AZ XPS ÉS A SIMS MÓDSZER
|
|
- Barnabás Barna
- 8 évvel ezelőtt
- Látták:
Átírás
1 AZ XPS ÉS A SIMS MÓDSZER
2 Felületanalitikai mérési módszerek felület kémiai összetétele (is) meghatározható XPS (X-ray Photoelectron Spectroscopy) vagy ESCA (Electron Spectroscopy for Chemical Analysis) UPS (Ultraviolet Photoelectron Spectroscopy) SIMS (Secondary Ion Mass Spectrometry) AES (Auger Electron Spectroscopy)
3 1nm=3 atomi réteg Felület?
4 Mikor érdekes a felület?
5 Mikor érdekes a felület? Adszorpció/deszorpció Adhézió Diffúzió Vékonyrétegek (határfelületek) Nanoszerkezetű anyagok, stb Felhasználók: Félvezető ipar Gyógyszeripar Fényforrás ipar Nanotechnológia, stb
6 Felületanalitikai vizsgálatok Olyan módszereket kell találni, amik a felületről szolgáltatnak információt! Az információs mélység legyen összemérhető az atomi méretekkel! Megoldás: elektronok/ionok szabad úthosszuk igen rövid a szilárdtestekben
7 Felületérzékenység
8 XPS (ESCA), UPS fotoelektron hn hn=e kin +E kötési,v Kilépő elektronok energia (E kin ) szerinti szétválasztása Gerjesztés: XPS MgKa (1253.6eV) AlKa (1486.6eV) UPS ultraibolya Összetétel Fotoelektronok: Törzsnívókról Vegyértéksávból
9 n l j AES 1 (K) 0 (s) ½ K 2 (L) 0 (s) ½ L 1 2 (L) 1 (p) ½ L 2 2 (L) 1 (p) 3/2 L 3 3 (M) 0 (s) ½ M 1 3 (M) 1 (p) ½ M 2 fotoelektron Auger-elektron (KL 1 L 2 Auger átmenet) gerjesztés vákuumszint L 3 L 2 L 1 3 (M) 1 (p) 3/2 M 3 3 (M) 2 (d) 3/2 M 4 3 (M) 2 (d) 5/2 M 5 stb K
10 XPS spektrumok Széles kötési energiatartomány Cél: minden elemet kimutatni (nagy érzékenység) Csúcsazonosítás - adatbázisok Csúcs illesztés (kiértékelő program) Fotoelektron csúcs szűk környezete Cél: kémiai kötésállapot meghatározása Jó energia felbontás. Kötésállapot azonosítás - adatbázisok
11 A politejsav C1s és O1s spektrumtartományai. (Ábra: Csanády-Kálmán-Konczos: Bevezetés a nanoszerkezetű anyagok világába, 2009)
12 Szinkrotonsugárzással felvett Si 2p spektrumok szilíciumszelet kezdeti oxidációjáról. (Hollinger et. al, 1984.)
13 Mennyiségi elemzés háttérlevonás Csúcsintenzitás: I=n f s l A T arányos az adott elem mennyiségével a minta felületén c x n n n I f s l A T 1 2 i n x I I n 1 i 2 S S 2 1 I i x I i S x S i n: a vizsgált elem atom sűrűsége [cm -3 ] f: a röntgensugárzás fluxusa [foton/cm 2 ] σ: az adott atomi pályára vonatkozó fotoelektromos hatáskeresztmetszet [cm 2 ] λ: a fotoelektronok szabad úthossza a mintában A: a terület, ahonnan az elektronokat összegyűjtjük T: transzmissziós koefficiens S i : atomi érzékenységi faktor Intenzitások normálása az egyes elemekhez tartozó érzékenységi faktorokkal. S i érzékenységi faktorokat a kémiai kötésállapot (néhány kivételtől eltekintve) nem befolyásolja. Adatbázisokban rendelkezésre állnak. Minden elemnél csak egy csúcsot kell figyelembe venni!!!
