról, politikai okok miatt, 1947-ben elôször Svájcba, majd az Egyesült Államokba távozott. Itt rákkutatással kezdett el foglalkozni. Ezek a munkái igen vitatott értéküek. Hevesy György (Budapest, 1885. VIII. 1. - Freiburg, 1966. VII. 5.) Egyetemi tanulmányait Budapesten és több külföldi egyetemen végezte, Freiburgban doktorált. Korának legjelentôsebb tudósaival (Lorenz, Haber, Rutherford, Bohr) volt szoros munkakapcsolata. 1918-ban a Budapesti Tudományegyetem tanárává nevezték ki, de katedrájától 1919-ben megfosztották. Koppenhágába ment, ahol Costerrel felfedezte a hafniumot. Ezután a Freiburgi Egyetem professzora 1933-ig, amikor is visszatér Bohr intézetébe. Dánia német megszállásakor Svédországba menekül. 1924 és 1936 között hét alkalommal javasolták Nobel-díjra, melyet 1943-ban nyert el "a radioaktív izotópok indikátorként való alkalmazásáért a kémiai kutatásban". Az MTA 1945-ben tiszteleti tagjává választotta. Számos magyar kémikussal (Gróh Gyula, Zechmeister László, Putnoky László, Róna Erzsébet) volt kapcsolatban, és közölt velük társszerzôségben dolgozatokat. Békésy György (Budapest, 1899. VI. 3. - Honolulu, 1972. VI. 13.) Mind középiskolai, mind egyetemi tanulmányait több országban végezte (mint diplomata fia sok országban töltött rövidebb-hosszabb idôt), a Budapesti Egyetemen doktorált. A Postakísérleti Állomáson végezte a hallással kapcsolatos alapvetô fontosságú, különlegesen pontos kísérleteit, az általa kifejlesztett módszerekkel. 1939-ben átvette a Kísérleti Természettani Tanszék vezetését, de továbbra is dolgozott a Postakísérleti Állomáson. Az MTA 1939-ben választotta levelezô tagjává. 1946-ban külföldre távozott, elôször Stockholmba, majd a Harvard Egyetemre. Élete utolsó szakaszában a Hawaii Egyetemen dolgozott, ott is halt meg. Az élettani Nobel-díjat 1961-ben kapta, lényegében még Budapesten végzett kísérletei alapján, "a fül csigájában létrejövô ingerületek fizikai mechanizmusának felfedezéséért". Wigner Jenô (Budapest, 1902. XI. 17. - Princeton, 1995. I.3.) A Fasori Gimnáziumban tett érettségi után a berlini Technische Hochschulén folytatta vegyészmérnöki tanulmányait. Itt doktorált 1925-ben. Rövid idôre hazatért Budapestre, ahol bôrgyári vegyészmérnökként dolgozott. Ezután németországi egyetemeken, 1930-tól pedig a princetoni egyetemen mûködött. Meghatározó jelentôségû volt a szerepe az atombomba kifejlesztésében. A Nobel-

díjat 1963-ban - Maria Goeppert Mayerrel és J.H.D. Jensennel megosztva - kapta meg "az atommagok és az elemi részek elmélete terén, különösen pedig az alapvetô szimmetriaelvek felfedezésével és alkalmazásával elért eredményeiért". Az MTA 1988-ban választotta tiszteleti tagjává. Gábor Dénes (Budapest, 1900. VI. 5.-London, 1979. II. 5.) Egyetemi tanulmányait a BM-en kezdte és 1924-ben a charlottenburgi Mûszaki Egyetemen fejezte be, és itt doktorált 1927- ben. 1933-ig a Siemens-Halske, 1933 és 1948 között a British Thomson-Houston cégnél volt kutatómérnök, 1949-tôl nyugalomba vonulásáig a londoni Imperial College professzora volt. Rövidebb ideig az Egyesült Izzóval is kapcsolatban állt. Az 1971. évi Nobel-díjat "a holográfia módszerének felfedezéséért és fejlesztéséért" kapta. Megjegyzendô, hogy a holográfia elvét már évtizedekkel elôbb felfedezte, de a módszer gyakorlati megvalósítását csak a lézerfényforrások koherens fénynyalábja tette lehetôvé. A mérnöki fizika területén sok más alapvetô jelentôségû eredményt is elért, és sokat foglalkozott a tudomány társadalmi