GÁZTURBINA-OPERÁTOROK TOVÁBBKÉPZÉSÉRE SZOLGÁLÓ SZIMULÁTOR FEJLESZTÉSE



Hasonló dokumentumok
9. Áramlástechnikai gépek üzemtana

GÁZTURBINÁK ÜZEME ÉS KARBANTARTÁSA. Gőz Gázturbinák Gyakorlati Alkalmazásai

STAAD-III véges elemes program Gyakorlati tapasztalatok a FÕMTERV Rt.-nél

Az anyagdefiníciók szerepe és használata az Architectural Desktop programban

MUNKAANYAG. Angyal Krisztián. Szövegszerkesztés. A követelménymodul megnevezése: Korszerű munkaszervezés

CMK_MS02 Hordó mérlegelõ és címkézõ program

Kvantumkriptográfia III.

Kondenzátorvédelmi funkció feszültségváltós kettős csillagkapcsolású telepre

CENTRIFUGÁLKOMPRESSZOR FALI MEGCSAPOLÁSÁN ALAPULÓ AKTÍV POMPÁZS-SZABÁLYZÁSÁNAK MATEMATIKAI MODELLJE TARTALMI KIVONAT

Paksi Atomerőmű üzemidő hosszabbítása. 1. Bevezetés. 1. fejezet

ICN 2005 ConferControl

5. PID szabályozás funkció 5.1, Bevezetés:

BAUSFT. Pécsvárad Kft Pécsvárad, Pécsi út 49. Tel/Fax: 72/ WinWatt

7. gyakorlat Tervlapok készítése, a terv elektronikus publikálása

Welcome3 Bele pteto rendszer

Számlázás-házipénztár. (SZAMLA) verzió. Kezelési leírás

Dr. Pétery Kristóf: Word 2003 magyar nyelvű változat

VELUX CAD VELUX ablaktervező rendszer AutoCAD-hez FELHASZNÁLÓI KÉZIKÖNYV

Készletnyilvántartó program. (KESZLET) verzió. Kezelési leírás

Mérôváltó bemenetek és általános beállítások

Access 2010 Űrlapok és adatelérés

GÁZ-KORLÁT Készülékcsalád

IBM Business Process Manager változat 8 alváltozat 5. Munkaerő-felvételi oktatóanyag

Minden jog fenntartva, beleértve bárminemű sokszorosítás, másolás és közlés jogát is.

HATODIK FEJEZET / FÜGGİ MODELLEK / TANGRAM

3. Az univerzális szabályozó algoritmusai.

ÉVES KÖRNYEZETI JELENTÉS JELENTÉS 2002 MAGYAR VILLAMOS MÛVEK RT.

KETTŐS KÖNYVELÉS PROGRAM CIVIL SZERVEZETEK RÉSZÉRE

A MEGBÍZHATÓSÁGI ELEMZŐ MÓDSZEREK

Doktori munka. Solymosi József: NUKLEÁRIS KÖRNYEZETELLENŐRZŐ MÉRŐRENDSZEREK. Alkotás leírása

A ZRÍNYI-SZOBOR ALKOTÓJA, BARBA PÉTER EMLÉKÉRE

Internet-hőmérő alapkészlet

Quantometer 2.0 Fogyasztásmérő program és illesztőkészülék

MATEMATIKA TAGOZAT 5-8. BEVEZETŐ. 5. évfolyam

ETR Hallgatói webes alkalmazás

Poszeidon (EKEIDR) Irat és Dokumentumkezelő rendszer webes felület

A program telepítése

I. Századvég-MET energetikai tanulmányíró verseny. Gázturbinák füstgáz hőenergiájának hasznosítása

PRIMER. A PRIMER Ajkai Távhőszolgáltatási Kft ÉVI ÜZLETI TERVE

Elsô Áramtôzsde Nap konferencia

E7-DTSZ konfigurációs leírás

AZ RD-33 HAJTÓMŰ SZERKEZETI FELÉPÍTÉSÉNEK ISMERTETÉSE. Elektronikus tansegédlet az RD-33 hajtómű szerkezettani oktatásához

