Kollimáció hiba hatása Távcsőállás fok perc mp perc mp fok perc mp mp 10 I 209 00 00 08 07 208 59 54-14 42 II 28 59



Hasonló dokumentumok
Kompenzátoros szintezőműszer horizontsík ferdeségi vizsgálata

NYUGAT-MAGYARORSZÁGI EGYETEM Erdőmérnöki Kar Geomatikai, Erdőfeltárási és Vízgazdálkodási Intézet. Dr. Bányai László GEOMATIKAI ISMERETEK

A tételsor a 12/2013. (III. 29.) NFM rendelet foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/33

Geodézia 9. Magasságok meghatározása Tarsoly, Péter

Mérnöki létesítmények alapponthálózatai Vízszintes alapponthálózatok

Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert

Három dimenziós barlangtérkép elkészítésének matematikai problémái

Agrár-környezetvédelmi Modul Vízgazdálkodási ismeretek. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Geodézia 5. Vízszintes mérések alapműveletei

Vetülettani és térképészeti alapismeretek

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Tarsoly Péter. Geodézia 9. GED9 modul. Magasságok meghatározása

5. Az egy-, két- és háromdimenziós pontmeghatározás együttműködése

Geodézia számítási segédlet

2. OPTIKA 2.1. Elmélet Geometriai optika

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Gyenes Róbert. Geodézia 4. GED4 modul. Vízszintes helymeghatározás

TÉRINFORMATIKA II. Dr. Kulcsár Balázs Ph.D. adjunktus. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

2. előadás: További gömbi fogalmak

Geodéziai hálózatok 3.

Méréstechnika 5. Galla Jánosné 2014

(térképi ábrázolás) Az egész térképre érvényes meghatározása: Definíció

Elektromágneses hullámok, a fény

TARTALOMJEGYZÉK ELŐSZÓ GONDOLKOZZ ÉS SZÁMOLJ! HOZZÁRENDELÉS, FÜGGVÉNY... 69

I.- V. rendű vízszintes alapponthálózat I.- III. rendű magassági alapponthálózat Állandó- és ideiglenes pontjelölések Őrjelek Végleges pontjelölések

Mérnökgeodézia 5. Mérnökgeodéziai kitűzési munkák. Dr. Ágfalvi, Mihály

Az alap- és a képfelület fogalma, megadási módjai és tulajdonságai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Dr. Engler Péter. Fotogrammetria 2. FOT2 modul. A fotogrammetria geometriai és matematikai alapjai

Geodézia. Felosztása:

Lineáris Algebra gyakorlatok

Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =

Miskolci Egyetem, Gyártástudományi Intézet, Prof. Dr. Dudás Illés

Topográfia 7. Topográfiai felmérési technológiák I. Mélykúti, Gábor

Sebesség A mozgás gyorsaságát sebességgel jellemezzük. Annak a testnek nagyobb a sebessége, amelyik ugyanannyi idő alatt több utat tesz meg, vagy

Modern Fizika Laboratórium Fizika BSc 22. Kvantumradír

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

Méréssel kapcsolt 3. számpélda

Munkafüzet megoldások 7. osztályos tanulók számára. Makara Ágnes Bankáné Mező Katalin Argayné Magyar Bernadette Vépy-Benyhe Judit

Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013

15/2013. (III. 11.) VM rendelet

4. modul Poliéderek felszíne, térfogata

BARTHA GÁbOR, HAVASI ISTVÁN, TÉRINFORMATIKAI ALAPISMERETEK

MUNKAANYAG. Dr. Engler Péter. A mérőfénykép. A követelménymodul megnevezése: Fotogrammetria feladatai

Mérnökgeodézia 8. Vonalas létesítmények építésének, gépészeti berendezések szerelésének geodéziai feladatai. Ágfalvi, Mihály

5. Trigonometria. 2 cos 40 cos 20 sin 20. BC kifejezés pontos értéke?

9. modul Szinusz- és koszinusztétel. Készítette: Csákvári Ágnes

Teodolit. Alapismeretek - leolvasások

FÖLDMÉRÉS ÉS TÉRKÉPEZÉS

MATEMATIKA FELADATGYŰJTEMÉNY

Nagyméretarányú térképezés 7.

TÉRINFORMATIKA I. Dr. Kulcsár Balázs egyetemi docens. Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék

5. ALAKOS FELÜLETEK HATÁROZOTT ÉLŰ SZERSZÁMMAL TÖRTÉNŐ FORGÁCSOLÁSA

#Bevezetés Beállítások NA 3000 # 1.1.

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

MATEMATIKA 9. osztály Segédanyag 4 óra/hét

MUNKAANYAG. Földi László. Szögmérések, külső- és belső kúpos felületek mérése. A követelménymodul megnevezése:

Optika feladatok (szemelvények a 333 Furfangos Feladat Fizikából könyvből)

Matematikai geodéziai számítások 4.

MUNKAANYAG. Szabó László. Szilárdságtan. A követelménymodul megnevezése:

Feladatok a koordináta-geometria, egyenesek témaköréhez 11. osztály, középszint

Egy kétszeresen aszimmetrikus kontytető főbb geometriai adatainak meghatározásáról

Alak- és helyzettűrések

BEVEZETÉS AZ ÁBRÁZOLÓ GEOMETRIÁBA

O 1.1 A fény egyenes irányú terjedése

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

VONALVEZETÉS TERVEZÉSE

10. évfolyam, negyedik epochafüzet

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Geometria I.

