Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Sugárzások és biológiai rendszerek
|
|
- Krisztián Vass
- 7 évvel ezelőtt
- Látták:
Átírás
1 Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások Mai kérdés: Becsülje meg, hány % van felszakadva egy makromolekulában azokból a kötésekből, ahol a kötési energia.7x10 - ev (kt=0.07 ev). Dr. Fidy Judit egyetemi tanár 015 Március 4 Sugárzások és biológiai rendszerek Elmaradt ábra a fehérje-dinamikáról Ionizáló és nem-ionizáló sugárzások Látható fény (nem ionizáló) Röntgensugárzás (Röntgen-cső, szerkezetvizsgálat,diagnosztika) Tormaperoxidáz Foszfoglicerát kináz (Magsugárzások és nagy energiájú röntgen sugárzás orvosi alkalmazásai Orvosi fizika MSc)
2 Fény Röntgen sug. : elekromágneses hullámok Logaritmikus skála 10 9 m = 1nanometer emlékeztető fotonenergia=hf (ev) 1 ev = 1.6 x C x1v=1.6 x Joule 800nm 1.55 ev 400nm 3.1 ev Elektromágneses hullámok - emlékeztető EM hullámok fontos tulajdonságai T H B t x E = E B = B max max sin ( π t + π x + Φ) T λ sin ( π t + π x + Φ) T λ Az elektromos és mágneses térnek azonos a fázisa és a periodicitása (T, λ) c = λ / T, f = 1/T, c = f λ(m/s) c = 99,79,458 m/s vákuumban c = E B
3 Elekromágneses hullámok kettős természet? Logaritmikus skála 800nm 1.55 ev X-rays 400nm 3.1 ev fotonenergia=hf (ev) A fény természete, elnyelődés és emisszió hullám -leírás foton - kép A fény hullám paraméterei A fény biológiai hatásai X-rays Szempontok: Mi nyeli el? Milyen mélyre jut? Milyen szerveket ér fény? UV-C nm UV-B nm UV-A nm Fénnyel kiváltott reakciók, terápiás beavatkozások 6. ev 1.8 ev
4 A fény biológiai hatásai Mit ér közvetlenül fény? A fény biológiai hatásai Mit ér közvetlenül fény? Immune supression Káros hatások szemre bőrre Direkt fotokémiai hatások genetikus anyag: az elnyelt foton közvetlenül vezet kémiai átalakuláshoz - UV fotodimerizáció DNS, RNS-ben (timin, citozin, uracil) - fotohidratáció -DNS-fehérje keresztkötés gén-állomány sérülése sejtpusztulás A fény biológiai hatásai Mit ér közvetlenül fény? A fény biológiai hatásai Milyen molekulák nyelik el? Pozitív hatások szemre bőrre Szervezetre? Ismert hatások: - D-vitamin szintézis (UV-A) - anyagcsere, hormonrendszer, immunrendszer stimulálása (VIS) - téli depresszió & melatonin hormon túltermelése. Sok az ismeretlen tényező! Relatív optikai denzitás Hemoglobin, mioglobin β-karotin Melanin Hullámhossz (nm) Endogén A-vitamin provitaminja-étellel jut be Melanocitákban: Tirozin oxidáció,polimerizáció barna, fekete, vörös színű granulumok UV fényvédők
5 A fény biológiai hatásai Milyen molekulák nyelik el? Endogén Relatív optikai denzitás fehérjék aromás aminósavai Hullámhossz (nm) DNS purin és pirimidin bázisai +Exogén kromofórok -ételfestékek -gyógyszerek -kozmetikumok.. A fény biológiai hatásai Milyen molekulák nyelik el? A fény biológiai hatásai Behatolási mélység? A fény biológiai hatásai Behatolási mélység? NUV UVB UVC UVA λ[nm] Szem UVA λ[nm] 360 λ[nm] Bőr írha Fény reflexiója cornea iris lencse 47 cornea iris lencse 36 5 bőralja Pigmentek elnyelése- barnulás Szénhidrogének elnyelése Aromás aminosavak elnyelése Fényterápia? retina 1 1 retina 1 Nukleinsavak elnyelése