14 Kötésállapot meghatározás Kémiai eltolódás Ha egy atom kémiai kötésben vesz részt, módosul az elektronszerkezete A törzs-nívók is eltolódnak Az XPS csúcsok is eltolódnak Minél oxidáltabb állapotban van az atom, annál nagyobb a kötési energia C. D. Wagner et al, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp, 1978
15 C. D. Wagner et al, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp, 1978
16 C. D. Wagner et al, Handbook of X-ray Photoelectron Spectroscopy, Perkin-Elmer Corp, 1978
17 Mélységfüggés Target Porl. Sebesség [nm/min] Ionporlasztással 2keV Ar +, 100 m A/cm 2 Ta 2 O 5 10 Si 9 SiO Pt 22 Cr 14 Al 9.5 Au 41 Minta forgatással
18 XPS IMAGING :
19 XPS módszer jellemői H és He kivételével minden elem kimutatására alkalmas. Érzékenység: 0.1at% Információs mélység: 5-10 atomi réteg Nem roncsol Ionporlasztással kiegészítve mélyebb rétegek is (mélységi profilok) Szigetelő mérésre is alkalmas (néhány ev-os töltődés kompenzálás)
20 2. XPS-EDX Fotoelektron (XPS) L α K β EDX K α gerjesztés elektron v. X-ray X-ray Információs mélység AES elektron Energy-dispersive X-ray spectroscopy (EDX,EDS) be: ~20keV elektron, ki: néhány kev X-ray X-ray Photoelectron Spectroscopy (XPS) be: ~15keV X-ray, ki: 0-.2 kev elektron CPS x C KLL Mn 2s Ti LMM O KLL Mn LMM Mn 2p1/2 Mn 2p Ti 2s O 1s Ti 2p1/2 Ti 2p3/2 Ti 2p Mn 2p3/2 Mn 2p Name Mn 2p Ti 2p O 1s C 1s O 1s Ti 2p Pos Area C 1s C 1s At% Mn 3s M Mn 3p Mn 3p Mn 3p Ti 3s M M Ti 3 Ti 3 Ti 3 T T T O 2 O O O C C C Binding Energy (ev)
21 Szekunder ion tömegspektroszkópia (SIMS)
22
23 Primer ion: Ar + (O 2+, O +, Cs + stb.); 1-10 kev Szekunder ionok (+, -) tömeg szerinti szétválasztás Minta összetétele Adott Z rendszámú elem A tömegszámú izotópjának q töltésszámú szekunder ionjainak árama (ezt mérjük): s, Z, A / q p Z, q Z, A Z A / q I I S a c I p :Primer ion áramerősség [A] S: Porlasztási hatásfok [atom/ion] Számítható kráteralakból c Z : A vizsgált elem koncentrációja a felületen (0-1) [atomtört] a Z,A : Abundancia (A Z rendszámú elem hányad része az A tömegszámú izotóp) (0-1) γ ± Z,q: Ionizációs valószínűség [ion/atom] η A/q : transzmissziós együttható (0-1): a kiporlódott ionok hányad része kerül detektálásra adott berendezésre meghatározható
24 Ionizációs valószínűség függ: (tipikus értéke: ion/atom) Szekunder ionok rendszáma, töltése energiája Kísérleti körülmények (felület tisztasága, minta környezet gáz összetétel és nyomás, minta lokális összetétele, emisszió körüli mikrostruktúra, stb.) MÁTRIX-HATÁS kvantitatív analízis csak standardokkal
25 Reaktív SIMS Oxigén alkalmazása: Primer ionként Megemelt O 2 háttérnyomás Eredmény: Csökken az ionizációs valószínűség mátrixfüggése Csökken a mintában jelen levő (változó mennyiségű) oxigén ionhozamot befolyásoló hatása Nő az érzékenység (ionhozamok akár több nagyságrendet is nőnek) Kvantitativitás megoldható etalonokkal
26 SIMS kvantitativitása O. Brümmer et. al, Szilárd testek vizsgálata elektronokkal, ionokkal és röntgensugárzással. Műszaki Könyvkiadó, Budapest, 1984.
27 SIMS technikák Technika Információ Legjobb laterális felbontás Információs mélység monorétegben Érzékenység Mennyiségi analízis SSIMS kémiai 1mm % SIIMS elemi, 20nm 10 <1p.p.m. standarddal kémiai DSIMS elemi, 50mm 10 <1p.p.m. standarddal kémiai SNMS elemi 50mm 10 <1p.p.m. egyszerû
28 cps 10 7 Felületanalízis (SSIMS) Vanádium felület, + sp V H + 52 VH Al OH + 16 O + 12 C + 23 Na + 13 CH + 28 Si + 39 K + 40 Ar + 40 Ca + 67 VO 68 VOH m/e H, egyatomos ionok ( 51 V + ) és többatomos molekuláris clusterionok ( 52 VH +, 67 VO + ), Kis mennyiségben jelenlévő elektropoz. elemek ionjai (Na, K)
29 Vanádium minta, - sp. cps O OH H - 13 C C - 13 CH O 2-35 Cl - 37 Cl - 51 V - 52 VH - 67 VO 68 VOH m/e Elektronegatív elemek ionjai a neg. Spektrumon jelentkeznek nagyobb intenzitással (O -, OH -, O 2-, Cl - ) De megtalálhatók kisebb intenzitással a 51 V -, 52 VH -, 67 VO - ), ionok is.