Készítette:

Prizmás impulzuskompresszorok hômérsékleti stabilitásának modellezése

Számhalmazok. n n. a valós számok halmaza, ahol : nem írható fel két egész szám hányadosaként az irracionális számok halmaza.

NYUGAT-MAGYARORSZÁGI EGYETEM Faipari Mérnöki Kar. Mőszaki Mechanika és Tartószerkezetek Intézet. Dr. Hajdu Endre egyetemi docens MECHANIKA I.

Szakács Jenő Megyei Fizikaverseny

MATEMATIKA KOMPETENCIATERÜLET A

Bevezetés a geodéziába

9. Áramlástechnikai gépek üzemtana

PRÓBAÉRETTSÉGI MATEMATIKA május-június SZÓBELI EMELT SZINT. Tanulói példány. Vizsgafejlesztő Központ

Magasépítési vasbetonszerkezetek

MATEMATIKA Kiss Árpád Országos Közoktatási Szolgáltató Intézmény Vizsgafejlesztő Központ

ÉPÍTÉSZETI ÉS ÉPÍTÉSI ALAPISMERETEK

A.11. Nyomott rudak. A Bevezetés

EÖTVÖS LABOR EÖTVÖS JÓZSEF GIMNÁZIUM TATA FELADATLAPOK FIZIKA. 11. évfolyam. Gálik András. A Tatai Eötvös József Gimnázium Öveges Programja

Az optikai jelátvitel alapjai. A fény két természete, terjedése

Pontszerű test, pontrendszer és merev test egyensúlya és mozgása (Vázlat)

Akuszto-optikai fénydiffrakció

MATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

2. ábra Soros RL- és soros RC-kör fázorábrája

Feladatok GEFIT021B. 3 km

FAIPARI ALAPISMERETEK

SZENT ISTVÁN EGYETEM BELSŐÉGÉSŰ MOTOROK MŰKÖDÉSI MIKROFOLYAMATAINAK ANALÍZISE A GÉPÜZEMELTETÉS CÉLJÁBÓL. Doktori értekezés. Bártfai Zoltán.

A DÖNTÉS SORÁN FENNAKADT FÁK MOZGATÁSA

Visszatérítő nyomaték és visszatérítő kar

II./2. FOGASKEREKEK ÉS FOGAZOTT HAJTÁSOK

A műszaki rezgéstan alapjai

Feszített vasbeton gerendatartó tervezése költségoptimumra

Csavarkötés mérése ), (5) μ m a menetes kapcsolat súrlódási tényezője, β a menet élszöge. 1. Elméleti alapok

Grafika. Egyváltozós függvény grafikonja

Segédlet Egyfokozatú fogaskerék-áthajtómű méretezéséhez

Elektrotechnika Feladattár

FÖLDMÉRŐ, TÉRKÉPÉSZ ÉS TÉRINFORMATIKAI TECHNIKUS SZAKKÉPESÍTÉS SZAKMAI ÉS VIZSGAKÖVETELMÉNYEI

KULCS_TECHNOLÓGIA MUNKATERÜLET: GÉPÉSZET ÉS FÉMMEGMUNKÁLÁS OKTATÁSI PROFIL: LAKATOS

ÁBRÁZOLÓ GEOMETRIA. Csavarvonal, csavarfelületek. Összeállította: Dr. Geiger János. Gépészmérnöki és Informatikai Kar MISKOLCI EGYETEM

Átírás:

KRITÉRIUM FELDTHOZ Kollimáció Vízszintes körleolvasások Irányérték hiba hatása Távcsőállás fok perc mp perc mp fok perc mp mp 10 I 09 00 00 08 07 08 59 54-14 4 II 8 59 59 41 40 Közepelés: (09-00-10 + 09-00-07)/=09-00-08 (8,5 de páros felé kerekítünk!) Kollimáció hiba hatásának számítása: (l II -l 1 ±180 )/ =(8-59-41 09-00-08+180)/= -14 (Megjegyzés: a ±180 érték közül mindig azt kell választani, hogy eredménye egy 0 közeli szög legyen!) Irányérték számítása: z irányérték megegyezik az l I +kollimációhiba-hatás értékével, vagyis: 09-00-08 00-00-14=08-59-54 z Magassági körleolvasások I +z II Indexhiba z hatása Távcsőállás fok perc mp perc mp fok perc mp mp 10 I 93 30 30 1 360 00 34 13-17 II 66 30 30 93 9 55 Indexhiba hatása: (360-(z I +z II ))/ Z számítása: első távcsőállás középértéke +indexhiba hatása, azaz: 93-30-1 00-00-17=93-9-55 1. Magasságmérési eljárások - szintezés optikai -> szintfelület érintősíkja hidrosztatikai -> szintfelület elemi darabja - trigonometriai magasságmérés (magasságkülönbség=függőleges távolság) - fizikai magasságmérés (barométeres légnyomásból magasságkülönbség). Optikai szintezés alapelve (ábra és magyarázat) lapelv: szintezőműszer horizontsíkjának vízszintessé tételével előállítjuk a viszonyítási síkot és leolvasunk a pontokra felállított függőleges szintezőlécekre