Fenntarthatósági Jelentés

4. Gyakorlat ellenőrzött osztályozás

Távolsági védelmek vizsgálata korszerű módszerekkel

Rövidített sportágvezetői értékelések:

A SZÉL ENERGETIKAI CÉLÚ JELLEMZÉSE, A VÁRHATÓ ENERGIATERMELÉS

A szabályozási energia piacáról. 2. rész

Készítette:

Azonosító jel: INFORMATIKA EMELT SZINTŰ GYAKORLATI VIZSGA október :00. A gyakorlati vizsga időtartama: 240 perc

Mi az a Scribus? SCRIBUS. Mi az a Scribus? Milyen platformon érhet el? Hasonló feladatra használható programok. Mire használhatjuk a Scribust?

WINDOWS XP - A GRAFIKUS FELÜLET KEZELÉSE

BÉRSTATISZTIKAI PROGRAM HASZNÁLATI ÚTMUTATÓJA

KŐBÁNYAI DIAKOK SPORTEGYESÜLETE

(1. és 2. kérdéshez van vet-en egy 20 oldalas pdf a Transzformátorokról, ide azt írtam le, amit én kiválasztanék belőle a zh-kérdéshez.

CDC 2000 Vezérlő 10 Hibaüzenetek Asian Plastic

BBS-INFO Kiadó, 2013.

ZÁRÓJELENTÉS vasúti baleset Budapest, Nagykőrösi út február 1. 3-as viszonylatú villamos

Spike Trade napló_1.1 használati útmutató

Készítette: Engelthaller Zsolt

Szövegszerkesztés Verzió: 0.051

FELHASZNÁLÓI KÉZIKÖNYV

Dr. Pétery Kristóf: AutoCAD LT 2007 Fóliák, tulajdonságok

Az MS Access adatbázis-kezelő program

PARAMÉTERES GÖRBÉK ALKALMAZÁSA VALÓSIDE- JŰ DIGITÁLIS HANGFELDOLGOZÁS SORÁN

DOCSTAMP FELHASZNÁLÓI DOKUMENTÁCIÓ A DOCSTAMP DOKUMENTUM KEZELŐ RENDSZERHEZ április 10. v1.5

On-line értékelési módszerek II. Lengyelné Molnár Tünde

9. Előadás: Földgáztermelés, felhasználás fizikája.

MATLAB-FEM OPTIMALIZÁCIÓS KÖRNYEZET KIALAKÍTÁSA ÉS ALKALMAZÁSA ELEKTROMOS JÁRMŰMOTOROK FEJLESZTÉSÉRE

Az ENERGIAKLUB Szakpolitikai Intézet és Módszertani Központ észrevételei az Európai Bizottság határozatához

(11) Lajstromszám: E (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA

IND C2D ipari sztereomikroszkóp

BARANYA MEGYEI TANULÓK TUDÁSSTRUKTÚRÁI. Takács Viola

ETR Pénzügyi közönségszolgálat

Felügyelet nélküli, távtáplált erősítő állomások tartályainak általánosított tömítettségvizsgálati módszerei

Üzemfenntartás pontozásos értékelésének tapasztalatai

Corel PHOTO-PAINT X5 Maszkolástól nyomtatásig

Az Orbis adatbáziskezelő

SEAGUARD. Integrált Biztonság-felügyeleti Rendszer

A FIZIKUS SZEREPE A DAGANATOS BETEGEK GYÓGYÍTÁSÁBAN

Töltőfunkció Kezelési Utasítás

A BETON NYOMÓSZILÁRDSÁGI OSZTÁLYÁNAK ÉRTELMEZÉSE ÉS VÁLTOZÁSA 1949-TŐL NAPJAINKIG

Prezentáció használata

Kondenzációs kompakt hőközpont Condens 5000 FM. Kezelési útmutató a felhasználó számára ZBS 22/210-3 SOE (2015/04) HU

Tartalomjegyzék. Áttekintés A mobil kliens első ránézésre. Fő nézetek A kezelőfelület elemei Első lépések

TANTÁL KFT. NLPC Gold nyelvoktató berendezés. kezelési utasítás

TLSZ-50 típusú mobil olajszűrő készülék. Ismertető

BEN. BEN vezérlés 1. oldal

Öntözőszivattyúk szabályozása frekvenciaváltóval

Divar 2 - Vezérlőközpont. Kezelési útmutató

Felhasználói kézikönyv. Angol szókincsfejlesztő rendszer

Programozható logikai vezérlõk

mérés.info A Mérés-értékelési Osztály hírei december CÍM 1088 Budapest, Vas utca HONLAP

Mérési útmutató Nagyfeszültségű kisülések és átütési szilárdság vizsgálata Az Elektrotechnika tárgy laboratóriumi gyakorlatok 1. sz.