30 Profilanalízis (DSIMS) (megnövelt oxigén háttérnyomás mellett)
31 SIMS (folytatás) Oxigén hatása Si egykristályon termikusan növesztett 50 nm vastag SiO 2 réteg
32 SNMS(Sputtered Neutral Mass Spectrometry) A minta felületéről leporlasztott atomok csak egy kis része ionizálódik Semleges szekunder részecskék utóionizációja jelentősen növelhető az érzékenység (ionhozam) ionizációs valószínűségnek nincs jelentősége alkalmas kalibrációval kvantitatívvá tehető
33 Laterális eloszlás feltérképezése (SIIMS) Szekunder Ion mikroszkópia (Secondary Ion Imaging M. S.) JÓ Polietilén/poliuretán/ poliészter laminátum Poliuretán 2 oldalán diffúziós gát: Polivinilidén-klorid HIBÁS : C. Vickerman, et al.: ToF-SIMS: Surface Analysis by Mass Spectroscopy, IM Publications, 2001
34 Elemek térfogati eloszlásának 3D FIB-TOF SIMS vizsgálata Szilárd oxid üzemanyag Sr +, Ce +, Zr + and K + 3D eloszlása. cella, szekunder elektron kép Vizsgált térfogat: 50 x 50 x 10 µm ÜREGEK a Katódban és Elektrolit I-ben Kálium!
35 Pulzus üzemmódú primer ionforrás A töltött részecskéket áll. Feszültséggel gyorsítjuk majd erőmentes térben adott úthosszon hagyjuk repülni őket időben széthúzzuk a kül. Tömegeket Tömeg info: indítás megérkezés közt eltelt idő TOF (Time-of-Flight) tömegtartomány: ate, m/ m:
36 Igen magas tömegtartományok is vizsgálhatók Egyidejűleg több tömegvonal analízise Igen jó tömegfelbontás
37 Szerves molekulák és SIMS Szerves molekulák ionbombázás hatására széttöredeznek A fragmentumok megjelennek a spektrumon Ha a molekulához hozzákapcsolódik egy hidrogén, gyakran képződik pozitív ion (proton transfer reaction) Fém-atomoknak a molekulához kapcsolódása is pozitív ionokat eredményezhet Alkáli fémek A szubsztrát atomjai A molekuláknak jellegzetes ujjlenyomatuk van a spektrumon A fragmentumok tömege, és a csúcsok aránya alapján azonosítható a vegyület
38
39 Pozitív spektrum hidrokarbon polymerekről Poly(etylene) Poly(propylene) Poly(-butene) Poly(4-methyl pentene-1) Poly(isobutylene)
40 Nylon-6 pozitív sprektruma Az ismétlődő fragment: [nm+h] + M tömege: 113 ate
41 3D analízis (komplex és ismeretlen szerkezetek esetén) :
42 SIMS módszer jellemői Minden elem kimutatására alkalmas. Érzékenység: ppm Információs mélység: ~5 atomi réteg Laterális felbontás: 20nm (elemeloszlás térképek) Roncsol Mélységi eloszlás mérésére is alkalmas Szigetelő mérése nehézkes
43 Felületanalitikai módszerek összehasonlítása Módszer Információ Információs mélység Laterális felbontás Érzékenység Kvantitativitás Kimutatható elemek Szigetelők mérése XPS elemi kémiai 5-10 ML 5 mm 0.1% mind kivéve: H, He AES elemi (kémiai) 3 ML 5nm 1% (vegyületre nem) mind kivéve: H, He nehézségek SIMS elemi (kémiai) mind 2-10 ML 20nm 10-4 % nehezen nehézségek
44 Ajánlott irodalom Csanády A, Kálmán E., Konczos G.: Bevezetés a nanoszerkezetű anyagok világába, ELTE Eötvös Kiadó, D. Briggs, M.P. Seah: Practical Surface Analysis, Vol 1. Auger and X-ray Photoelectron Spectroscopy, John Wiley & Sons, New York, O. Brümmer, J, Heydenreich, K.H. Krebs, H.G. Schneider: Szilárd testek vizsgálata elektronokkal, ionokkal és röntgensugárzással. Műszaki Könyvkiadó, Budapest, D. Briggs Surface analysis of polymers by XPS and static SIMS. Cambridge University Press 1998.
45 Gate valves XPS-SAM Manipulator Sample holder UHV chamber for XPS, SAM Truncated hemispherical analyzer Treatment chamber Turbo. pump. Admission system VG Microtech. Completed Total Price: ~600 k$
46 Röntgen forrás Mg Kα eV, sávszélesség: 0.7eV Al Kα: eV, sávszélesség: 0.85eV D. Briggs, M.P. Seah: Practical Surface Analysis, Vol 1. Auger and X-ray Photoelectron Spectroscopy, John Wiley & Sons, New York, 1992.
47 Elektron energia analizátor D. Briggs, M.P. Seah: Practical Surface Analysis, Vol 1. Auger and X-ray Photoelectron Spectroscopy, John Wiley & Sons, New York, 1992.