hatásaival. Az MTA 1964-ben választotta tiszteleti tagjává. Polányi János (John,Charles (Berlin, 1930. I. 23.) Polányi Mihály és Kemény Magda fia. Egyetemi tanulmányait Manchesterben végezte, ezt követôen angliai, amerikai és kanadai egyetemeken dolgozott, 1962 óta a Torontói Egyetem professzora. Az 1986. évi Nobel-díjat - D.R. Herschbachhal és Yuan T. Leevel megosztva - "az elemi kémiai folyamatok dinamikájával kapcsolatos felfedezéseiért" nyerte el. Wiesel, Elie (Máramarossziget, 1928. IX. 30.) Középiskoláit magánúton végezte, de Debrecenben is vizsgázott. Családjából egyedül élte túl a deportálást. Elôször Párizsban telepedett le, 1963 óta amerikai állampolgár. Széleskörû irodalmi tevékenységet folytatott, az 1986. évi Nobel békedíjat azért kapta "mert egyik legfontosabb vezéralak és szellemi vezetô volt azokban az idôkben, amikor az erôszak, az elnyomás és a fajgyûlölet rányomta bélyegét a világ arculatára". Oláh György (Budapest, 1927. V. 29.) A budapesti Piarista Gimnáziumban érettségizett, a BME-n szerzett vegyészmérnöki oklevelet. Ott is kezdte kutatói pályáját Zemplén Géza munkatársaként. 1956-ban elôször Kanadába, majd az Egyesült Államokba ment, ott elôbb a Case Western Reserve University, majd a University of Southern California professzoraként dolgozott. Szerteágazó a munkássága a modern szerves kémia területén. Legfontosabb eredménye kétségkívül az 1994. évi Nobel-díjjal jutalmazott "hozzájárulása a karbokationok kémiájához". Ebbôl a néhány szóból még a szakember számára sem derül ki munkájának jelentôsége. Többet mond, hogy lényegében az ô munkái döntötték meg a szén négyvegyértékûségének dogmáját, és új utakat nyitottak a szénhidrogének elôállítására. Állandó a kapcsolata a hazai kutatókkal. Az MTA 1990-ben választotta tiszteleti tagjává. Harsányi János (Budapest, 1920. V. 29.) A Fasori Gimnáziumban érettségizett, gyógyszerészi oklevelet a Budapesti Tudományegyetemen szerzett 1942-ben. 1947-ben filozófiai doktorátust nyert. 1950-ben Ausztráliába ment, a Sidneyi Egyetemen közgazdászként végzett. Különbözô amerikai és ausztráliai egyetemeken, 1961-tôl nyugdíjazásáig a Berkeleyi Egyetemen dolgozott. Az 1994. évi közgazdasági Nobel-díjat "a nem-kooperativ játékok elméletében az egyensúly elemzés terén végzett úttörô munkásságáért", John Nashsel és Reinhard Seltennel megosztva kapta. Folytatva a kiemelkedő magyar egyéniségek sorát, akiknek igen sokat köszönhet a világ és megérdemeltek volna Nobel-díjat a korszakalkotó felfedezéseikért: Mihály Dénes (1894-1953)-sok minden iránt érdeklődött, de valójában a mozgófilmek hangrögzítését és a távolbalátás problémáját akarta megoldani.már 1916.június 7-én készített hangosfilm-felvételt 1938.április 30-án pedig Projectophon néven szabadalmi bejelentést tett hangosfilm készítésére. Eljárása 35 mm széles normálfilmre optikai

megoldással (!), jó hangrögzítést biztosított, ezért őt tekinthetjük a mai hangosfilm feltalálójának.a szabadalmi leírás 1922.október 18-án nyomtatásban is megjelent. MIhály az 1910-es évek végétől foglalkozott a távolbalátás kérdésével.találmányai kivitelezését Budapesten kezdte,majd Berlinben folytatta.működő berendezésének kezdeti változatát- a Telehor készüléket- 1919-ben mutatták be, a továbbfejlesztett változatot pedig 1928-ban. 1929.március 8-án a berlin-witzlebeni rádióállomás-európában először (!) filmről érzékelt mozgó televíziós közvetítést adott Mihály Dénes rendszerével. Jó megoldás volt, de mégsem az igazi, mert azt Tihanyi Kálmán (1897-1947) találta meg. 1926.március 20-án adta be szabadalmát, amely új irányt adott a televíziós technikának. A Radioskop elnevezésű magyar szabadalom a televízió rendszerek fényérzékenységét növelő töltéstárolás és az ezen alapuló adóvevő rendszer leírása. Ez teszi lehetővé a mozgó alkatrészek nélküli, tisztán elektronikus televíziózást. Tihanyi 1928-as elsőbbségű magyar, német,angol,francia, amerikai stb. szabadalmaiban a gyakorlati megoldások több változatát írta le mind a képcső, mind a képfelvevőcső vonatkozásában.szabadalmait az amerikai RCA cég megvásárolta és ezek alapján fejlesztette ki az Ikonoszkop néven ismert és 1934-től sorozatban gyártott berendezéseket. Tihanyi Kálmánnak a Magyar Országos Levéltárban őrzött 1926-os magyar szabadalmi bejelentését az UNESCO 2001-ben a SZELLEMI VILÁGÖRÖKSÉG RÉSZÉNEK NYILVÁNÍTOTTA. Tihanyi szinte egész Európában dolgozott, 1929-ben speciális, infraérzékelő tévékamerát fejlesztett ki és szabadalmaztatott repülőgépek és más harci eszközök, járművek irányítására. 1938-ban pedig lapos tévéképernyőre nyújtott be szabadalmat. Bay Zoltán (1900-1992)- fizikus,akadémikus az Eötvös kollégium tagjaként a pesti egyetem matematika-fizika szakán végzett,majd Berlinben közel három véet töltött el aktivált gázok ( hidrogén,nitrogén) fizikai tulajdonságainak vizsgálatával. Új spektroszkópiai módszert dolgozott ki ( 1929-ben),amelynek segítségével kimutatta az aktív nitrogénben a szabad N- atomok jelenlétét. hazatérését követően a szegedi egyetem tanáraként a Compton-szórást ( a rtg sugarak szórását) kutatta.eszközök híján csak terveket készíthetett pontosabb mérésekhez a foton-elektron egyidejűségének kimutatására. 1936-ban az Egyesült Izzó kutatólaboratóriumában már erre a célra az elektronsokszorozót próbálta tökéletesíteni. A kísérletek sikerrel jártak,1943-ban munkatársaival VILÁGELSŐKÉNT több nagyságrenddel megjavította a részecskék kimutatásának időfelbontását. 1942-ben megbízást kapott hírközlési és légvédelmi felderítő eszközök kidolgozására, a lokátor már 1943 áprilisában elkészült a 40 tagú munkacsoport az ú.n. "Bay csoport" által.1944-ben már a gyakorlatban használták a repülőgépek felderítéséhez. A Holdvisszhang kísérletnek ( a Holdra irányított radarhullámok visszaverődésének) ötlete a munka során vetődött fel. 1945 augusztusában m egkezdték egy 2,5 m hullámhosszon dolgozó radarberendezés összeállítását.ennek segítségével jeleket sugároztak a Holdra. 1946.február 6-án a radarvevőjük felfogta a Holdról visszavert jeleket a a "radarvisszhangot" VILÁGON ELŐSZÖR. Bay Zoltán ezzel megalapozta a CSILLAGÁSZAT ÚJ ÁGÁT, a radarcsillagászatot. Bay Zoltán 1948-ban elhagyta Magyarországot és az USA-ban a George Washington Egyetem professzoraként folytatta a gyors koincidencia- kutatásait. A Compton-szórásnál szereplő részecskék kilépésének egyidejűségét 10 a mínusz tizenegyediken pontossággal igazolta. 1972-től J.A. White amerikai fizikus professzorral bebizonyította, hogy a fény vákuumbeli sebessége tíz a mínusz huszadikon hibahatáron belül a hullámhossztól független.ez szintén korszakalkotó felfedezés mivel ennek alapjám LEHETETT KÉSŐBB A FÉNY SEBESSSÉGÉT A HOSSZÚSÁG ALAPEGYSÉGEKÉNT felhasználni, a "fényre szabott méter"-t megalkotni. A lista még folytatódik:ziperowsky Károly,Déri Miksa, Bláthy Ottó,Mechwart András,Kandó kálmán,jendrassik György,Bánki Donát,Csonka János,Galamb József,Járay Pál,Berényi Béla, Zsélyi Aladár,Melczer Tibor,Fonó Albert és még sok más kiváló feltalálóval.