Topográfia 7. Topográfiai felmérési technológiák I. Mélykúti, Gábor

HOLDPEAK 856A SZÉLSEBESSÉG MÉRŐ

Aronic Főkönyv kettős könyvviteli programrendszer

Műszaki dokumentáció. Szabályok, eljárások III.

CAD-CAM-CAE Példatár

5. Telepítés ASIAN PLASTIC

Átírás:

GÁZTURBINA-OPERÁTOROK TOVÁBBKÉPZÉSÉRE SZOLGÁLÓ SZIMULÁTOR FEJLESZTÉSE HAZÁNKBAN LITÉREN, SAJÓSZÖGEDEN ÉS LÔRINCIBEN HÁROM NYÍLTCIKLUSÚ GÁZTURBINÁS CSÚCSERÔMÛ LÉTESÜLT. EZEK A GYORSINDÍTÁSÚ TARTALÉK EGYSÉGEK A HAZAI ENERGIAFOGYASZ- TÁSI CSÚCSOK ÉS ESETLEGES TELJESÍTMÉNYKIESÉSEK KISZABÁLYOZÁSÁRA SZOLGÁLNAK. AZ EDDIGI TAPASZTALATOK SZERINT AZ ILYEN ERÔMÛVEK INDÍTÁSÁRA CSAK RITKÁN KERÜL SOR, EZÉRT AZ OPE- RÁTOROK GYAKORLATBAN TARTÁSÁRA ÉS TOVÁBBKÉPZÉSÉRE A LEGJOBB SEGÍTSÉGET A SZIMULÁ- TOROK NYÚJTHATJÁK. AZ ERÔMÛVEK LÉTESÍTÉSEKOR KIDERÜLT, HOGY A SAJÓSZÖGEDI ÉS LITÉRI PG 9171E TÍPUSÚ GÉPHEZ A SZÁLLÍTÓ EGT NEM RENDELKEZIK SZIMULÁTORRAL. ÍGY MERÜLT FEL, HOGY AZ MVM RT. MEGBÍZÁSÁBÓL EGY SZÁMÍTÓGÉPES SZIMULÁTORT (SZOFTVER ÉS GRAFIKA) FEJ- LESSZEN KI A VEIKI RT. BENEDEK SÁNDOR, ORMAI LÓRÁNT A munka elsô fázisában a gázturbinás erômû dinamikai viselkedésének fizikai-matematikai modelljét írtuk le. Ez a modell az indítási, leállítási és a teljesítmény üzemi dinamikát foglalta magában. Ezek után készítettük el a szimulációs szoftvert, majd változó üzemállapotokra (indítás-leállítás, felterhelés-leterhelés) számított tranziensek eredményeit mutattuk be [1, 2]. Külön köszönetet szeretnénk mondani Lázár Róbertnek, a litéri erômû munkatársának, aki a gázturbinás csúcserômû üzemével kapcsolatos információkkal munkánkat segítette. SZÁMÍTÓGÉPI MATEMATIKAI- FIZIKAI SZIMULÁCIÓS MODELL KÉRDÉSEI Levegô Levegôellátó rendszer Kompresszor A rendszer inputjai u üzemanyagáram u levegôáram u külsô levegôhômérséklet u vízbefecskendezés árama Tüzelôanyag (olaj) ellátás C Égôkamra 1. ÁBRA NYÍLTCIKLUSÚ GÁZTURBINÁS ERÔMÛ FÔ ELEMEI T Gázturbina Vízbefecskendezés Gáz A nyíltciklusú erômû fôberendezése 12 MW teljesítményû European Gas Turbines cég által gyártott PG 9171E típusú gázturbina. E típust a General Electric fejlesztette ki és az EGT licenc alapján gyártja. Jelenleg olajtüzeléssel használják, de gáztüzelésre is alkalmas.a nyíltciklusú gázturbinás erômû szimulációs modelljének kialakításánál [3, 4, 5] fôleg arra voltunk tekintettel, hogy modellünk alkalmas legyen az indítási, leállítási és a normál teljesítményüzem szimulálására. Az alapul vett nyíltciklusú gázturbinás erômû fô elemei az 1. ábrán láthatók. Az egyes szerkezeti elemekben lezajló folyamatok matematikai-fizikai elméleti modelljeit az [1, 2] jelenté- G Generátor outputjai u villamos teljesítmény u fordulatszám u kilépô gázáram u kilépô gáz hômérséklete 54 A MAGYAR VILLAMOS MÛVEK KÖZLEMÉNYEI n 21/4