48 Egyéb lehetőségek Minta in situ fűtése: sugárzásos hővel mintán átfolyó elektromos áram elektron besugárzás Gázadagolás az analitikai kamrába adszorpció, deszorpció vizsgálat Kezelések (vákuum körülmények között) a zsilip kamrában Jobb energia felbontás: monokromátor gyorsítók
Az XPS és a SIMS módszer
Az XPS és a SIMS módszer Felületanalitikai mérési módszerek felület kémiai összetétele (is) meghatározható XPS (X-ray Photoelectron Spectroscopy) vagy ESCA (Electron Spectroscopy for Chemical Analysis)
Tematika FELÜLETVIZSGÁLATI MÓDSZEREK. Dobos Gábor
Tematika FELÜLETVIZSGÁLATI MÓDSZEREK Dobos Gábor Bevezetés A felület szerepe Felületérzékeny analitikai módszerek Elve Jellemzői SIMS spektrumok jellegzetességei Mélységi profilok Auger-elektron spektroszkópia
Szekunder ion tömegspektroszkópia (SIMS)
Szekunder ion tömegspektroszkópia (SIMS) A SIMS módszer elve A módszer alapja az a jelenség, hogy ha egy szilárdtest felületét 1-10keV energiájú nehéz részecskékkel (ionokkal esetleg atomokkal) bombázzuk,
11. Oxid rétegek vizsgálata XPS-sel,
11. Oxid rétegek vizsgálata XPS-sel, A Fotoelektron spektroszkópia elve: Fotoelektron spektroszkópiának monokromatikus fotonokkal kiváltott fotoelektronok energia szerinti eloszlásának mérését nevezzük.
A TÖMEGSPEKTROMETRIA ALAPJAI
A TÖMEGSPEKTROMETRIA ALAPJAI web.inc.bme.hu/csonka/csg/oktat/tomegsp.doc alapján tömeg-töltés arány szerinti szétválasztás a legérzékenyebb módszerek közé tartozik (Nagyon kis anyagmennyiség kimutatására
Röntgen-gamma spektrometria
Röntgen-gamma spektrométer fejlesztése radioaktív anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű meghatározására Szalóki Imre, Gerényi Anita, Radócz Gábor Nukleáris Technikai Intézet
Fókuszált ionsugaras megmunkálás
1 FEI Quanta 3D SEM/FIB Fókuszált ionsugaras megmunkálás Ratter Kitti 2011. január 19-21. 2 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz
A nanotechnológia mikroszkópja
1 Havancsák Károly, ELTE Fizikai Intézet A nanotechnológia mikroszkópja EGIS 2011. június 1. FEI Quanta 3D SEM/FIB 2 Havancsák Károly, ELTE Fizikai Intézet A nanotechnológia mikroszkópja EGIS 2011. június
Fókuszált ionsugaras megmunkálás
FEI Quanta 3D SEM/FIB Dankházi Zoltán 2016. március 1 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz injektorok detektor CDEM (SE, SI) 2 Dual-Beam
Energia-diszperzív röntgen elemanalízis
Fókuszált ionsugaras megmunkálás Energia-diszperzív röntgen elemanalízis FEI Quanta 3D SEM/FIB Dankházi Zoltán 2016. március 1 EDS = Energy Dispersive Spectroscopy Hol található a SEM/FIB berendezésen?
ELTE Fizikai Intézet. FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp
ELTE Fizikai Intézet FEI Quanta 3D FEG kétsugaras pásztázó elektronmikroszkóp mintatartó mikroszkóp nyitott ajtóval Fő egységek 1. Elektron forrás 10-7 Pa 2. Mágneses lencsék 10-5 Pa 3. Pásztázó mágnesek
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
Havancsák Károly Nagyfelbontású kétsugaras pásztázó elektronmikroszkóp az ELTÉ-n: lehetőségek, eddigi eredmények
Havancsák Károly Nagyfelbontású kétsugaras pásztázó elektronmikroszkóp az ELTÉ-n: lehetőségek, eddigi eredmények Nanoanyagok és nanotechnológiák Albizottság ELTE TTK 2013. Havancsák Károly Nagyfelbontású
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
-A homogén detektorok közül a gyakorlatban a Si és a Ge egykristályból készültek a legelterjedtebbek.
Félvezető detektorok - A legfiatalabb detektor család; a 1960-as évek közepétől kezdték alkalmazni őket. - Működésük bizonyos értelemben hasonló a gáztöltésű detektorokéhoz, ezért szokták őket szilárd
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
Havancsák Károly Az ELTE TTK kétsugaras pásztázó elektronmikroszkópja. Archeometriai műhely ELTE TTK 2013.