Zipernovszky Károly (1853-1942),Déri Miksa (1854-1938) és Bláthy Ottó (1860-1939) a Ganz gyár mérnökei 1885-ban feltalálták ( és ezzel a névvel jelölték)a TRANSZFORMÁTORT, vagyis a zárt vasmagú, mindkét oldalán párhuzamosan kapcsolt, tetszőleges áttételű indukciós készüléket és az ilyen készülékek felhasználásán alapuló VÁLTAKOZÓ ÁRAMÚ energiaelosztó rendszert. Az elektromos áram gyakorlati felhasználásában a VILÁGON ez egy MÉRFÖLDKŐ, úgy a felfedezés mint a gyakorlati alkalamazás. Ez abban az időben történt,amikor Edison és Siemens is még az egyenáramú megoldások feltétlen híve volt. Az elektromosság széles körű felhasználásának legfőbb akadálya az volt, hogy a megtermelt villamos energiát nem tudták nagy távolságra szállítani.a problémát Budapesten a Ganz gyár mérnökei oldották meg. Az új rendszer bemutatása nagyszerűen sikerült,hiobátlanul,folyamatosan világítást szolgáltatott a budapesti 1885.májusától novemberig nyitva tartó Országos Általános Kiállításon. A szabadalmat 1885.január elején nyújtották be és az ipari megoldás négy hónap múlva a gyakorlatban vizsgázott. A következő évtizedekben világszerte több száz Ganz-rendszerű energetikai létesítményt építettek a gyár által szállított berendezésekkel. Néhány város ahová szállítottak: Bécs, Grenoble, Harkov, Innsbruck, Luzern, Lyon,Melbourne, MIlánó, Montevideo, Moszkva, Nápoly, Odessza, Palermo, Sao Paolo, Stockholm, Szentpétervár, Torino, Valparaiso, Velence, Zürich...stb. 1886-ban helyezték üzembe a Róma-Cerchi gőzerőművet: az első erőmű a világon, ahol- Bláthy javaslatára- váltakozó áramú generátorok egymással párhuzamosan kapcsolva dolgoztak,közös hálózatot tápláltak. A transzformátor magyar találmány, 1964-ben a találmány 80. évfordulója alkalmából emlékkiállítást rendeztek a washingtoni Smithsonian Institution-ben. Évtizedekig Róma város villamosberendezéseit a Ganz gyár szállította. 1892-ben helyezték üzembe Róma környékén Tivoliban a Ganz gyár válalkozásában létrehozott VÍZIERŐMŰVET, amely akkor Európa legnagyobb ilyen létesítménye volt. A termelt energiát 5000 voltos légvezeték vitte Rómába- ez az ELSŐ olyan denergiaátvitel, amely városi opsztóhálózatot nagyobb távolságból közvetlenül nagyfeszültségű generátorokból tábplált. Ennél a rendszernél valósult meg ELŐSZÖR AZ ELEKTRONIKA TÖRTÉNETÉBEN,hogy gőzgépekkel ( Róma-Cerchi) és vízturbinákkal (Tivoli) hajtott generátorok üzemszerűen, párhuzamosan dolgoztak. Tehát a vízierőmű és az itt megtermelt elektromos energiának nagy távolságokra való átvitele is MAGYAR TALÁLMÁNY, első a világon. KANDÓ KÁLMÁN (1869-1931) Aranybetűkkel írta be a a nevét a vasútvilamosítás történetébe. A Ganz gyár fiatal mérnöke, aki mind gépészeti, mind mind a villamos tervezéshez kiválóan értett, már a 19.század utolsó éveiben felismerte egyrészt a vasútüzem villamosításának fontosságát,másrészt azt, hogy egyenáram helyett erre a célra is VÁLTAKOZÓ ÁRAMOT kell használni. Elgondolását először Olaszországban válthatta valóra- az észak-olaszországi Valtelllina -vasút 106 km-es szakaszának villamosításánál. 1902. szeptemberében indult meg a forgalom A VILÁG ELSŐ, NAGYFESZÜLTSÉGŰ VÁLTAKOZÓ ÁRAMMAL VILLAMOSÍTOTT vasúti fővonalán Lecco-tól Sondrino-ig. Szinte minden lényeges elemet - a mozdonyokat, a motorkocsikat, a transzformátorállomásokat és a hálózati berendezések zömét is- a budapesti Ganz-gyárban fejlesztették, gyártották kandó irányításával, és a szerelést is a gyár végezte. A válalkozás és a műszaki megoldás sikerét jelzi, hogy az olasz kormány további 2000 km vonalat villamosított ezzel a rendszerrel.kandót meghívták vezetőnek és tervezőnek Olaszországba a Vado Liguréban létesített villamosmozdony- gyárba. Tervei alapján 1908 augusztusában itt készült el a "CINQUANTA ", a világhírű mozdonytípus, amelyből összesen 369 darabot gyártottak.megbízhatóságára jellemző,hogy az utolsó példányokat az 1960-as években vonták ki a forgalomból. Kandó további zseniális, korát évtizedekkel megelőző és napjainkig érvényes elgodolása,hgy