6 A fény biológiai hatásai fény mint terápiás eszköz A fény biológiai hatásai fény mint terápiás eszköz 1. Sejtpusztítás fotokémiai mechanizmusokkal Indirekt fotokémiai reakciók Elektronátadás hν D D* D* + A D + + A - Termék : reaktív szabadgyök Terápiás alkalmazások: rákos sejtek elpusztítása fényérzékenyítőkön keresztül - specifikus kötődés + száloptika+lézerfény szervezeten belül Energiaátadás hν D D* D* + A D + A* Termék: szingulett oxigén -bőrgyógyászati alkalmazások felületi kezelések. Lézerek sebészeti alkalmazása: fénykés elnyelés energia felmelegedés karbonizáció vágás IR lézerek: szöveti víztartalom elnyelése UV-lézerek: felületi szerves molekulák elnyelése Lézerek sebészeti alkalmazása elnyelés --- energia --- felmelegedés szem-alkotó szövetek specifikus elnyelése Ar lézer: 488 nm, 514 nm Kr-lézer: 548 nm, 647 nm Vérerek elzárása a szemfenéken fotokoagulációval (alacsonyabb T fehérjék denaturációja asszociátumok)
7 A LASER Nemcsak erősítő, hanem speciális fényforrás A fény terjedésének és anyagi kölcsönhatásainak értelmezéséhez mind a hullám- mind a fotonleírást használjuk A lézer-fény speciális tulajdonságai -monokromatikus Δf/f ~ ( 10-6 ) Kettős természet - hullám Huygens elv, diffrakció, interferencia -koherens : nagy a koherencia-hossz (10 3 m 10-3 m) -kis divergencia (néhány szögperc) jól fókuszálható -nagy intenzitás átlagos intenzitás impulzus-intenzitás -részecske: foton (energia-kvantum) fotoelektromos hatás, energiaátadás anyagoknak kvantált energiaadagokban, kölcsönhatásokban partnere az elektron A fényelnyelés modellje Fény-foton koncepció Fény-foton koncepció anyaggal való kölcsönhatás magyarázata h f = h c λ A fény-elnyelés mértéke függ a hullámhossztólfotonenergiától Hemoglobin molekula oldata Abszorpciós spektrum h f = h c λ A fény-elnyelés mértéke függ a hullámhossztólfotonenergiától Hemoglobin molekula oldata Abszorpciós spektrum Elektron-pályaenergia E n szabad elektron-állapotok E n+1 E n Gerjesztés: fény-fotonenergia-felvétellel Elektron-pályaenergia E n szabad elektron-állapotok E n+ Gerjesztés: fotonenergia-felvétellel E n
8 Fényfoton elnyelése - spontán emissziója használt sémák, jelölések Optikai elektron-átmenetek FOTON ELEKTRON abszorpció és emisszió foton-képben pályanenergia E n Szabad elektron E n+ E n+1 E n pályaenergia E n hf hf 1 = E = E n+ 1 gerjesztés n+ E n E n relaxáció Pl. emisszió pályaenergiák Sok-elektronos rendszerek elektron-energiái Egyszerű példa: Cu atom Optikai foton-energia (~-3 ev) elnyelése - emissziója a legkülső leglazábban kötött elektronokat érinti E Kα 8 kev (L->K átmenet) Röntgen-tartomány! szingulett alapállapot S 0 szingulett gerjesztett állapot S 1 Szingulett állapot (singlet): s i i = 0 Sematikus ábrázolás: csak a legfelső betöltött nívó elektronjai Fényfoton elnyelése emissziója Mérés: optikai spektroszkópia Milyen fény-fotonok gerjesztenek? Mérés: optikai abszorpciós spektrum A~ε(λ) λ -Elnyelési -Abszorpciós spektrum -Kibocsátási -Emissziós spektrum elnyelés v. kibocsátás valószínűsége SPEKTRUM J 0 J = J 0 e J μx fényintenzitás abszorpciós spektrofotométer Lambert-Beer törvény híg oldatokban az abszorbancia arányos a koncentrációval ( 1 mv - részecske- sugárzás) hf = h c = hc 1 λ λ [ ] 1 1 ev [ cm ] λ hullámszám energia pl. részecske-energia fotonenergia IR- VIS UV Optikai spektroszkópia A= D= Abszorbancia Optikai denzitás J lg 0 = lg e μ x = ε λ J Moláris extinkció függ a -fotonenergiától -anyagi minőségtől ( ) c l Küvetta vastagsága Koncentráció