l - lécleolvasás pontra l Q - lécleolvasás Q pontra, Q szintfelület görbültségi hiba M pont tengerszint feletti magassága M Q Q pont tengerszint feletti magassága m Q =M Q -M =l -l Q =[(l Q )+ Q ] -[(l )+ ]= (l Q )- (l )+( Q - ) Q - = 0 azonos műszer-léc távolság esetében! 3. Libellás szintezőműszer felépítése (ábra és magyarázat) 4. Szintezés műszer okozta hibák és csökkentésük Hiba Irányvonal-ferdeség Horizontferdeség (csak a kompenzátoros műszernél!) Fekvőtengely külpontossága Csökkentés módja egyenlő műszer-léc távolság hőhatás elleni védelem minden magasságkülönbséget -szer mérünk és közepelünk állótengely gondos függőlegessé tétele

5. Szintezés léc okozta hibák és csökkentésük Hiba Talpponti hiba Lécosztás-hiba Lécferdeség Csökkentés módja Egy léc alkalmazásával kiesik léc esetében páros műszerállás komparálás Léchez tartozó szelencés libella igazítottsága és gondos függőlegessé tétel 6. Szintezés külső körülmények okozta hibák és csökkentésük Hiba Műszersüllyedés Lécsüllyedés Refrakció Csökkentés módja Szimmetrikus program (HEEH mérés, azaz hátraelőre-előre-hátra ugyanazon műszerállásból) Oda-vissza szintezés megfelelő kötőpontok választása Mérési utasítás (bizonyos napszakokban nem szintezünk, meghatározott legkisebb leolvasás értéke) 7. Szintezési hibák melyek kiküszöbölhetők egyenlő műszer-léc távolsággal Irányvonal-ferdeség Szintfelület görbültség 8. Forgási ellipszoid (alapfelület) helyettesítése gömb ha a munkaterület 4<R<13 km sugarú körbe foglalható sík - ha a munkaterület R<4 km sugarú körbe foglalható egyébként nem helyettesíthető! 9. Egyenértékűség és fogalmak ont Rajta átmenő függőleges egyenes Egyenes Rá illeszkedő függőleges sík pont távolsága ontok alapfelületi legrövidebb távolsága Vízszintes szög Szögszárakra illeszkedő függőleges síkok lapszöge 10. Egyszerű és belső képállítású távcső Belső képállítás előnyei: rövidebb hosszon nagy szögnagyítás, védettebb szálkereszt Belső képállítás hátrányai: színi eltérés (kromatikus aberráció) miatt nehezebb irányzás

11. Teodolit szerkezete

1. Beosztásos mikroszkóp 13. Index nélküli koincidenciás mikroszkóp Főleolvasás fok és perc érték: fok értéket a látómező bal oldalán még látható szám adja. főleolvasás előállításához a látómező bal oldali szélén található és egyenes állású számmal (az ábrán 11) jelölt osztásvonástól megszámoljuk az osztásközöket a 180º-kal eltérő és fordított állású számmal (az ábrán 191) jelölt osztásvonásig. z index ha lenne felezné a két beosztásvonás távolságát. Ezt a fél távolságot úgy is megkaphatjuk, ha az osztásközök számát (az ábrán öt) a 0 -es beosztásköz fél értékével, 10 -cel szorozzuk. z ábrán tehát a főleolvasás 11º50, a csonkaleolvasás tizedbecsléssel 8 5,5, a teljes leolvasás tehát 11º58 5,5. 14. Csöves libella fontos pontjai O: beosztás alaki középpontja N: normálpont (libellakörív érintője párhuzamos a fekvőtengellyel C: buborék középpontja Egybeesések: Ha N C akkor az állótengely függőleges vagy a fekvőtengely vízszintes Ha N O akkor a libella a tengelyhez igazított Ha C O akkor a megfelelő tengely függőleges/vízszintes

15. Teodolit műszerhibák és csökkentésük Műszerhibák = kényszerektől való eltérések!! Kényszer Eltérés Hiba neve Csökkentés Irányvonal merőleges a két tengely metsződik, de nem fekvőtengelyre 90 fokban kollimációhiba Állótengely merőleges a fekvőtengelyre két tengely metsződik, de nem 90 fokban Fekvőtengely merőlegességi hiba Irányvonal és távcsőállásban való Horizontális állótengely nem Kitérő egyenesek mérés távcsőkülpontosság metsző egyenesek Irányvonal és fekvőtengely nem metsző egyenesek z irányszálak (szálkereszt) merőlegesek egymásra Vízszintes távcsőállás mellett a magassági körleolvasásnak 0 vagy 90 foknak kell lennie Limbuszkör síkja merőleges az állótengelyre z állótengely a limbuszkör középpontján megy át (döféspont) limbuszkör osztása megfelelő Magassági kör síkja merőleges a fekvőtengelyre fekvőtengely a magassági ör középpontján megy át (döféspont) magassági kör osztása megfelelő Kitérő egyenesek Nem 90 fokos szöget zárnak be Eltérés van z állótengely átmegy a limbusz geometriai középpontján de a bezárt szög nem 90 fok Máshol van a síkon a döféspont Nem minden osztás egyforma a bezárt szög nem 90 fok Máshol van a síkon a döféspont Nem minden osztás egyforma Vertikális távcsőkülpontosság Szálferdeség Indexhiba Limbuszkör merőlegességi hiba Limbuszkör külpontossági hiba Limbuszkör beosztásának hibája Magassági kör merőlegességi hiba Magassági kör külpontossági hiba Magassági kör beosztásának hibája Mindig a szálkereszt középpontjával irányzunk távcsőállásban való mérés Több fordulóban való mérés - - -