a vasút villamosítását az ORSZÁGOS VILLAMOSENERGIA-ELOSZTÓ HÁLÓZATRÓL kell megoldani.egyik lehetséges műszaki megoldásként kidolgozta a FÁZISVÁLTÓS RENDSZERŰ MOZDONYT, amelynek próbapályás kísérletei 1923-ban kezdődtek. 1932. szeptember 12-én idnult el az első ilyen menetrendszerű vonat a Keleti pályudvarról a Budapest-Hegyeshalom vasútvonalon. 1926-ban állították forgalomba a Párizs-Orleans vonalon azt a két 4000 lóerős egyenáramú mozdonyt, amelyek ugyancsak Kandó irányításával Budapesten, a Ganz Villamossági Gyárbanés a MÁVAG-ban ( Európa egyik vezető mozdony és acélszerkezeti gyárában) készültek, és akkoriban Európa LEGNAGYOBB EGYENÁRAMÚ MOZDONYAI voltak. Jendrassik György (1898-1954), fiatal mérnökként került a Ganz-gyárba, s egészen a vezérigazgatóságig ívelt pályája.nem siokkal a belépése után adta be zseniális DÍZELMOTOR TALÁLMÁNYÁT. Erre alapozva 1927-ben készültek el a nemzetközi sikert aratott Ganz-Jendrassik motorok első példányai. A folyamatosan továbbfejlesztett, egyre növekvő hengerszámú,különböző teljesítményű motorokat önálló hajtógépként, illetve közlekedési eszközökbe építve értékesítették. A motorcsalád gyártási jogát nyolc külföldi cég is megvette. 1934.december 15-én indult első útjára,bécsbe, a magyar vasúti járműgyártás egyik legkiválóbb terméke a Ganz-Jendrassik motorral működtetett "Árpád" típusú sínautóbusz. Az ilyen rendszerű motorvonatokat a Ganz-gyár-Egyiptomtól Argentínáig-sok országba szállította. Jendrassik György a gázturbina fejlesztésében is nemzetközileg elismert eredményekt ért el. Amint a 19.században megváltoztatta az emberek és az egész világ életét a vasút megjelenése és általános elterjedése, a 20.században hasonló hatást gyakorolt az életünkre a gépkocsi, majd a repülés és a számítógépek elterjedése. A magyar szakemberek mindhárom területen igen jelentős mértékben hozzájárultak a nemzetközi fejlődéshez, mondhatni korszakalkotó felfedezéseikkel (üzemanyag porlasztó azaz a karburátor felfedezése, tömlő nélküli (belső gumi nélüli) gumiabroncs, turbófeltöltéses motorok, ideális áramvonalas járműalak, a gépkocsik biztonságtechnikai megoldásainak felfedezései stb., az informatikában az alapfelfedezések és fejlesztések is magyarok nevéhez fűződnek ). Ezért nem szabad elfeledkeznünk Bánki Donát, Csonka János,Galamb József,Hercegh Ferenc,Barényi Béla,Járay Pál,Anisits Ferenc,Svachulay Sándor, Zsélyi Aladár, Melczer Tibor,Fonó Albert, Rotter Lajos, Kármán Tódor,Izsák Imre, Szebehely József és még sok más híres ember nevéről és munkásságáról. Ők mind-mind hozzájárultak ahhoz, hogy a magyarság szellemi nagyhatalom lett a világon csak ezt manapság sokan megpróbálják bagatellizálni és lehorgasztott fővel kis és lényegtelen népnek beállítani minket. BÁNKI DONÁT- (1859-1922) és Csonka János (1852-1939) 1893.február 11-én szabadalmi bejelentést tett Újítások petróleumokon címmel.ennek egyik igénypontja az üzemanyag prolasztó megfogalmazása.ez A VILÁG ELSŐ OLYAN PORLASZTÓJA, mely egyszerűen, üzembiztosan és maradéktalanul megoldja a készülék számára előírt feladatot. Bánki 1898- ban feltalálta a KETTŐS PORLASZTÁSOS (üzemanyag és vízporlasztásos),nagy kompressziójú BÁNKI-MOTORT, amely az 1900-as párizsi világkiállításon díjat nyert. A nyagy nyomást úgy éri el,hogy hűtővízzel csökkenti a keverék hőmérsékletét,módosítva ezzel a robbanáspontját- ezt az elvet alkalmazzák NAPJAINKBAN IS a gépkocsikban és más járművekben.1917-ben ismertette újabb találmányát,a később róla elnevezett Bánkiturbinát.bánki találmányára alapozva, ezt a turbinát továbbfejlesztve több országban még ma is gyártják! A világ első népautója a Ford T-modell,amelyet 1908-tól gyártottak.a kocsi tervezésében és