Havancsák Károly Az ELTE TTK kétsugaras pásztázó elektronmikroszkópja Archeometriai műhely ELTE TTK 2013. Elektronmikroszkópok TEM SEM Transzmissziós elektronmikroszkóp Átvilágítós vékony minta < 100
Lakos István WESSLING Hungary Kft. Zavaró hatások kezelése a fémanalitikában
Lakos István WESSLING Hungary Kft. Zavaró hatások kezelése a fémanalitikában AAS ICP-MS ICP-AES ICP-AES-sel mérhető elemek ICP-MS-sel mérhető elemek A zavarások felléphetnek: Mintabevitel közben Lángban/Plazmában
Diffúzió. Diffúzió. Diffúzió. Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Anyagszerkezettan és anyagvizsgálat 5/6 Diffúzió Dr. Szabó Péter János szpj@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd
Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás
Pásztázó elektronmikroszkóp Scanning Electron Microscope (SEM) Rasterelektronenmikroskope (REM) Alapelv Egy elektronágyúval vékony elektronnyalábot állítunk elő. Ezzel pásztázzuk (eltérítő tekercsek segítségével)
Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35
Periódusosság 11-1 Az elemek csoportosítása: a periódusos táblázat 11-2 Fémek, nemfémek és ionjaik 11-3 Az atomok és ionok mérete 11-4 Ionizációs energia 11-5 Elektron affinitás 11-6 Mágneses 11-7 Az elemek
Diffúzió. Diffúzió sebessége: gáz > folyadék > szilárd (kötőerő)
Diffúzió Diffúzió - traszportfolyamat (fonon, elektron, atom, ion, hőmennyiség...) Elektromos vezetés (Ohm) töltés áram elektr. potenciál grad. Hővezetés (Fourier) energia áram hőmérséklet különbség Kémiai
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
Periódusosság. Általános Kémia, Periódikus tulajdonságok. Slide 1 of 35
Periódusosság 3-1 Az elemek csoportosítása: a periódusos táblázat 3-2 Fémek, nemfémek és ionjaik 3-3 Az atomok és ionok mérete 3-4 Ionizációs energia 3-5 Elektron affinitás 3-6 Mágneses 3-7 Az elemek periodikus
Fókuszált ionsugaras megmunkálás
FEI Quanta 3D SEM/FIB Fókuszált ionsugaras megmunkálás Dankházi Zoltán 2013. március 1 FIB = Focused Ion Beam (Fókuszált ionnyaláb) Miből áll egy SEM/FIB berendezés? elektron oszlop ion oszlop gáz injektorok
MTA AKI Kíváncsi Kémikus Kutatótábor Kétdimenziós kémia. Balogh Ádám Pósa Szonja Polett. Témavezetők: Klébert Szilvia Mohai Miklós
MTA AKI Kíváncsi Kémikus Kutatótábor 2 0 1 6. Kétdimenziós kémia Balogh Ádám Pósa Szonja Polett Témavezetők: Klébert Szilvia Mohai Miklós A műanyagok és azok felületi kezelése Miért népszerűek napjainkban
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
LC-MS QQQ alkalmazása a hatósági gyógyszerellenőrzésben
LC-MS QQQ alkalmazása a hatósági gyógyszerellenőrzésben Jankovics Péter Országos Gyógyszerészeti Intézet Gyógyszerminőségi Főosztály 2010. január 14. A QQQ analizátor felépítése Forrás: Introducing the
Korszerű tömegspektrometria a. Szabó Pál MTA Kémiai Kutatóközpont
Korszerű tömegspektrometria a biokémi miában Szabó Pál MTA Kémiai Kutatóközpont Tematika Bevezetés: ionizációs technikák és analizátorok összehasonlítása a biomolekulák szemszögéből Mikromennyiségek mintaelőkészítése
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
Sugárterápia. Ionizáló sugárzások elnyelődésének következményei. Konzultáció: minden hétfőn 15 órakor. 1. Fizikai történések
Sugárterápia 40% 35% 30% 25% 20% 15% % 5% 0% 2014/2015. tanév FOK biofizika kollokvium jegyspektruma 5 4,5 4 3,5 3 2,5 2 1,5 1 Konzultáció: minden hétfőn 15 órakor Ionizáló sugárzások elnyelődésének következményei
Első magreakciók. Targetmag
Magreakciók 7 N 14 17 8 7 N(, p) 14 O 17 8 O Első magreakciók p Targetmag 30 Al n P 27 13, 15. Megmaradási elvek: 1. a nukleonszám 2. a töltés megmaradását. 3. a spin, 4. a paritás, 5. az impulzus, 6.