I irányvonal V állótengely H fekvőtengely Kiküszöbölés: a 7. és 9. kivételével a távcsőállásban való mérés 16. Teodolit felállítási hibái és külső körülmények okozta hibák ontraállási hiba Állótengely-ferdeségi hiba Állványelcsavarodás Refrakció (oldal, magassági) Gondosan végezzük a pontraállást Minden forduló előtt gondos függőlegessé tétel Horizontzárás és a hiba elosztása, fordított irányú visszamérés Nagy, felmelegedett felület kerülése irányzáskor 16. Májay éter módszere Hibátlan mérés esetében: l II -l I =180º és z II +z I =360º z ezektől való eltérés az előjelhelyes hibahatás. Lépések: - közel vízszintes irányvonal mellett végtelen távoli pontot irányzunk, I-II. távcsőállásban vízszintes és magassági szögeket olvasunk le. Fellépő hibák: vízszintes mérés kollimációhiba magassági mérés indexhiba Ismert módon ezek számíthatók. - közel vízszintes irányvonal mellett nagyon közeli pontot (távcső közelpontja) irányzunk, I-II. távcsőállásban vízszintes és magassági szögeket olvasunk le és ismerjük a mért pont és az álláspont távolságát.

Fellépő hibák: vízszintes mérés kollimációhiba (ismert 1. lépésből) Horizontális távcsőkülpontosság magassági mérés indexhiba (ismert 1. lépésből) vertikális távcsőkülpontosság Ismert módon a távcsőkülpontossági hibák számíthatók. - Meredek (α=30 fok) irányvonal mellett (függőlegesen azonos síkban) irányozzuk meg a. lépésben mért közeli pontot (távcső közelpontja) és I-II. távcsőállásban vízszintes és magassági szögeket olvasunk le. fekvőtengelytől való távolságot mérni kell. Fellépő hibák: vízszintes mérés kollimációhiba (ismert 1. lépésből) Horizontális távcsőkülpontosság (ismert. lépésből) FEKVŐTENGELY MERŐLEGESSÉGI HIB (SZÁMÍTHTÓ) magassági mérés indexhiba (ismert 1. lépésből) vertikális távcsőkülpontosság (ismert. lépésből) vízszintes mérésből a fekvőtengely merőlegességi hiba számítható, a magassági mérés ellenőrzésre szolgál. 18. Kollimációhiba hatása 19. Fekvőtengely merőlegességi hiba hatása 0. Külpontos iránymérés lapelv: olyan álláspontról (központ) kellene végrehajtani iránymérést (tájékozást), amely nem alkalmas műszerállásra (pl. tripód). Ebben az esetben a mérést egy külső pontról végezzük melynek a távolsága néhány méter a központtól és az iránysorozatot központosítjuk, vagyis kiszámítjuk, mennyit mértünk volna akkor, ha a központon végeztük volna el a mérést.

és pont koordinátái ismertek, pont ismeretlen d külpontosság mértéke (központ-külpont távolsága), terepen mérni kell! t központ és tájékozó irány távolsága, II. geodéziai alapfeladatból számítható l irányérték ε központosítási javítás szakasszal párhuzamost húzunk az ponton keresztül (szaggatott vonal) 1. Trigonometriai szintezés alkalmazása trigonometriai magasságmérés helyett pont nem látszik össze teodolit egyik ponton sem állítható fel. Trigonometriai magasságmérés alapképlete M pont tengerszint feletti magassága (ismert) M pont tengerszint feletti magassága (ezt keressük) H jelmagasság (mérjük) h műszermagasság (mérjük) α magassági szög (mérjük) t f ferde távolság (mérjük) t v vízszintes távolság (számítjuk) m pontok magasságkülönbsége M = M +h+t F *sin α-h= M +h+t V *tg α-h Légköri sugárgörbület (refrakció) hatását figyelembe véve a teljes alapképlet:

M tv = M + h H v tgα + (1 k) = M R + h H v tv ctg z + (1 k) R 3. Trigonometriai magasságmérés előnye és hátránya Előnyök: - rövid távon (max. 400 m) nagy magasságkülönbség meghatározására alkalmas - egymástól távoli pontok magasságkülönbsége meghatározható egy mérésből - alkalmazható nem megközelíthető pontok esetében is Hátrányok: - pontatlanabb, mint a szintezés (szintezés mm, trigmag cm!!) - ismerni kell a távolságokat 4. Földgörbület és refrakció hatásának számítása d távolság R közepes földsugár k állandó (Mivel a k és az R értéke állandó, ezért az (1-k)/R értéke is állandó. mértékegységeket egyeztetni kell: amennyiben az R km egységben van, akkor minden km egységben helyettesítendő a képletben!) 5. Távolságredukciók feladat Lépések: ferde távolság vízszintes távolság alapfelületi távolság ( vetületi távolság) t f =ferde távolság t v =vízszintes távolság m magasságkülönbség g alapfelületi redukció H a munkaterület közepes tengerszint feletti magassága (ismert pontok magasságának számtani átlagaként számítandó) R közepes földsugár (6378 km)