a tömeggyárás megszervezésében elengedhetetlen és MEGHATÁROZÓ SZEREPE VOLT GALAMB JÓZSEFNEK (1881-1955), aki Detroitban Henry Ford főkonstruktőreként dolgozott. A T-modellt, amelyből mintegy 25 millió darab készült- az "évszázad autójá"-nak minősítették. Galamb József a Fordson traktor prototípusának tervezésével is maradandót alkotott. Ugyancsak a közúti járműgyártás fejlődését szolgálták egy magyar származású feltaláló Hercegh Ferenceredményei.Szinte egész életében a gumiiparban dolgozott az akroni Goodrich cégnél.száznál több találmánya volt, többek között 1943-ban az első működőképes TÖMLŐ NÉLKÜLI GUMIABRONCS, ami 1947-től került kereskedelmi forgalomba.a feltaláló életművéért 1978-ban megkapta a gumiipari kémia legrangosabb amerikai kitüntetését. JÁRAY PÁL (1889-1974), gépészmérnök,már a 20.század elejénm repülőgép-tervezéssel, a légellenálás csökkentését szolgáló profilok kialakításával foglalkozott. Munkássága nyomán a Zeppelin -léghajók hatásfoka lényegesen javult.az I.világháború után Berlinben megépítette a világ akkor legnagyobb szélcsatornáját.1920-ban szabadalmaztatta a legkisebb örvényleválást okozó léghajóalakot.kutatásait kiterjesztette a talaj közelében mozgó testekre és 1920 októberében majd továbbfejlesztve 1921 márciusában és szeptemberében szabadalmaztatta a legkisebb légellenállást adó IDEÁLIS JÁRMŰALAKOT, AZ ÁRAMVONALAST. Ő volt az első aki szélcsatornában mért autókarosszériát. Az áramvonalas alak használata a gépkocsiiparban azóta napjainkra érte el a csúcsát, a gépkocsi formatervezés és biztonsági megfontolások (útfekvés) miatt alapvető fontosságú lett VILÁGSZERTE AZ AUTÓIPARBAN. Közkincs. BARÉNYI BÉLA (1907-1977). A világ talán legtermékenyebb feltalálója volt a mintegy KÉTEZER-ÖTSZÁZ SZBADALMAT jegyző,magyar származású Barényi Béla. Az autó- és motoripar kimagasló személyisége, a bogárhátú autótipus megalkotója. Közel negyven évig a Mercedes-Benz cénél dolgozott. Sok találmánya,elgondolása évtizedekkel megelőzte korát. Neki köszönhető autóink számos,ma már természetesnek tartott, alapvető biztonságtechnikai megoldása. Ő dolgozta ki az utasvédelem, a passzív biztonság (a baleseti következmények minimalizálása) alapelveit és a megvalósítás műszaki eszközeit: biztonsági kormányoszlop,oldlsó ütközésvédelem,,formatartó utastér, tervezett deformációjú ütközési zónák stb. Ő vezette be a rendszeres töréspróbákat is. Szilárdan képviselte azt az elvet,hogy a műszaki alkotásokat az őket használó ember érdekei szerint kell kialakítani. Nem véletlen, hogy még életében bekerült az autóipar halhatatlanjainak csarnokába ( Automotive Hall of Fame,Detroit ) Utcát nevztek el róla Terracinában továbbá Sindelfingerben és Stuttartban. A budapesti Autóipari Kutató Intézetben Cser Gyula és munkatársai feltaláltá és 1968-ban szabadalmaztatták az úgynevezett kombinált feltöltést, ami a turbófeltöltés továbbfejlesztése.ezt az új műszaki megoldást a világ SZÁMOS JELENTŐS AUTÓGYÁRA ÁTVETTE. A világhódító BMW dízelmotorok egyik igen jelentős kifejlesztője ANISITS FERENC gépészmérnök. Az ő nevéhez fűződik a BMW dízelfejlesztő központjának felépítése. A nemzetközileg elismert motorfejlesztőt 1980-ban hívták meg a BMW Steyr-ben (Ausztria) akkor épülő új dízelmotor fejlesztő részlegének vezetésére. Az ő irányítása alatt készült hat -és nyolchengeres dízelmotorok 1999-ben és 2000-ben is elnyerték A VILÁG LEGJOBB MOTORJA minősítést. Szilárd Leó,Wigner Jenő. GÁBOR DÉNES (1900-1979) Az Egyesült Izzó kutatólaboratóriumában hosszabb-röidebb

időre a korszak csaknem minden jelentős magyar kísérleti fizikusa megfordult.egy évig itt kísérletezett plazmalámpájával Gábor dénes, aki a budapesti kezdés után a berlini műegyetemen folytatta tanulmányait,de közben Einstein szemináriumokra járt,ahol nyolc Nobel-díjas ült a Physikalisches Colloquium első padjában. Doktori munkája a katódsugár oszcillográf nagy sebességű alkalmazásáról szólt, ami a kiindulást jelentette az ELEKTROMIKROSZKÓP megszerkesztése felé. 1927-ben Szilárd Leóval való beszélgetései során felvetődött az ötlet, hogy miért ne lehetne mikroszkópot készíteni fény helyett elektronokkal. 1934-től tizennégy éven át Gábor Dénes a British Thomson Company- BTH Co.