MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

Hasonló dokumentumok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények

b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények

Függvények Megoldások

függvény grafikonja milyen transzformációkkal származtatható az f0 : R R, f0(

Érettségi feladatok: Függvények 1/9

2) Írja fel az alábbi lineáris függvény grafikonjának egyenletét! (3pont)

FÜGGVÉNYEK x C: 2

1. Ábrázolja az f(x)= x-4 függvényt a [ 2;10 ] intervallumon! (2 pont) 2. Írja fel az alábbi lineáris függvény grafikonjának egyenletét!

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Trigonometria

Kisérettségi feladatgyűjtemény

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.

} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések

Descartes-féle, derékszögű koordináta-rendszer

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Paraméter

Az egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?

6. Függvények. 1. Az alábbi függvények közül melyik szigorúan monoton növekvő a 0;1 intervallumban?

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Abszolútértékes és gyökös kifejezések

egyenlőtlenségnek kell teljesülnie.

Trigonometria Megoldások. 1) Oldja meg a következő egyenletet a valós számok halmazán! (12 pont) Megoldás:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok

Egyenletek, egyenletrendszerek, egyenlőtlenségek Megoldások

c.) Mely valós számokra teljesül a következő egyenlőtlenség? 3

Koordináta-geometria feladatok (középszint)

Harmadikos vizsga Név: osztály:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria

Abszolútértékes és gyökös kifejezések Megoldások

2. Adott a valós számok halmazán értelmezett f ( x) 3. Oldja meg a [ π; π] zárt intervallumon a. A \ B = { } 2 pont. függvény.

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Koordinátageometria

KÖZÉPSZINTŰ MATEMATIKA ÉRETTSÉGI FELADATOK GYŰJTEMÉNYE

E-tananyag Matematika 9. évfolyam Függvények

Feladatok MATEMATIKÁBÓL

az Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára

Érettségi feladatok: Koordináta-geometria 1/5

Matematika kisérettségi I. rész 45 perc NÉV:...

Érettségi feladatok Koordinátageometria_rendszerezve / 5

MATEMATIKA ÉRETTSÉGI október 19. KÖZÉPSZINT

NULLADIK MATEMATIKA ZÁRTHELYI

2012. október 2 és 4. Dr. Vincze Szilvia

FÜGGVÉNYEK. A derékszögű koordináta-rendszer

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet

Exponenciális és logaritmusos feladatok

Érettségi feladatok: Trigonometria 1 /6

Az egyenlőtlenség mindkét oldalát szorozzuk meg 4 16-al:

Csoportmódszer Függvények I. (rövidített változat) Kiss Károly

Nagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. alapfüggvény (ábrán: fekete)

8. feladatsor. Kisérettségi feladatsorok matematikából. 8. feladatsor. I. rész

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet

6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének

FÜGGVÉNYEK TULAJDONSÁGAI, JELLEMZÉSI SZEMPONTJAI

MATEMATIKA ÉRETTSÉGI február 21. KÖZÉPSZINT I.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások. 1. Az alábbi hozzárendelések közül melyik függvény? Válaszod indokold!

2. Egy mértani sorozat második tagja 6, harmadik tagja 18. Adja meg a sorozat ötödik tagját!

Feladatok a logaritmus témaköréhez 11. osztály, középszint

1. Tekintsük a következő két halmazt: G = {1; 2; 3; 4; 6; 12} és H = {1; 2; 4; 8; 16}. Elemeik felsorolásával adja meg a G H és a H \ G halmazokat!

Hozzárendelés, lineáris függvény

Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / május a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?

a.) b.) c.) d.) e.) össz. 4 pont 2 pont 4 pont 2 pont 3 pont 15 pont

[f(x) = x] (d) B f(x) = x 2 ; g(x) =?; g(f(x)) = x 1 + x 4 [

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

KOVÁCS BÉLA, MATEMATIKA I.