Az anyagi rendszerek csoportosítása
Általános és szervetlen kémia 1. hét A kémia az anyagok tulajdonságainak leírásával, átalakulásaival, elıállításának lehetıségeivel és felhasználásával foglalkozik. Az általános kémia vizsgálja az anyagi
Mikroszerkezeti vizsgálatok
Mikroszerkezeti vizsgálatok Dr. Szabó Péter BME Anyagtudomány és Technológia Tanszék 463-2954 szpj@eik.bme.hu www.att.bme.hu Tematika Optikai mikroszkópos vizsgálatok, klasszikus metallográfia. Kristálytan,
RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN
RADIOAKTÍV HULLADÉKOK MINŐSÍTÉSE A PAKSI ATOMERŐMŰBEN Bujtás T., Ranga T., Vass P., Végh G. Hajdúszoboszló, 2012. április 24-26 Tartalom Bevezetés Radioaktív hulladékok csoportosítása, minősítése A minősítő
Auger elektron spektroszkópia (AES)
Auger elektron spektroszkópia (AES) Az AES módszer elve Pierre Auger francia fizikus röntgensugárzással gerjesztett argon atomok gerjesztési folyamatainak Wilson-féle ködkamrában történő tanulmányozása
Az ionizáló sugárzások fajtái, forrásai
Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,
Anyagismeret 2016/17. Diffúzió. Dr. Mészáros István Diffúzió
Anyagismeret 6/7 Diffúzió Dr. Mészáros István meszaros@eik.bme.hu Diffúzió Különféle anyagi részecskék anyagon belüli helyváltoztatása Az anyag lehet gáznemű, folyékony vagy szilárd Diffúzió Diffúzió -
Modern fizika laboratórium
Modern fizika laboratórium Röntgen-fluoreszcencia analízis Készítette: Básti József és Hagymási Imre 1. Bevezetés A röntgen-fluoreszcencia analízis (RFA) egy roncsolásmentes anyagvizsgálati módszer. Rövid
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. május 4. A mérés száma és címe: 9. Röntgen-fluoreszencia analízis Értékelés: A beadás dátuma: 2009. május 13. A mérést végezte: Márton Krisztina Zsigmond
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
Elektronspektrométerek fejlesztése az ATOMKI-ben (1970-2013)
Elektronspektrométerek fejlesztése az ATOMKI-ben (1970-2013) Kövér Ákos Atommagkutató Intézet, Magyar Tudományos Akadémia Debrecen Magspektroszkópiától az atomi ütközések fizikájáig 1970-től új kutatási
Az anyagi rendszerek csoportosítása
Kémia 1 A kémiai ismeretekről A modern technológiai folyamatok és a környezet védelmére tett intézkedések alig érthetőek kémiai tájékozottság nélkül. Ma már minden mérnök számára alapvető fontosságú a
Vékonyréteg szerkezetek mélységprofil-analízise
Vékonyréteg szerkezetek mélységprofil-analízise Vad Kálmán, Takáts Viktor, Csík Attila, Hakl József MTA Atommagkutató Intézet, Debrecen, Bem tér 18/C Langer Gábor Debreceni Egyetem, Szilárdtest Fizika
Tömegspektrometria. Bevezetés és Ionizációs módszerek
Tömegspektrometria Bevezetés és Ionizációs módszerek Tömegspektrometria A tömegspektrometria, különösen korszerű elválasztási módszerekkel kapcsolva, a mai analitikai gyakorlat leghatékonyabb módszere.
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
ATOMEMISSZIÓS SPEKTROSZKÓPIA
ATOMEMISSZIÓS SPEKTROSZKÓPIA Elvi jellemzők, amelyek meghatározzák a készülék felépítését magas hőmérsékletű fényforrás (elsősorban plazma, szikra, stb.) kis méretű sugárforrás (az önabszorpció csökkentése
ELEKTRONIKAI ALKATRÉSZEK
ELEKTRONIKAI ALKATRÉSZEK VEZETÉS VÁKUUMBAN (EMISSZIÓ) 2. ELŐADÁS Fémek kilépési munkája Termikus emisszió vákuumban Hideg (autoelektromos) emisszió vákuumban Fotoelektromos emisszió vákuumban KILÉPÉSI
Sugárterápia. Ionizáló sugárzások elnyelődésének következményei
Sugárterápia Sugárterápia: ionizáló sugárzások klinikai alkalmazása malignus daganatok eltávolításában. A sugárkezelés során célunk az ionizáló sugárzás terápiás dózisának elérése a kezelt daganatban a
Tömegspektrometria. Tömeganalizátorok
Tömegspektrometria Tömeganalizátorok Mintabeviteli rendszer Működési elv Vákuumrendszer Ionforrás Tömeganalizátor Detektor Electron impact (EI) Chemical ionization (CI) Atmospheric pressure (API) Electrospray
Periódusosság. 9-1 Az elemek csoportosítása: a periódusostáblázat
Periódusosság 9-1 Az elemek csoportosítása: aperiódusos táblázat 9-2 Fémek, nemfémek és ionjaik 9-3 Az atomok és ionok mérete 9-4 Ionizációs energia 9-5 Elektron affinitás 9-6 Mágneses 9-7 Az elemek periódikus
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-23/16-M Dr. Szalóki Imre, fizikus, egyetemi docens Radócz Gábor,
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész
PROMPT- ÉS KÉSŐ-GAMMA NEUTRONAKTIVÁCIÓS ANALÍZIS A GEOKÉMIÁBAN I. rész MTA Izotópkutató Intézet Gméling Katalin, 2009. november 16. gmeling@iki.kfki.hu Isle of Skye, UK 1 MAGSPEKTROSZKÓPIAI MÓDSZEREK Gerjesztés:
Előzmények. a:sige:h vékonyréteg. 100 rétegből álló a:si/ge rétegrendszer (MultiLayer) H szerepe: dangling bond passzíválása
a:sige:h vékonyréteg Előzmények 100 rétegből álló a:si/ge rétegrendszer (MultiLayer) H szerepe: dangling bond passzíválása 5 nm vastag rétegekből álló Si/Ge multiréteg diffúziós keveredés során a határfelületek
Anyagvizsgálati módszerek Elemanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elemanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Kémiai szenzorok 1/ 18 Elemanalitika Elemek minőségi és mennyiségi meghatározására
MTA Atommagkutató Intézet, 4026 Debrecen, Bem tér 18/c.