6. Hőmérsékleti javítás feladat t m méréskori hőmérséklet t k komparálási hőmérséklet α hőtágulási együttható l mérőszalag hossza 7. Fázisméréses távmérés alapképlete és magyarázat lapelv elektromágneses hullám (szinuszos mérőjel) N egész hullámok száma λ hullámhossz D távolság D maradéktávolság φ fáziskülönbség 8. Mérnöki automatizált távmérők jellemzői hatótávolság: 1-5 km távolságfüggetlen -3 mm alaphiba, amely km-enként -5 mm-el nő kis tömeg, méretek és fogyasztás teodolitra rögzíthető eredményeket rögzíti kijelzi a vízszintes távolságot mp nagyságrendű távmérés

9. Meteorológiai javítás szorzótényezőjének számítása met =1+[(t VN -t KELL )+0,4*(p KELL -p VN )]*10-6 t VN =+10 fok t KELL = 0 fok p VN =+5 Hgmm p KELL = 0 Hgmm 30. Magyarországon használt vetületek CSK HZÁNKBN - sztereografikus vetület (síkvetület) - hengervetületek (HÉR, HKR, HDR) (érintő hengervetületek-kettős vetítés) - Egységes Országos Vetület (EOV) (redukált (süllyesztett) metsző henger kettős vetítés) NEMZETKÖZI VETÜLET - Gauss-Krüger vetület (érintő henger) - UTM (Universal Transverse Mercator) vetület (metsző henger) 31. EOV jellemzői - egyetlen vetületi rendszerben ábrázolható a teljes ország - tájolása ÉK - vízszintes tengely y, függőleges tengely (É-i irány) x - képzetes vetület (magyarázata: csak egyenletekkel írható le az átszámítás, geometriailag nem ábrázolható) - süllyesztett (metsző, redukált) hengervetület - szögtartó - alapfelülete az IUGG-67 ellipszoid, képfelülete hengerpalást - az alapfelületről a pontokat először az un. Gauss-gömbre, majd a képfelületre számítják át (kettős vetítés) 3. EOV (Egységes Országos Vetület) áthelyezése Hová: vetületi kezdőponttól D-Ny-ra Mennyivel: Ny-ra 650 km, D-re 00 km Miért: egyrészt így minden pont koordinátája pozitív, másrészt az Y koordináta mindig nagyobb mint 400000, az X pedig mindig kisebb, mint 400000, így kisebb az esély arra, hogy a koordinátát felcseréljék 33. Klasszikus geodéziai alaphálózatok hierarchia D+1D (azaz külön vizszintes és magassági alaphálózat) 34. EOV és EOM EOV Egységes Országos Vízszintes lapponthálózat Felsőrendű hálózat (I., II. és III. rendű pontok és IV. rendű főpontok) lsórendű hálózat (V. rendű és felmérési alappontok) EOM Egységes Országos Magassági lapponthálózat I.-III. rendű felsőrendű magassági alappontok + kéregmozgási hálózat (nulladrendű) 35. ontleírás tartalma pont száma helyszínrajzi vázlat és leírás Y,X,M koordináta Állandósítás módja, éve, állandósítást végző neve Vetületi rendszer Magassági alapszint Ellenőrzés éve, ellenőrzést végző neve

Minta: 36. Vetületi alapfogalmak Vetületi síkkoordináta rendszer Irányszög Kezdőpont: adott vetület kezdőpontja x-tengely: vetületi kezdőmeridián egyenes képe y-tengely: x-hez képest +90 fok óramutató járásával egyezően egy i irány δ i irányszöge az a szög, amelyet egy kiválasztott kezdőirány súrol, miközben azt az óramutató járásával egyezően az adott irányba forgatjuk Ellentett irány δ irányra δ B = δ ±180º Irányszög átvitel amikor egy irányszöghöz egy szöget hozzáadunk vagy kivonunk akkor is irányszöget kapunk (pl. belsőszöges előmetszés esetében) IRÁNYSZÖGHÖZ ÉS ELLENTETT IRÁNYHOZ ÁBRÁT IS KÉREK! 37. I. geodéziai alapfeladat (poláris pont számítás) Ismert: (Y,X ), δ, t Számítandó: B(Y B,X B )

Y = t X = t Y B X B = Y = X sinδ cosδ + Y = Y + X = X sinδ 38. II. geodéziai alapfeladat (irányszög-távolság számítás) Ismert: (Y,X ), B(Y B,X B ) Számítandó: δ, t cosδ Y = Y X = X δ t B Y B X Y = arctan X = ( Y ) + ( X ) δ számításánál figyelembe kell venni a koordinátakülönbségek előjeleit is!! (lsd. 39. pont) 39. Irányszögek szögnegyed alapján

40. Belsőszöges előmetszés Ismert: (Y,X ), B(Y B,X B ) valamint mérésből (kizárólag) az α, β szögek Számítandó: (Y,X ) módszer: szinusz-tétel δ = δ + α sin β t = sin γ t Y X = Y = X t sinδ pontról = t cosδ sin β sin γ B pontról δ = δ B β= (δ ±180) β sinα t = sinγ t Y X = Y B = X B t sinδ = t cosδ sinα sin γ