sünkben ismertettük. Az átmeneti állapot egyes fázisainak szimulációjához azonban sem analitikai, sem mérési úton nyert karakterisztikák nem álltak rendelkezésre. Ezeket a szállító nem adta át, azonban a hazai erômûvi mérési eredmények [6] részben segítséget nyújtottak. Így a lényeges kompresszor nyomásviszony gáz tömegáram karakterisztikát empirikus úton a [6] eredményei alapján tudtuk meghatározni. Sajnos, kis közegáram (kis teljesítmény) tartományban nincsenek eredmények, javasoljuk ezek jövôbeli elvégzését. Ugyancsak nincsenek összefüggések az alacsony fordulatszámoknál, kis tömegáramoknál (teljesítményeknél) a kompresszió nyomásviszony és a tömegáram közti karakterisztikára. E tartományra, Traupel nyomán [3], durva közelítésként a tömegáram, a relatív fordulatszám 1,5 hatványával került meghatározásra. Minden esetben a fô nehézséget az jelenti, hogy a levegô/gáz tömegáramot nem mérik, és ez csak pontatlanul számolható vissza a többi mért változó értékeibôl. Nehezíti a helyzetet, hogy az IGV (levegôrendszer) nyitottsági foka és a levegô tömegáram közti kapcsolat is csak becsülhetô a [3] alapján. A szimulációs modellben két differenciálegyenlet van. Az egyik a rotor és a generátor fordulatszám idôbeli változását modellezi, a másik pedig az üzemanyag-áram idôbeli változását írja le. A fordulatszám változását egytárolós szakasz, az üzemanyagáram változását pedig integráló szakasz írja le. Az utóbbi változás modellezése a vártnál egyszerûbb lett, a jól kialakított logikai feltételek használatával. A modell a gázturbina indító motor vezérlését, a névleges fordulatszám elérése után a generátor szinkronizálását, a teljesítmény növelését és csökkentését, leállítását is tartalmazza. A valóságban lehetséges változatok kijelölését, így az alap (base load) és csúcsterhelés (peak load), valamint a normál és a gyorsított felterhelés beállítását a modell tartalmazza. A turbinából kilépô hômérséklet megengedett értékei (54 vagy 57 C) korlátozzák a max üzemanyagáramot. A következôkben a számítási sémát mutatjuk be a 2. ábrán. Ehhez Külsô levegô hômérséklet teljesítmény beállítás korlátozások üzemanyag-áram Villamos teljesítmény, MW Fordulatszám (-) Kompresszor kilépô nyomás, bar az eddig ismeretlen, de szükséges karakterisztikákat empirikus úton, a mért tranziensek visszaellenôrzésével határoztuk meg a gáz tömegáram függvényében. Ezek a karakterisztikák azon munkapontok trajektoriája, ahol a kompresszor és a gázturbina saját karakterisztikái 14 12 1 8 6 4 2 5 1 15 2 25 3 35 4 45 162 142 122 12 82 62 42 22,8,6,4,2 5 1 15 2 25 3 35 4 45 Gáz tömegáram (kg/s) 2. ÁBRA SZÁMÍTÁSI SÉMA, EMPIRIKUS KARAKTERISZTIKÁK RÉVÉN Villamos teljesítmény, MW 17 16 15 14 13 12 11 1-1 -5 5 1 15 2 25 3 35 Hômérséklet, C 3. ÁBRA KÖRNYEZETI HÔMÉRSÉKLET HATÁSA A TELJESÍTMÉNYRE (ALAPTERHELÉS, VÍZ BEFECSKENDEZÉSE NÉLKÜL) metszik egymást. A litéri erômû garanciális mérési eredményeit [6] is feltüntettük összehasonlításképpen. A sajószögedi erômûben végzett mérések is hasonló eredményt adtak [6]. A számítási ciklus a villamos teljesítmény (fordulatszám) felvételével A MAGYAR VILLAMOS MÛVEK KÖZLEMÉNYEI n 21/4 55