Negatív hidrogénionok keletkezése 7 kev-es OH + + Ar és OH + + aceton ütközésekben: Egy általános mechanizmus hidrogént tartalmazó molekuláris rendszerekre JUHASZ Zoltán a), BENE Erika a), RANGAMA Jimmy
2.1.2. Az elektronspektroszkópia kísérleti módszerei (XPS, AR-XPS, AES, XAES, REELS)
2.1.2. Az elektronspektroszkópia kísérleti módszerei 25 2.1.2. Az elektronspektroszkópia kísérleti módszerei (XPS, AR-XPS, AES, XAES, REELS) Ebben a feezetben a 2.1.1. alfeezetben ismertetett alapelenségekre
XXXVIII. KÉMIAI ELŐADÓI NAPOK
Magyar Kémikusok Egyesülete Csongrád Megyei Csoportja és a Magyar Kémikusok Egyesülete rendezvénye XXXVIII. KÉMIAI ELŐADÓI NAPOK Program és előadás-összefoglalók Szegedi Akadémiai Bizottság Székháza Szeged,
Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések
Sillabusz orvosi kémia szemináriumokhoz 1. Kémiai kötések Pécsi Tudományegyetem Általános Orvostudományi Kar 2010-2011. 1 A vegyületekben az atomokat kémiai kötésnek nevezett erők tartják össze. Az elektronok
Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére
Gamma-röntgen spektrométer és eljárás kifejlesztése anyagok elemi összetétele és izotópszelektív radioaktivitása egyidejű elemzésére OAH-ABA-16/14-M Dr. Szalóki Imre, egyetemi docens Radócz Gábor, PhD
13 Elektrokémia. Elektrokémia Dia 1 /52
13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Biofizika szeminárium PTE ÁOK Biofizikai Intézet Huber Tamás 2014. 02. 11-13. A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia
A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!
1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic
Prompt-gamma aktivációs analitika. Révay Zsolt
Prompt-gamma aktivációs analitika Révay Zsolt Prompt-gamma aktivációs analízis gerjesztés: neutronnyaláb detektált karakterisztikus sugárzás: gamma sugárzás Panorámaanalízis Elemi összetétel -- elvileg
Elektronegativitás. Elektronegativitás
Általános és szervetlen kémia 3. hét Elektronaffinitás Az az energiaváltozás, ami akkor következik be, ha 1 mól gáz halmazállapotú atomból 1 mól egyszeresen negatív töltésű anion keletkezik. Mértékegysége:
Mágneses módszerek a műszeres analitikában
Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek
Nagyteljesítményű elemanalitikai, nyomelemanalitikai módszerek 1. Atomspekroszkópiai módszerek 1.1. Atomabszorpciós módszerek, AAS 1.1.1. Láng-atomabszorpciós módszer, L-AAS 1.1.2. Grafitkemence atomabszorpciós
Negatív ion-fragmentumok keletkezése molekulák ütközéseiben
Negatív ion-fragmentumok keletkezése molekulák ütközéseiben Juhász Z. 1, J.-Y. Chesnel 2, E. Lattouf 2, Kovács S. T. S. 1, Bene E. 1, Herczku P. 1, B. A. Huber 2, A. Méry 2, J.-C. Poully 2, J. Rangama
1000 = 2000 (?), azaz a NexION 1000 ICP-MS is lehet tökéletes választás
1000 = 2000 (?), azaz a NexION 1000 ICP-MS is lehet tökéletes választás Dr. Béres István 2019. június 13. HUMAN HEALTH ENVIRO NMENTAL HEALTH 1 PerkinElmer atomspektroszkópiai megoldások - közös szoftveres
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
A kémiai kötés magasabb szinten
A kémiai kötés magasabb szinten 13-1 Mit kell tudnia a kötéselméletnek? 13- Vegyérték kötés elmélet 13-3 Atompályák hibridizációja 13-4 Többszörös kovalens kötések 13-5 Molekulapálya elmélet 13-6 Delokalizált
Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET)
Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Gerjesztés A gerjesztett állapotú elektron lecsengési lehetőségei Fluoreszcencia 10-9 s k f Foszforeszcencia 10-3 s k ph 10-15 s Fizika-Biofizika 2. Huber
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
7. osztály Hevesy verseny, megyei forduló, 2003.
Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető legyen! A feladatok megoldásához használhatod a periódusos
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
A sugárzás és az anyag kölcsönhatása. A béta-sugárzás és anyag kölcsönhatása
A sugárzás és az anyag kölcsönhatása A béta-sugárzás és anyag kölcsönhatása Cserenkov-sugárzás v>c/n, n törésmutató cos c nv Cserenkov-sugárzás Pl. vízre (n=1,337): 0,26 MeV c 8 m / s 2. 2* 10 A sugárzás
Speciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél
Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél Fémgőz és plazma Buza Gábor, Bauer Attila Messer Innovation Forum 2016. december
Felületvizsgáló és képalkotó módszerek
Felületvizsgáló és képalkotó módszerek Galbács Gábor Bevezetés A felületvizsgáló módszere köre az elmúlt évtizedekben az egyik leggyorsabban fejlődő területe volt az analitikai kémiának (és az anyagtudománynak).