9 Milyen fotonok gerjesztenek? ε (λ) Egy elektronátmenet valószínűségét a kiindulási és a végső elektron-vibrációs pálya kvantumszámai határozzák meg (hullám-kép): Hemoglobin abszorpciós spektruma kiválasztási szabályok S 0 ->S Mennyit változhatnak a kvantumszámok? Δn = bármennyi, Δl = +/-1, Δm = 0 vagy +/-1 Δs = 0 + vibrációs módusok csatolása Moláris extinkció kvantumkémiai értelmezése: Átmeneti dipólus-momentum S 0 ->S 1 Gerjesztési vagy spontán emissziós átmenetben az elektron spinállapota nem változhat Megengedett, és tiltott átmenetek nagy vagy kis valószínűségű átmenetek NEM TÁRGYALTUK A kiválasztási szabályok kvantummechanikai háttere Feltesszük, hogy az oldatot olyan fénnyel világítjuk meg, amelyre teljesül a gerjesztési energia-feltétel hf = E n +1 E n Az elektronok a fény elektromos vektorának irányában elmozdulnak az energiaátmenet során. Mekkora a dipólusmomentum keltésének valószínűsége? Az elektromos dipólusmomentum várható értéke az átmenet során? M állapotfüggvény a g r r r r r ψ ( i, R ) = θ (, R ) φ( R ) ψ x, Q = ψ a elektronok magok j i j j = θa x, Q φa Q M a g Átmeneti momentum ( ) ( ) ( ) ˆ a μ ψ g Born-Oppenheimer közelítés az elektronok mozgása független a magokétól: az állapotfüggvény szorzat-alakú NEM TÁRGYALTUK A kiválasztási szabályok kvantummechanikai háttere r r r r r μ = μe + μmag = q i z j q e e Rj ψ a ( x, Q) = θa ( x, Q) φa ( Q) M a g ψ ˆ = a μ ψ g M komplex konjugált a g ( Q ) q e θ = a ( x, Q )[ ri ] θ g ( x, Q )dx a Q M ag Q φ gn Q dq M ag φ a φ 0 M Atomtörzsek vibrációs állapotai: g,n -- a gerjesztett molekuláris elektronállapot n.-ik vibrációs állapota r dipól operátor ( ) ( ) ( ) ( Q) φ ( Q)dQ gn a 0 = 0 gn NEM TÁRGYALTUK A kiválasztási szabályok kvantummechanikai háttere B M a ( Q) M ( Q ) ( Q) dq M a φ 0 ag φ gn ag φ ( Q) φ gn ( Q)dQ gn a 0 = 0 Átmeneti valószínűség = Bg a/einstein (indukált abszorpció) g a = konst M A spin-tiltást egy faktorral veszik figyelembe Nem ideális helyzetben: f spin 10 8 S a, 0 g, n g, n a,0 = konst. M g a S g, n a,0 f elektron-állapotok szimmetriája e 10 1 a molekula torzulása gerjesztett állapotban f vibr Franck-Condon átfedési integrálok 3
10 Abszorpciós spektroszkópia biofizikai alkalmazások lg I I 0 = ε λ Abszorbancia Optikai Denzitás ( ) c x moláris konc. moláris extinkció küvetta rétegvastagsága Molekuláris szerkezetvizsgálat Fontos mennyiségek Oszcillátor erő f 9 = 4.3 ε ~ ~ 10 d ( ν ) ν Kloroplaszt spektruma S S 0 1 hf=fotonenergia (ev)=134 λ ( nm) Hullámszám (cm -1 )=(1/ λ(nm))*10 7 pl. Vibrációk energiája cm -1 Elektronátmenetek és molekuláris rezgések gerjesztése MÉRÉS Az a-g átmeneti valószínűség K spin M multiplicitás a g az összes vibrációs állapotokat tekintve = const. ε ( f ) df