(pl. indítómotor) indul. A kiadódó közegáram segítségével a kompresszor nyomásviszony ismertté válik. Ez, valamint a külsô levegô hômérséklete, a teljesítmény elérésének választott módja, s egyéb korlátozások szabják meg az üzemanyagáramot és végül a villamos teljesítményt, és így tovább. A fordulatszámot és az üzemanyagáramot mint említettük differenciálegyenlettel határozzuk meg. Az integrálásra az Euler-módszert használjuk. A lépésköz fix,1; s így a számítási sebesség sokszorosa a valódi folyamatok sebességének. A real-time üzemmód biztosítását a számítógép belsô CPU-ja vezérli. További lehetôség van a szimuláció 1-szeres gyorsítására. SZIMULÁTORRAL NYERT EREDMÉNYEK ÖSSZE- HASONLÍTÁSA A MÉRÉSI EREDMÉNYEKKEL Fordulatszám (-) 1,8,6,4,2 1 Gáz tömegáram (kg/s) 45 4 35 3 25 2 15 1 5 Kompresszor kilépô nyomás (bar) 14 2 3 4 s 1 2 3 4 s Kompresszor kilépô hômérséklet ( C) 35 3 25 2 15 1 2 3 4 s 1 2 3 4 s 4. ÁBRA IDÔBELI FOLYAMATOK ÖSSZEHASONLÍTÁSA 12 1 8 6 4 2 1 5 STACIONER ÜZEMÁLLAPOTOK Az elôzôekben említett (litéri és sajószögedi erômû) garanciális mérések [6] eredményeivel érdemes szimulátorunk eredményeit összehasonlítani. Az összehasonlítást az alapterhelésen (base load, kb. 125 MW), és részterhelésen (9 és 6 MW) végeztük el. Azonos környezeti hômérsékletet feltételezve a villamos teljesítményt, a kompresszor kilépô nyomását, a turbina kilépô hômérsékletét, és az üzemanyagáramot hasonlítottuk össze. Megállapítható, hogy az eredmények jó egyezést mutatnak [2]. Ismeretes, hogy a környezeti belépô levegô hômérséklete jelentôsen hat a villamos teljesítményre. Ezért a 3. ábrán ennek hatását mutattuk be alapterhelésû üzem esetén. TRANZIENS ÜZEMÁLLAPOTOK A szimulátor mûködésének ellenôrzésére Litéren néhány dinamikai mérést [7] is végrehajtottak 21-ben. Ezek az alapterhelésû (normál felterhelésû) üzemben készültek. A 4. és Tüzelôolaj tömegáram (kg/s) Villamos teljesítmény (MW) 12 1 16 14 12 8 1 6 8 4 6 2 4 2-2 -2 1 2 3 4 s 1 2 3 4 s Turbina belépési hômérséklet ( C) 14 12 1 8 6 4 2 Kompresszor kilépô hômérséklet C 6 1 2 3 4 s 1 2 3 4 s 5. ÁBRA IDÔBELI FOLYAMATOK ÖSSZEHASONLÍTÁSA 5 4 3 2 1 56 A MAGYAR VILLAMOS MÛVEK KÖZLEMÉNYEI n 21/4