KÉMIA FELVÉTELI DOLGOZAT
KÉMIA FELVÉTELI DOLGOZAT I. Egyszerű választásos teszt Karikázza be az egyetlen helyes, vagy egyetlen helytelen választ! 1. Hány neutront tartalmaz a 127-es tömegszámú, 53-as rendszámú jód izotóp? A) 74
Röntgenkeltésű foto- és Auger-elektron spektrumok modellezése klaszter molekulapálya módszerrel. Cserny István
Röntgenkeltésű foto- és Auger-elektron spektrumok modellezése klaszter molekulapálya módszerrel Cserny István Debrecen, 2005 Röntgenkeltésű foto- és Auger-elektron spektrumok modellezése klaszter molekulapálya
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν
Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez
Aktiválódás-számítások a Paksi Atomerőmű leszerelési tervéhez Vízszintes metszet (részlet) Mi aktiválódik? Reaktor-berendezések (acél szerkezeti elemek I.) Reaktor-berendezések (acél szerkezeti elemek
Radioaktív sugárzás és anyag kölcsönhatásán alapuló a szerkezet- és felületvizsgálatok
Radioaktív sugárzás és anyag kölcsönhatásán alapuló a szerkezet- és felületvizsgálatok Kilépő részecske Transzmisszió reflexió vagy abszorpció Spektroszkópia, a sugárzás energiájától függően: NMR, ESR,
Magyarkuti András. Nanofizika szeminárium JC Március 29. 1
Magyarkuti András Nanofizika szeminárium - JC 2012. Március 29. Nanofizika szeminárium JC 2012. Március 29. 1 Abstract Az áram jelentős részéhez a grafén csík szélén lokalizált állapotok járulnak hozzá
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Anyagszerkezet vizsgálati módszerek
Kromatográfia Folyadékkromatográfia-tömegspektrometria Anyagszerkezet vizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagszerkezet vizsgálati módszerek Kromatográfia 1/ 25 Folyadékkromatográfia-tömegspektrometria
Atomfizika előadás 2. Elektromosság elemi egysége szeptember 17.
Atomfizika előadás. Elektromosság elemi egysége 014. szeptember 17. Az elektrolízis Faraday-törvényei mkit Nm/A(k/A)It k/a 1--szer egy adott érték (egység létezése) minden egy vegyértékű elem 1 moljának
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
Nem mind arany, ami fénylik középkori nanotechnológia: történeti fémfonalak FIB/SEM vizsgálata
Nem mind arany, ami fénylik középkori nanotechnológia: történeti fémfonalak FIB/SEM vizsgálata Gherdán K., Weiszburg T., Járó M., Tóth A., Ratter K., Zajzon N., Bendő Zs., Varga G. és Szakmány Gy. 10 µm
Feladatok haladóknak
Feladatok haladóknak Szerkesztő: Magyarfalvi Gábor és Varga Szilárd (gmagyarf@chem.elte.hu, szilard.varga@bolyai.elte.hu) Feladatok A formai követelményeknek megfelelő dolgozatokat a nevezési lappal együtt
Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása
Kémia OKTV 2006/2007. II. forduló A feladatok megoldása Az értékelés szempontjai Csak a hibátlan megoldásokért adható a teljes pontszám. Részlegesen jó megoldásokat a részpontok alapján kell pontozni.
Részecske azonosítás kísérleti módszerei
Részecske azonosítás kísérleti módszerei Galgóczi Gábor Előadás vázlata A részecske azonosítás létjogosultsága Részecske azonosítás: Módszerek Detektorok ALICE-ból példa A részecskeazonosítás létjogosultsága
Pásztázó elektronmikroszkópia (SEM) Elektronsugaras mikroanalízis (EPMA)
Pásztázó elektronmikroszkópia (SEM) Elektronsugaras mikroanalízis (EPMA) Anyagtudományi analitikai vizsgálati módszerek Koczka Béla Szervetlen és Analitikai kémia Tanszék Mikroszkópos leképezési technikák
RÉTEGSTRUKTÚRÁK VIZSGÁLATA SZEKUNDER ION TÖMEGSPEKTROMÉTERREL (SIMS MÓDSZERREL)
RÉTEGSTRUKTÚRÁK VIZSGÁLATA SZEKUNDER ION TÖMEGSPEKTROMÉTERREL (SIMS MÓDSZERREL) A módszer alapja az a jelenség hogy ha egy szilárdtest felületét 1-10keV energiájú primer ionokkal bombázzuk akkora felületről
Elektromos áram. Vezetési jelenségek
Elektromos áram. Vezetési jelenségek Emlékeztető Elektromos áram: töltéshordozók egyirányú áramlása Áramkör részei: áramforrás, vezető, fogyasztó Áramköri jelek Emlékeztető Elektromos áram hatásai: Kémiai