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

törtet, ha a 1. Az egyszerűsített alak: 2 pont

Trigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )

Függvények ábrázolása, jellemzése II. Alapfüggvények jellemzői

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Koordináta-geometria

egyenletrendszert. Az egyenlő együtthatók módszerét alkalmazhatjuk. sin 2 x = 1 és cosy = 0.

Függvények 1. oldal Készítette: Ernyei Kitti. Függvények

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÍRÁSBELI VIZSGA május 5.

Exponenciális és logaritmusos feladatok Megoldások

Számelmélet Megoldások

Koordináta-geometria feladatok (emelt szint)

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

MATEMATIKA ÉRETTSÉGI május 9. KÖZÉPSZINT I.

Matematika 8. osztály

MATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések

Bevezetés a matematikába (2009. ősz) 1. röpdolgozat

2009. májusi matematika érettségi közép szint

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

A függvényekről tanultak összefoglalása /9. évfolyam/

13. Trigonometria II.

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 7. KÖZÉPSZINT

2. Függvények. I. Feladatok

Koordinátageometria. , azaz ( ) a B halmazt pontosan azok a pontok alkotják, amelynek koordinátáira:

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. A háromszög oldalainak nagysága:

Átírás:

MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához! 1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x c) x x ) Határozza meg az 1. feladatban megadott, ; intervallumon értelmezett függvény értékkészletét! 3) Ábrázolja az f x 0,5x 4 függvényt a ;10 intervallumon! 4) A [ 1;6] -on értelmezett f x függvény hozzárendelési szabályát a grafikonjával adtuk meg. Határozza meg az f x 0 egyenlőtlenség megoldását! Adja meg f x legnagyobb értékét! (1 pont) 5) Az f és g függvényeket a valós számok halmazán értelmezzük a következő képletek szerint: f x x 1 ; g x x 1 a) Ábrázolja derékszögű koordinátarendszerben az f függvényt! (Az ábrán szerepeljen a grafikonnak legalább a 3,5 x 1 intervallumhoz tartozó része.) (4 pont) b) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! c) Oldja meg az x 1 x 1 egyenlőtlenséget! (6 pont)

6) Az f függvényt a ;6 intervallumon a grafikonjával értelmeztük. Mekkora f legkisebb, illetve legnagyobb értéke? Milyen x értékekhez tartoznak ezek a szélsőértékek? (4 pont) 7) Adott a következő egyenletrendszer: lg y 1 lg x 11 y x a) Ábrázolja derékszögű koordináta-rendszerben azokat a P x; y pontokat, amelyeknek koordinátái kielégítik a () egyenletet! b) Milyen x, illetve y valós számokra értelmezhető mindkét egyenlet? c) Oldja meg az egyenletrendszert a valós számpárok halmazán! (11 pont) d) Jelölje meg az egyenletrendszer megoldáshalmazát az a) kérdéshez használt derékszögű koordináta-rendszerben! 8) Adja meg az 5x 3y egyenletű egyenes és az y tengely metszéspontjának koordinátáit! 9) a) Ábrázolja a ;4 -on értelmezett, x x 1,5 0,75 hozzárendeléssel megadott függvényt! b) Állapítsa meg a fenti függvény minimumának helyét és értékét! c) Oldja meg a valós számok halmazán a 10) A valós számok halmazán értelmezett x x x 3x 3 1 x egyenletet! (8 pont) 1 4 függvénynek minimuma vagy maximuma van? Adja meg a szélsőérték helyét és értékét! 11) Adjon meg egy olyan zárt intervallumot, ahol a grafikonjával megadott alábbi függvény csökkenő!