41. Irányszöges előmetszés Ismert: (Y,X ), B(Y B,X B ) valamint tájékozó irányokra való mérés és B pontról Számítandó: (Y,X ) módszer: szinusz-tétel pontról B pontról tájékozás végrehajtása ponton δ tájékozott irányérték! tájékozás végrehajtása B ponton δ tájékozott irányérték! α= δ - δ β= δ B - δ sin β t = sin γ t Y X = Y = X 4. Ívmetszés t sinδ = t cosδ sin β sin γ sinα t = sinγ t Y X = Y B = X B t sinδ Ismert: (Y,X ), B(Y B,X B ) valamint mérésből (kizárólag) a t és t távolságok Számítandó: (Y,X ) módszer: koszinusz-tétel = t cosδ sinα sin γ t = t t α = arccos t pontról B pontról t t t t cosα cosα = t t β = arccos t t t δ = δ - α δ = δ B + β t t t cosα cos β

Y X = Y = X sinδ ' cosδ ' Y X = Y B = X B sinδ ' cosδ ' 43. Hátrametszés, veszélyes kör Lényeg: ismeretlen álláspontról 3 ismert koordinátájú pontra végzünk iránymérést, ami alapján az ismeretlen álláspont koordinátája meghatározható. Veszélyes kör:,b és C pontok köré írt kör. Ha pont erre a körre esik, akkor végtelen sok megoldás létezik (azonos ívhez tartozó kerületi szögek elve miatt) Megoldás: lsd. honlapon Hátrametszés NSERMET vagy COLLINS tetszés szerint választható http://users.ml.mindenkilapja.hu/users/ferenczviktoria/uploads/hatrametszes_megoldas.pdf 44. Mérési vonalpontok 45. Iránysorozat tájékozása Lépések: 1. irányérték meghatározása (kollimációhiba számítása). ismert pontról ismert pontra menő irányokra irányszög és távolság számítása (δ i, t i ) 3. tájékozási szögek számítása (z i = δ i -l i ) 4. alaptájékozási szög választása (MIN(z i )=z k ) 5. eltérések számítása ( i =z I -z ) 6. súlyok meghatározása (p I =t i [km]) 7. alaptájékozási szög kiválasztása (tájékozási szögek közül a legkisebb) 8. középtájékozási szög meghatározása (z k =z +(Σ p I * i / Σ p I )) 9. ismert pontról ismeretlen pontra menő tájékozott irányérték számítása (δ i =z k +l i ) 10. irányeltérés számítása (e i = δ i - δ i ) 11. lineáris eltérés számítása (E i [cm]=t i *e i /ρ, ahol ρ =0664,8) lsd. még http://users.ml.mindenkilapja.hu/users/ferenczviktoria/uploads/szamitasi_segedlet_tajekozas_vegreh ajtasahoz.pdf! 46. Sokszögvonalak osztályozása Sokszögvonal típusa Csatlakozás Tájékozás Szabad vonal egyszeres (kezdőpont ismert) kezdőponton Egyszeresen tájékozott kétszeres (kezdőpont és végpont is kezdőponton ismert) Kétszeresen tájékozott kétszeres (kezdőpont és végpont is kezdőponton és végponton is ismert) Beillesztett kétszeres (kezdőpont és végpont is ismert) nincs! 47. Sokszögvonal hibák elosztása Koordináta záróhiba: távolságok arányában Szögzáróhiba: a törésszögek között egyenletesen 48. Mindkét végpontján csatlakozó sokszögvonal számítása http://users.ml.mindenkilapja.hu/users/ferenczviktoria/uploads/szamitasi_segedlet_x_tajekozott_so kszogvonalhoz.pdf

49. Beillesztett sokszögvonal http://users.ml.mindenkilapja.hu/users/ferenczviktoria/uploads/szamitasi_segedlet_beillesztett_soksz ogvonalhoz.pdf 50. Durva mérési hiba keresése Szögmérésben elkövetett durva hiba (pl. elírás vagy rossz irányzás miatt) módszer kétszeresen tájékozott sokszögvonal esetében alkalmazható, mivel itt van szögfeltétel. 1. kiszámítjuk a sokszögvonalat a kezdőponttól a végpontig szabad vonalként. kiszámítjuk a sokszögvonalat a végponttól a kezdőpontig szabad vonalként 3. amelyik pontra a kétféle számítás egyező koordinátákat ad, ott van a szögmérési durva hiba Távolságmérésben elkövetett durva hiba módszer minden olyan sokszögvonal esetében alkalmazható, ahol koordinátafeltétel felírható (vagyis a szabad vonal kivételével mindegyiknél). Kiszámítjuk a lineáris záróhiba irányszögét. hiba nagy valószínűséggel ott van, ahol a sokszögoldal tájékozott irányértéke közel azonos vagy ellentétes a lineáris záróhiba irányszögével. 51. Csatlakozás magasponthoz lkalmazás: abban az esetben van rá szükség, ha a sokszögvonal kezdőpontja un. magaspont, pl. egy templomtorony, amely nem alkalmas műszerállásnak. Jelölések: K magaspont (templomtorony) T tájékozó irány (ismert pont) S segédpont 1 - sokszögpont Kitűzünk egy S segédpontot, megmérjük az a távolságot, továbbá a ξ és az η szögeket, majd szinusz-tétellel kiszámítjuk a tk1 oldalhosszat. Ezután koordinátákból számítjuk a δkt irányszöget és a tkt távolságot, majd az ugyancsak megmért θ szög felhasználásával szinusz-tétellel kiszámítjuk az ε szöget, végül a háromszög harmadik szögeként a βk kezdőponti törésszöget, amely a sokszögvonal első törésszöge lesz. 5. Tahimetria elve és képletei lapelve: részletpontok helyzetének meghatározása vízszintes helyzet: poláris helymeghatározó adatokkal magasság: trigonometriai magasságméréssel