6. ÁBRA LITÉR 1 GT BLOKK SZIMULÁTORRAL KAPOTT ÉRTÉKEK VÁLTOZÁSA 5. ábrákon a mérésekkel és a szimulátorral kapott eredmények hasonlóságát mutattuk be az idô (s) függvényében. Összefoglalva, a vizsgált stacioner és a tranziens üzemállapotokban a szimulátor annak ellenére, hogy számos becslést kellett alkalmazni jó eredményt adott. Az esetenkénti néhány százalékos eltérés a fô célkitûzést, az operátorok sikeres treníroztatását nem befolyásolja. A SZIMULÁTORRAL KAPOTT EREDMÉNYEK KÜLÖNBÖZÔ ÜZEMI HELYZETEKBEN A következôkben valódi szimulátorral kapott képet mutatunk be. A 6. ábrán a csúcsteljesítményû (peak load) és gyors felterhelésû (3 MW/min) üzem indítása, majd leállítása, és újbóli indítása normál felterheléssel látható. Alul a nyolc mérési helyen mért pillanatnyi értékek is láthatók. Az indítómotort 1 s-nál kapcsoljuk be, s a fordulatszám 58 s-nál eléri a névlegeset. A generátort szinkronizáljuk. Érdekes, hogy a turbina belépô és kilépô hômérsékletek 5 s környékén újból visszaesnek, ez a közben kinyitó IGV miatti levegôáram hirtelen növekedése miatt áll elô. A névleges teljesítményt 9 s-nál érjük el, majd a teljesítményt tartva 13 s-nál a gépet elkezdjük leterhelni. Minimális teljesítménynél a generátor legerjesztésével a generátort leválasztják a hálózatról és azután kifut a forgórész, majd újból indítjuk a gépet. INTERAKTÍV GRAFIKUS KEZELÔI FELÜLET KIALAKÍTÁSA A gázturbina szimulátor kezelô felülete a Microsoft Visual Basic 5. Professional programfejlesztési környezetében készült. A Visual Basic szabványos elemkészletén kívül a Windows API (Application Interface) rutinjait használja, a 32 bites Windows (Windows 2, Windows NT 4., Windows Me, Windows 98, Windows 95) operációs rendszerek egyikében mûködtethetô. Mivel grafikus felületet használ, képeket jelenít meg, a képernyô felbontásával kapcsolatban azzal a megkötéssel élünk, hogy 124x768 képpontos felbontásra kell beállítva lennie legalább 8 (inkább 16 vagy több) bites színmélységgel. A GT Windows-os program, amelynek kezeléséhez egérre is szükség van. Indításakor a címlapkép jelentkezik. Megjelenik az erômûvihez hasonló kezelôfelület (7. ábra). Ezen jobb oldalt felül a dátum és a pontos idô, alul a képmezô éppen kijelölt pontjának (amelyre az egér mutat) koordinátái láthatók. 15 nyomógomb képe helyezkedik el a jobb szélsô oszlopban: A MAGYAR VILLAMOS MÛVEK KÖZLEMÉNYEI n 21/4 57