f f x x függvény. Határozza meg az értelmezési 1) Adott az : 0, tartománynak azt az elemét, amelyhez tartozó függvényérték 4. 13) Adja meg a ;3 intervallumon értelmezett f x x értékkészletét! 1 függvény 14) Adja meg a valós számok halmazán értelmezett az x x 5x másodfokú függvény zérushelyeit! Számítsa ki a függvény helyettesítési értékét az 1, helyen! f x x 10 x függvény legnagyobb értéke, és hol veszi fel 15) Mennyi az 16) ezt az értéket? a) Fogalmazza meg, hogy az f :, f x x 1 milyen transzformációkkal származtatható az :, függvény grafikonja f0 f0 x x, függvény grafikonjából! Ábrázolja az f függvényt a 6;6 intervallumon! (5 pont) B 5;4 pontokon áthaladó egyenes egyenletét! Mely b) Írja fel az 4;1 A és pontokban metszi az AB egyenes az f függvény grafikonját? (Válaszát számítással indokolja!) (7 pont) 17) Adja meg a 3x y 18 egyenletű egyenes és az y tengely metszéspontjának koordinátáit! 18) A valós számok halmazán értelmezett f másodfokú függvény grafikonját úgy kaptuk, hogy a g: g : 1 g( x) x függvény grafikonját a v ; 4,5 vektorral eltoltuk. a) Adja meg az f függvény hozzárendelési utasítását képlettel! b) Határozza meg f zérushelyeit! (4 pont) c) Ábrázolja f grafikonját a [; 6] intervallumon! (4 pont) Oldja meg az egész számok halmazán a következő egyenlőtlenséget! d) 1 5 x x (6 pont)

19) A valós számok halmazán értelmezett x x függvényt transzformáltuk. Az alábbi ábra az így kapott f függvény grafikonjának egy részletét mutatja. Adja meg f hozzárendelési utasítását képlettel! 0) Legyen f a valós számok halmazán értelmezett függvény, sin. Mennyi az f függvény helyettesítési értéke, ha menetét! f x x x? Írja le a számolás 3 1) Az, x 3 log x függvény az alább megadott függvények közül melyikkel azonos? A:, x 3log x ) B:, x log 8x C:, x log 3x 3 D:, x log x a) Rajzolja meg derékszögű koordinátarendszerben a 1;6 intervallumon értelmezett, x x 3 hozzárendelésű függvény grafikonját! (4 pont) b) Állapítsa meg a függvény értékkészletét, és adja meg az összes zérushelyét! P 3,;1,58 pont rajta van-e a függvény grafikonján! c) Döntse el, hogy a Válaszát számítással indokolja! d) Töltse ki az alábbi táblázatot, és adja meg a függvényértékek (a hét szám) mediánját! 3) Milyen valós számokat jelöl az a, ha tudjuk, hogy a valós számok halmazán x értelmezett x a függvény szigorúan monoton növekvő? 4) Adja meg képlettel egy olyan, a valós számok halmazán értelmezett függvény hozzárendelési utasítását, amelynek (abszolút) maximuma van! A megadott függvénynek állapítsa meg a maximumhelyét is! 5) A következő két függvény mindegyikét a valós számok halmazán értelmezzük: f x x ; g x sin3x. 3sin Adja meg mindkét függvény értékkészletét!

6) Az ábrán a valós számok halmazán értelmezett f x x a b függvény grafikonjának egy részlete látható. Adja meg a és b értékét! x x x függvény grafikonját 7) István az log 0 1 akarta felvázolni, de ez nem sikerült neki, több hibát is elkövetett (a hibás vázlat látható a mellékelt ábrán). Döntse el, hogy melyik igaz az alábbi állítások közül! a) István rajzában hiba az, hogy a vázolt függvény szigorúan monoton csökkenő. b) István rajzában hiba az, hogy a vázolt függvény -höz -t rendel. c) István rajzában hiba az, hogy a vázolt függvény zérushelye 1. 8) Adott a valós számok halmazán értelmezett x x meg az f függvény minimumának helyét és értékét! f 4 függvény. Adja 9) Az alább felsorolt, a valós számok halmazán értelmezett függvényeket közös koordinátarendszerben ábrázoljuk. A három függvény közül kettőnek a grafikonja megegyezik, a harmadik eltér tőlük. Melyik függvény grafikonja tér el a másik két függvény grafikonjától? 1 a) x sin x b) x sin x c) x cos x 30) Az alábbi hozzárendelési utasítással megadott, a valós számok halmazán értelmezett függvények közül kettőnek egy-egy részletét ábrázoltuk. Adja meg a grafikonokhoz tartozó hozzárendelési utasítások betűjelét! A) x x B) x x C) x x D) x x