Vízszintes helymeghatározás Ismert: (Y,X ), T(Y T,X T ), t, φ δ T számítása δ = δ T +φ Y X = Y = X sinδ ' cosδ ' Magassági helymeghatározás Lsd. trigonometriai magasságmérés alapképlete! 53. Elektronikus tahiméterek jellemzői - alkalmasak egyidejű irány- és távolságmeghatározásra - automatizált körleolvasás (vízszintes és magassági) - mérési eredmények javíthatók és redukálhatók - adatbevitel billentyűzetről, adatok tárolása memóriában, adatrögzítési lehetőség - kitűzési és pontkapcsolási feladatok megoldása (pl. hátrametszés) 54. Tahiméteres mérés fázisai 1) a t f ferde távolság meghatározása, majd megjavítása az összeadó- és a szorzóállandó, továbbá a meteorológiai javítás szorzótényezője utoljára meghatározott értékével ) a Hz vízszintes és a V magassági körleolvasás előállítása, majd megjavítása a kollimációhiba és az indexhiba utoljára meghatározott (a memóriában lévő) értékének hatásával; 3) a t v vízszintesre redukált távolság, továbbá a műszer és a prizma fekvőtengelye közötti H magasságkülönbség kiszámítása; 4) a t f, Hz, V vagy a t v, Hz, H eredményhármas kijelzése, majd külön utasításra az egyik értékhármas rögzítése 55. Tahiméteres mérés fontosabb programjai szabad álláspontválasztás a műszerálláspont vízszintes koordinátáinak meghatározása ismert pontokra végzett szög- és távmérések eredményeiből (hátrametszés, ívmetszés). z álláspont koordinátáinak meghatározása után a program tájékozza a vízszintes kört, a továbbiakban tehát a vízszintes körleolvasás helyett a kijelzés a tájékozott irányérték lesz. műszerálláspont magasságának meghatározása ismert (vagy megmért) távolságban lévő ismert magasságú pontokra végzett trigonometriai magasságmérés útján. vízszintes kör tájékozása ismert állásponton ismert (tájékozó) pont(ok)ra végzett iránymérés útján. poláris derékszögű átszámítás feltétele a vízszintes kör előzetes tájékozása, továbbá az álláspont vízszintes koordinátáinak és magasságának ismerete. program a tahiméteres részletmérés eredményeiből kiszámítja a részletpont vízszintes koordinátáit és magasságát. z ellenőrző méretek számítása keretében a program a bemért pontok közül kiválasztott két pont vízszintes koordinátáiból és magasságából kiszámítja a két pont közötti vízszintes távolságot és a magasságkülönbséget

Kitűzések lsd. tanszéki honlapon található jegyzet!!! 71. Térképek és adatnyerés Hagyományos: papírtérkép (hordozóanyag: papír, pausz, asztralon, üveg, stb ), amely egyszerre teljesíti az adatok tárolásának és megjelenítésének követelményeit Digitális: minden olyan térkép, amely teljesíti a térképekkel kapcsolatos követelményeket és számítógépen megjeleníthető (szkennelt, raszter, vektor) Elsődleges közvetlen: közvetlenül a terepről nyerünk adatokat Elektronikus tahiméterek (mérőállomások) terepfelmérés (vízszintes és magassági koordináták) GNSS (Global Navigation Satellite System) műholdas helymeghatározó rendszerek terepfelmérés, ellipszoidi, vízszintes+ magassági vagy 3D koordináta Elsődleges közvetett: közvetett adatnyerés történik, ami jelen esetben fényképeket és műholdas felvételeket és a kinyerhető adatokat jelenti Fotogrammetria: fényképmérés, speciális jelekkel ellátott fényképekből térbeli előmetszés alkalmazásával akár cm pontosságú vízszintes és magassági koordináták nyerhetők Távérzékelés: műholdképek - az információt a színek hordozzák! Elsődlegesen nem a geometria a lényeg, hanem a kapcsolódó információk (pl. művelési ágak, adott területen termesztett növények meghatározása, növénypusztulás feltérképezése) Másodlagos: már meglévő térkép digitalizálása 7. Vektoros és raszteres ábrázolás

Vektoros jellemzői Geometria ont, vonal, poligon, felület, test Topológia Geometriai elemek közötti kapcsolatok leírása ttribútum Jellemző tulajdonság, amely a geometriai elemekhez kapcsolódik (pl. vezetékhez tartozó feszültség értéke) Koordinátarendszerben (pl. EOV) elhelyezett ontos geometriát ábrázol Állományok: shp, dwg, dxf, dgn, stb Raszteres jellemzői ixel (síkban), voxel (térben) Topológia alapesetben nincs ttribútum Jellemző tulajdonság, amely a pixelekhez kapcsolódik (spektrális tulajdonságok) Általában nincs koordináta rendszerben Jellemző tulajdonságokat hordoz Állományok: img, tiff, jpeg, png, stb..