7. ÁBRA ERÔMÛVI KEZELÔFELÜLET 1. A legfelsô nyomógombbal a reteszelést lehet feloldani, ugyanis a beavatkozást a program csak arra jogosult személynek engedi meg. 2. A befecskendezett víz mennyiségének (az olaj tömegáram százalékában), valamint a környezeti levegô hômérsékletének beállítása. (Mellesleg az ezek beállítására megjelenô felületen kérhetô az a szolgáltatás is, hogy a szimulátor tízszeresen felgyorsítva mûködjék.) 3. A gázturbinás erômû kapcsolásának megjelenítése. Ezen az ábrán a fekete hátterû téglalapok egyikére kattintva párbeszédablak (ez egy újabb felület) jelenik meg. 4. A gázturbina porlasztó levegô és víz befecskendezési rendszere ábrájának megjelenítése. 5. A gázturbina tüzelôanyag körei és szûrôállványa technológiai ábrájának megjelenítése. 6. A gázturbina hidraulika olajellátási rendszere technológiai ábrájának megjelenítése. 7. Nyolc tetszôlegesen kijelölhetô technológiai változó értéke idôbeli változásának követésére diagram. A gombot megnyomva elôször egy lista látható: a technológiai változók listája. Rákattintva egy sorra, a sor kijelöltté válik. Nyolc mérôhelyet lehet ilyen módon kijelölni. A Kijelölve feliratú gombra kattintva a párbeszédablak bal oldalán látható, hogy melyik csatorna milyen színû vonalként lesz látható a diagramon. A vonalszíneket a színes szövegdobozba való kattintással megjelenô paletta segítségével módosítani lehet. A Mehet feliratú gombra kattintva a diagram képzése és megjelenítése elkezdôdik. (A Mégsem gombra kattintva a diagramra kigyûjtött technológiai változók kijelölését újra kezdhetjük.) A diagram pontjait a program akkor is tovább gyûjti, ha más ábrára kapcsoljuk át a megjelenítést. Újra a diagramot megjelenítô gombra kattintva a diagramon való megjelenítésre kijelölt (legfeljebb 8) technológiai változó utolsó 4 másodpercét (4 pontját) láthatjuk. A diagramnak a képernyôn látható állapota nyomtatható is. 8. A diagramra kijelölt csatornák törlése (az elôzô gomb megnyomásával a diagramon való megjelenítésre új technológiai változók kérhetôk). 9. Az éppen megjelenített ábra nyomtatása (elsô nyomtatás elôtt a nyomtató kijelölhetô). 1. Az indítómotor bekapcsolva, illetve kikapcsolva állapot váltása (a megjelenítés tesztelése érdekében). 11. A tüzelôanyag szabályozó szelep állapotának változtatása (rajzolás tesztelése céljából). 58 A MAGYAR VILLAMOS MÛVEK KÖZLEMÉNYEI n 21/4