-kutatólaboratóriumában folytatta munkáját.megalkotta az elektronmikroszkópot és elsősorban az elektronmikroszkóp olyan fokú felbontását akarta elérni, hogy az egyes atomok megkülönböztethetők legyenek. E cél érdekében megszületett a hologram ötlete.a módszert először a látható fény tartományban próbálta ki.1948 közepére megvoltak a szemmel látható bizonyítékok a módszer működőképességéről. Az Imperial Colege 1958- ban kifejezetten Gábor Dénes számára hozta létre az alkalmazott elektronfizika tanszéket, ahol a holográfiával foglalkozott. Írásainak nagy visszhangja volt, a Jövő feltalálása (1963) hét nyelven jelent meg, a Tudományos,technikai és társadalmi újítások ( 1970)a hátralévő évtizedek fejlődését elemezte. A Növekedés határai című könyve az uralkodó ipari és pénzügyi körök régen tapasztalt dühét váltotta ki. 1963-tól Gábor Dénesnek köszönhetően a LÉZEREK segítségével a holográfia divatba jött és néhány év alatt a tudományos és ipari alkalmazások sora fejlődött ki.a roncsolásmentes anyagviszgálat is új eszközöz jutott a holográfiával, az orvostudományban is fontos szerephez jutott a későbbiekben. Gábor dénes 1971 után, immár Nobel-díjasként foglalkozott a holografikus betűfelismeréssel, a lencse nélküli holográfiával, az asszociatív alkalmazásokkal és az asszociatív holografikus memóriákkal. Gábor Dénes történelmet írt:felfedezte és megalkotta az elektronmikroszkópot,mely a mai orvostudományban a gyakorlatban is nem csak tudományos szinten rutinszerűen használt diagnosztikai módszer a szövettani vizsgálatok során, bizonyos esetekben a diagnózis felállításához és a beteg kezelésének megválasztása szempontjából nélkülözhetetlen vizsgálat. A másik óriási felfedezése a lézer. A lézertechnika elterjedése szintén korszakalkotó az orvostudományban ( cukorbetegek lézeres szemműtétei a látásmegőrzés szempontjából ma maár nélkülözhetetlenek), de egyéb területen is elterjedtek pl. a híradástechnikában (CD olvasás és írás stb.) Bay Zoltán Hold -radar mérései, Gábor Dénes optikai hologramjai ugyanúgy nem szerepeltek intézményük kutatási programjában, mint BÉKÉSY GYÖRGY ( 1899-1972) akusztikai kísérletei. Békési 1926-1940 között mérési módszereket dolgozott ki és az emberi hallás mechanikai-fizikai folyamatait kutatta. Számos felismerése a belső fül működéséről korszakalkotó volt,mely később az örvényelméletben kulminált, ma már az orvostudományban és biofizikában tankönyvi anyag világszerte. Békésy akusztikai berendezéseket is készített ( az 1928-ban avatott Magyar Rádió önálló stúdiójának akusztikai terveit is ő készítette), számos cikket publikált rangos folyóiratokban. A II.világháború után ösztöndíjjal a svéd Karolinska Intézetbe ment, majd 1947 szeptemberétől a Harvard Egyetemen 17 évi munkával nagyszerű laboratóriumot hozott létre.közben a belső fül csigán belüli ingerlés fizikai mechanizmusával kapcsolatos felfedezéséért 1961-ben megkapta az orvosi-élettani Nobel-díjat.Az emberi hallás mechanizmusát fedezte fel és ezzel nagyban hozzájárult a fül betegségeinek és halláskárosodás megértéséhez és gyógyításához is. Békésy az emberi hallószerv működésére vonatkozó kutqtások jelentős részét Magyarországon végezte az 1930-1940-es években. Az USA-ban kiszélesítette kutatási területét: először csak a hallás és és a bőrérzékelés közti hasonlóságot vizsgálta, végül pedig már a látás és általában minden érzékelés közös tulajdonságait. 1966-tól az érzékszervi tudományok professzoraként az emberi érzékelés általános törvényszerűségeit, a különböző érzékszervek idegi működésének hasonlóságát kutatta. Békésy György felfedezéseinek köszönhető a mai hallókészülékek kifejlesztése és széles