73. Digitalizálás 1. utomatikus digitalizálás (szkennelés) ( eredménye egy raszterkép!!). Táblás (hagyományos) digitalizálás ( eredménye vektoros állomány!!) Digitalizáló asztallap: egymásra merőleges huzalozású vezetékháló, ami a kurzor tekercse által gerjesztett teret érzékeli

Kurzor: tekercs, nagyító, szálkereszt, világítás, billentyűzet 74. Koordináta transzformáció szükségessége digitalizálás során (Megértéshez: hagyományos digitalizálás során egy papír alapú térképet szeretnénk vektoros állománnyá (pl. utocad) alakítani úgy, hogy a digitalizáló táblára rögzített térképen egérrel tesszük le a pontokat és húzzuk meg a vonalakat. papírtérképen szerepel, hogy milyen koordináta rendszerben és méretarányban ábrázolták a pontokat és szerepelnek rajta az őrkeresztek/koordinátahálózati értékek is. digitalizáló táblának azonban saját koordináta rendszere van a rá rögzített térkép is ebben van! -, amely nem egyezik meg a térkép koordináta rendszerével. térkép koordináta rendszere és a digitalizáló tábla koordináta rendszere között síkbeli transzformáció teremti meg a kapcsolatot, vagyis azt, hogy ha az egérrel egy pontot megadunk a papírtérképen a digitalizáló tábla koordináta rendszerében, akkor azt a megfelelő szoftver egy képlettel automatikusan a papírtérkép eredeti koordináta rendszerébe számítja át és így a megfelelő helyre kerül a pont/vonal a digitális állományban.) Hagyományos digitalizálás: a (papír)térkép eredeti koordináta rendszere és a digitalizáló tábla koordináta rendszere különböző, a koordináták átszámításához síkbeli transzformációs egyenleteket használnak. (Megértéshez: z automatikus digitalizálás során egy papír alapú térképet szeretnénk raszteres állománnyá (pl. jpeg) alakítani, majd ezt térinformatikai rendszerbe beolvasni és a vonalakat/pontokat megrajzolni. szkennelés eredménye egy kép, amelynek saját koordináta rendszere van (bal alsó sarka az origo, x tengely vízszintes, y tengely függőleges). képet a térinformatikai rendszerben a térkép eredeti helyére (koordináta rendszerébe) kell helyezni, amit a fentiekhez hasonlóan síkbeli transzformációval teszünk meg.) utomatikus digitalizálás: a szkennelt kép formátumú térkép (kép)koordináta rendszere és a papírtérkép eredeti koordináta rendszere különböző, a koordináták átszámításához így a szkennelt térkép koordináta rendszerbe illesztéséhez - síkbeli transzformációs egyenleteket használnak. 75. Transzformációk és alkalmazásuk Síkbeli hasonlósági (Helmert) transzformáció z eredeti és a kép koordináta-rendszer közötti kapcsolatot elforgatással, méretarány-váltással és eltolással adhatjuk meg. ( két koordináta-rendszer kezdőpontja nem esik egybe (eltolás), az eredeti és a korrigált koordináta-rendszer megfelelő tengelyei j szöget zárnak be egymással (j szögű elforgatás), valamint tengelyirányú léptékváltás történhet).

Y = bx + ay + c X = ax by + c 1 1 = Y 0 = X + ( k sinα) x + ( k cosα) y 0 ( k sinα) y + ( k cosα) x hol Y 0, X 0 a két koordinátarendszer origója által meghatározott vektor koordinátái (eltolás), α a két koordináta rendszer elforgatási szöge k a méretaránytényező Síkbeli affin transzformáció hasonlósági transzformációkkal megegyező, de a különböző tengelyeken eltérő mértékű léptékváltást is engedélyező koordináta-transzformáció. Figyelembe vehető vele a térképlapok két merőleges koordinátatengely irányában eltérő torzulása! Y = a1 * x + b1 * y + c1 X = a * x + b * y + c Síkbeli magasabb-fokú polinomos transzformáció z elsőrendű (minden koordináta az első hatványon) transzformációk (Helmert, affin) alkalmazását olyan esetekben tehetjük meg, amikor a szükséges változtatások lineáris jellegűek és a transzformáció során megengedhető, hogy egyenes képe szintén egyenes legyen. Nemlineáris torzulások esetén olyan transzformációkra van szükség, amelyek nem lineáris változtatásokkal ezeket korrigálni tudják. koordinátáinak transzformációjához itt is egyenleteket - polinomokat - használunk. torzultságától, az illesztési pontok számától és egymáshoz viszonyított elhelyezkedésüktől függő összetett polinomok szükségesek a kellő transzformáció végrehajtásához. Ezekben a polinomokban már nem csak első hatványon szerepelnek a koordináták. 76. Digitalizálás munkafolyamata