12. A generátor megszakító állapotának változtatása (tesztelés lehetôségének biztosítására). 13. Kilépés a szimulátor programból. Erre a gombra kattintva a program mûködése félbemarad, a Windows asztalhoz tér vissza a vezérlés. 14. Koordináták kiírásának be-/kikapcsolása. 15. Dátum és idôpont be-/kikapcsolása. (A dátum-idô megjelenítésének kikapcsolásakor a szimulátorprogram belsô órájának mûködése is leáll, a dátum-idô megjelenítésének visszakapcsolásáig szünet van a szimulátor életében.) A programban 21 technológiai változót kezelünk egységesen. Az éppen megjelenített ábrán látható technológiai változók értékét a program egy másodperces ciklussal frissíti. A figyelt kapcsolók, szelepek állapotát pl. a 7. ábrán követhetjük nyomon. A gázturbina folyamatábra fekete, téglalap alakú részleteire kattintva képet válthatunk, gázturbinát indíthatunk, illetve leállíthatunk, megadhatjuk a felterhelés sebességét, módját. A programhoz környezetérzékeny súgó tartozik. Ez a bonyolult kifejezés arra utal, hogy a GT program éppen elért állapotának megfelelô súgólapot látjuk, ha az F1 billentyût megnyomjuk. A képernyôn látható nyomógombokra pedig az egérrel 1-2 másodpercig rámutatva felirat jelenik meg (ToolTipText), amely a nyomógomb feladatára utal. A GT SZOFTVER A Visual Basic program egy osztály modulból, három közös modulból és tíz felületbôl áll. Az osztály (clsgtrajz) modul a rajzolást végzi. Egy-egy újabb példányát létrehozva hol a képernyôre, hol pedig egy Windows metafájlba (ennek névkiterjesztése wmf ) ír. Utóbbi speciális esete a nyomtatás, a PaintPicture metódus segítségével a *.wmf fájl a Printer objektumon kiíratható. Az osztály modulban nem csupán a szabványos geometriai alakzatok (vonal, téglalap, kör, körcikk, körszelet, trapéz stb.) rajzolásához szükséges eljáráskészletet, hanem az adott feladatban szereplô valamennyi ismétlôdô képrészlethez (pl. ventilátor, szivattyú, szabályozószelep) kívülrôl hívható rajzoló eljárást is elkészítettük. A közös modulok egyike (modgtadatok) az adatokat tartalmazza. Ebben a modulban található a technológiai változók mindegyikének leírása. A szimulációhoz szükséges további adatokat és a technológiai változók értékét is ebben a modulban tároljuk. Másik közös modul (modgtrajz) a Windows metafájlok kezeléséhez nyújt segítséget, tartalmazza a metafájlok megnyitásakor és lezárásakor hívott eljárásokat. Szintén közös modul (modwinapi) tartalmazza a használt Windows API (Application Interface) eljárások adatstruktúráinak, illetve hívásának definícióját. IRODALOM [1] Benedek, S.: Gázturbina operátorok továbbképzésére alkalmas szimulátor fejlesztése (I). VEIKI 62.11-91 sz. jelentés, 1999 [2] Benedek, S.: Gázturbina operátorok továbbképzésére alkalmas szimulátor fejlesztése (II és III). VEIKI 62.11-1 sz. jelentés, 2 21 [3] Traupel, W.: Thermische Turbomaschinen (Vol. II), Springer Verlag, Berlin, 1968 [4] Fülöp, Z.: Gázturbinák, Mûszaki Könyvkiadó, 1975 [5] Tóth, Zs. és Fenyves, I.: Gázturbinák és energetikai alkalmazásuk, BME Továbbképzô Intézete, 4782 sz. elôadás, 1971 [6] A Litéri és a Sajószögedi Erômûvekben végzett garanciális mérések eredményei. MVM információ, 1998 [7] A Litéri Erômûben végzett dinamikai mérések. Személyes információk, 21. HÍREK AZ MVM A MAGYAR CSAPAT TAGJA LETT A Magyar Villamos Mûvek is csatlakozott a legkiválóbb magyar sportolókat és szakágakat tömörítô Magyar Csapat programhoz. Az évi 48 millió forintos támogatásról szóló megállapodást december 22-én írta alá a legnagyobb hazai villamosenergia-vállalat elnök-vezérigazgatója. A sportban a csapatmunka hozhatja meg a sikereket. De a legjobb legtehetségesebb sportolók és csapatok sem lehetnek önmagukban erôsek, ha nem áll mögöttük egy erôs támogatói csapat. Örülök, és büszke vagyok arra, hogy az energetika területérôl egyedül az MVM felelt meg a Magyar Csapat nevû program elvárásainak, és így hamarosan más kiemelkedô magyar vállalatokkal együtt szoríthatunk a sikerekért. mondta Katona Kálmán az aláírás kapcsán. A 12 kiemelt sportág (atlétika, birkózás, kézilabda, kajak-kenu, kosárlabda, labdarúgás, öttusa, tenisz, torna, úszás, vízilabda, vívás) sikereit elôsegítsék olyan cégek, amelyek a magas színvonalat nemcsak saját munkájukban, hanem támogatási elveikben is fontosnak tartják. A Magyar Villamos Mûvek (MVM) eddig elsôsorban tömegsport rendezvényeket és eseményeket támogatott, mert a hazai sportéletben nehezen tudott volna olyan egyedi célt megtalálni, amely jól illeszkedik céljaihoz. A Magyar Csapat tagjának azért jó lenni, mert a cél az, hogy minden hazai iparágból a legjobbak álljanak a sport legjobbjai mögé. Ez csapatmunka mindkét oldalon. tette hozzá Katona Kálmán. A sportszponzoráció a világ fejlettebb gazdasággal rendelkezô országaiban évek óta nagyszerû üzlet a sportnak, a szponzoroknak és a médiának egyaránt. A villamos energetikai piacnyitásra készülô MVM ebbôl nem maradhat ki. Ezzel a kezdeményezéssel az érintett támogatókkal együtt azt próbáljuk meg elôsegíteni, hogy a sportszövetségek bevételeiknek nagy részét hamarosan már piaci forrásokból teremtsék elô. A Magyar Villamos Mûvek neve a két ünnep között, december 29-én a Nemzetközi Vízilabda Szövetség által megrendezésre került vízilabda Szuper Kupa döntôn (Dominó BHSE Vasas Plaket mérkôzés) már olvasható volt a támogatók között. A MAGYAR VILLAMOS MÛVEK KÖZLEMÉNYEI n 21/4 59