31) Adja meg az x x 10x 1 minimumának értékét! Válaszát indokolja! x másodfokú függvény minimumhelyét és (4 pont) 3) Legyenek f és g a valós számok halmazán értelmezett függvények, továbbá: f x x és g x x x 3,5 5 5,5 a) Számítsa ki az alábbi táblázatok hiányzó értékeit! x 3 x f(x) g(x),5 b) Adja meg a g függvény értékkészletét! c) Oldja meg az 5x 5,5 x x 3,5 egyenlőtlenséget a valós számok halmazán! (6 pont) 33) Adja meg az alábbi hozzárendelési szabályokkal megadott, a valós számok halmazán értelmezett függvények értékkészletét! f x sin x g( x) cosx 34) Döntse el, melyik állítás igaz, melyik hamis! a) A valós számok halmazán értelmezett f x 4 hozzárendelési szabállyal 35) megadott függvény grafikonja az x tengellyel párhuzamos egyenes. (1 pont) b) Nincs két olyan prímszám, amelyek különbsége prímszám. (1 pont) c) Az 1 cm sugarú kör kerületének cm-ben mért számértéke kétszer akkora, mint területének cm -ben mért számértéke. (1 pont) d) Ha egy adathalmaz átlaga 0, akkor a szórása is 0. (1 pont) a) Rajzolja fel a 3;3 intervallumon értelmezett x x 1 függvény grafikonját! b) Mennyi a legkisebb függvényérték? (1 pont) Összesen: 3 pont 36) Melyik az ábrán látható egyenes egyenlete az alábbiak közül? A : y x 3 B : y x 3 C : y x 1,5 D : y x 3

37) Az ábrán egy 4;4 intervallumon értelmezett függvény grafikonja látható. Válassza ki, hogy melyik formula adja meg helyesen a függvény hozzárendelési szabályát! a) x 1 3 1 b) x 1 x 1 3 c) x 3x 1 d) x 1 x 3 3 38) Adott a valós számok halmazán értelmezett f x x 4 függvény. Mely x értékek esetén lesz f x 6? 39) Az ábrán az x m x b lineáris függvény grafikonjának egy részlete látható. Határozza meg m és b értékét! f f x a x függvény 40) Az ábrán az : ;1 ; grafikonja látható. a) Adja meg az f függvény értékkészletét! b) Határozza meg az a szám értékét! 41) Válassza ki az f függvény hozzárendelési szabályát az A, B, C, D lehetőségek közül úgy, hogy az megfeleljen az alábbi értéktáblázatnak! x - 0 f x -4 0-4 A: f x x B: f x x C: f x x D: f x x

4) Az ábrán a 1;5 intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! A: x x 3 1 B: x x 3 1 C: x x 3 1 D: x x 3 1 43) a) Egy háromszög oldalainak hossza 5 cm, 7 cm és 8 cm. Mekkora a háromszög 7 cm-es oldalával szemközti szöge? (4 pont) 0; intervallumon a következő egyenletet! b) Oldja meg a 1 cos x x. (6 pont) 4 c) Adja meg az alábbi állítások logikai értékét (igaz vagy hamis)! I) Az f :, f x sin x függvény páratlan függvény. II) Az : intervallum. III) A : g, g x cosx függvény értékkészlete a ; h, h x cos ; 4 4 intervallumon. zárt x függvény szigorúan monoton növekszik a