körű alkalmazása. WIGNER JENŐ (1902-1995), aki szintén a híres fasori evagélikus gimnáziumban Rácz tanár úrnál gtanulta a matematikát, vegyésznek készült Berlinben. Itt találkozott a vegyész, filozófus Polányi Mihállyal, akinek kezedeményezésére egy kristálytani feladathoz jutott.ennek általánosításához a szintén Rácz -tanítvány Neumann János segítségét kérte. Neumann eslőssorban matematikus volt,de hatalmas tehetsége folytán mással is foglalkozott, többek között kvantummechanikával.ennek eredménye a Akvantummechanika matematikai alapjai című monográfiája. Wigner, hogy másokat is segítsen 29 évesen megírta a Csoportelméleti módszerek a kvantummechanikában című könyvét. A VILÁG ELSŐ ATOMREAKTORÁT 1941-ben kezdték építeni és 1942 decemberében készen állt a beindításra. Az urán-grafitmáglya minden rétegének felrakása után mért neutronsugárzási adatokból WIGNER SZÁMÍTOTTA KI,HOGY MIKORRA VÁRHATÓ A LÁNCREAKCIÓ ÖNFENNTARTÓVÁ VÁLÁSA. Sokak szerint ő volt AZ ELSŐ REAKTORMÉRNÖK E SZAKMA MEGALAPÍTÓJA. 1963-ban ( M.Goeppert-Mayer és H.D: Jensen társaságában) megosztott FIZIKAI NOBEL- DÍJAT kapott az atommagok és az elemi részek elméletének fejlesztéséért,kivált az alapvetőszimmetriaelvek felfedezéséért és alkalmazásáért. Egyik tanítványa a Wignernél töltött doktori évei után két Nobel-díjat is szerzett ( John Bardeen). FONÓ ALBERT (1881-1972) A budapesti születésű gépészmérnök 1903-ban szerzett oklevelet a Műegyetemen. Elméleti munkássága sokoldalú volt, fő szakterülete az energetika. Német, belga, svájci, francia gyárakban szerzett tapasztalatok után hazatérve külföldről 1909-ben műszaki doktori vizsgát tett, majd önálló tanácsadó és tervező-mérnökként tevékenykedett. Fő szakterülete az energetika volt. Technikatörténeti jelentőségűek sugárhajtómű találmányai. Ezek előremutatóak voltak, ám feltalálásuk idején mégsem válhattak valóra, korát megelőzte a találmány.később Fonó Albert tervei alapján hozták létre ezeket a hajtóműveket. Első találmánya, mely a sugárhajtás elvét alkalmazza az első világháború kezdeti szakaszából, 1915-ből származik. Ezzel a légi torpedónak nevezett eszközzel a tüzérségi fegyverek hatótávolságát akarta megnövelni. Alapelve az volt, hogy a lövegből indított lövedéket egy vele összekapcsolt hajtómű tovább gyorsítja. Ily módon viszonylag kis kezdősebességgel is lehet nagy távolságra lőni és nehéz lövedéket kis tömegű ágyúból indítani. A feltaláló egy olyan megoldást dolgozott ki, mely a mai torló-sugárhajtóművek szinte minden lényeges elemét magába foglalja. A légi torpedóra vonatkozó javaslatot az osztrák-magyar hadvezetőséghez nyújtotta be, ott azonban - nem ismerve fel a találmány műszaki és katonai jelentőségét- a fejlesztést elutasították. Korát megelőző jelentős műszaki találmány volt, de érdektelenség fogadta. Ezzel szemben a kor technikai színvonalához igazodó találmányai sikeressé váltak. Találmányai közül említést érdemel az 1923-ban kidolgozott gőzkazán, valamint az 1928-ban szerkesztett új típusú bányászati légsűrítő berendezés,melyet szabadalmaztatott. Szállítógépek és vasúti járművek önműködő fék- és menetszabályozójának a szabadalmát 1924-ben a német

Siemens-cég vásárolta meg. 1926-ban az elsők között dolgozott ki egy szárnyashajót,amelynek kísérleteibe Kármán Tódor is bekapcsolódott. 1928-ban foglalkozott ismét a sugárhajtással. Kidolgozta a nagy magasságban hangsebességnél gyorsabban haladó repülőgép számára alkalmas hajtóművet, amelyet légsugármotornak nevezett el. Találmányára német szabadalmat kért, ezt rövidesen kiegészítette egy pótszabadalmi bejelentés,mely lényege az volt,hogy a sugárhajtóművet egy külön erőforrásból hajtott kompresszor segítségével alkalmassá teszi a hangsebesség alatti működésre is. A két szabadalomban a feltaláló a sugárhajtómű négy változatát írta le. Az igen szigorú rendkívül alapos német szabadalmi vizsgálat négy évig, 1932-ig tartott. A megadott szabadalmak egyértelműen bizonyítják, hogy a repülőgép-sugárhajtómű feltalálásában Fonó Albert mindenkit megelőzött és új korszakot nyitott a repüléstechnika történetében. Ma is az ő általa megtervezett sugárhajtású motorok találhatók a repülőgépekben. 1954-ben a Magyar Tudományos Akadémia levelező tagja lett, 1956-ban Kossuth-díjat kapott, 1968-tól pedig a Nemzetközi Asztronautikai Akadémia levelező tagja volt. Sajnos az emberiség a hasznos találmányt nem csak a jóra fordítja. Ez már viszont egy másik, egy filozófiai kérdés