f hullámszám 1600 cm cm -1 S 1 S 0 vibronikus átmenetek Fényabszorpció fényemisszió Fluoreszcencia: spontán fényemisszió gerjesztett állapotból azonos spinállapotú alapállapotba Fényabszorpció fényemisszió Fluoreszcencia: spontán fényemisszió gerjesztett állapotból azonos spinállapotú alapállapotba Átmeneti valószínűségek Einstein együtthatók: B ag abszorpció B ga indukált emisszió A ga spontán emisszió B a, g Feltétel: B g,a A g, a alap hf = ΔE ga gerj fotonsugárzás jelenléte B 1,N1J ' = B,1N J ' B 1, = B,1 + AN Termikus egyensúly: abszorpciók száma= spontán és indukált emissziók száma/idő N N Φ B em abs F g a =Φ = A Φ = ~ ~ F d F F g a = B a g Fluoreszcencia emisszió kvantumhatásfoka = 8π hf ~ 3 a g = K M ( ν ) ν ( ν = 1 ) λ Fluoreszcencia spektrum n c 3 3 a g B g a ε ~ ~ ~ ν ( ν ) d ν az abszorpciós és emissziós spektrumok görbe alatti területei (azonos állapotok között) egymásból kiszámíthatók
11 Gyakorlati ismeretek Molekula kölcsönhatásban a környezettel sávos spektrumok Gyakorlati ismeretek Molekula kölcsönhatásban a környezettel emisszió csak a legalsó gerjesztett állapotból Az elektron-pályák energiáit a molekulák diszkrét vibrációs állapotai kis mértékben perturbálják Az elektron-pályák energiáit a molekulák diszkrét vibrációs állapotai kis mértékben perturbálják gerjesztés relaxáció Aromás szénhidrogének A vibrációs nívók mind az abszorpciós, mind az emissziós átmenetek fotonenergiáiban új lehetőségeket jelentenek Egyes fotonenergiák helyett közeli Fotonenergiák sorozata a spektrumokban Molekulák vibrációi SÁVOK T hőmérséklet Környezeti kölcsönhatások gerjesztés relaxáció Aromás szénhidrogének Kasha-szabály A felsőbb gerjesztett állapotokból nincs átmenet az alapállapotba fotonemisszióval vibrációs relaxáció (energialeadás hő formájában) az elektronállapotokon belül, és az S 1 állapotba Emisszió csak az S 1 nívóról Gyakorlati ismeretek Molekula kölcsönhatásban a környezettel emisszió a gerjesztésnél hosszabb hullámhosszakon A mért abszorpciós és emissziós sávok energiája eltér egymástól Stokes-féle eltolódás Spontán fényemisszió: Lumineszcencia Jellemző paraméterek természetben ritka Az emisszió előfeltétele: gerjesztett elektronállapot - Az emissziós spektrum ΔJ Δλ hideg emisszió Stokes szabály Kasha szabály Sávos, vagy vonalas Az abszorpció és az emisszió is a legalsó vibrációs szintről történik hf abs > hf λ < λ abs fluo fluo Maximum-helyek - Az emisszió kvantumhatásfoka: az elnyelt és emittált fotonok számának aránya (fotolumineszcenciánál) Az emissziós spektrum görbe alatti területe Φ em N = N em absz = k em k + k em belső + k külső λ A gerjesztett elektron egyéb energialeadási reakciósebességei ( ) ν F ν d ν = 1 λ
12 NEM TÁRGYALTUK Spontán fényemisszió: Lumineszcencia Ritka jelenség a természetben Spontán fényemisszió: Lumineszcencia Fluoreszcencia és Foszforeszcencia A fényemisszió kvantumhatásfoka kicsi más reakcióutak az energialeadásra Megkülönböztetés az emittáló gerjesztett elektronállapot alapján. Jablonski diagram Az S 1 állapotú gerjesztett elektron spin-átfordulással átmehet a T 1 gerjesztett állapotba (energiacsökkenés), ahonnan az S 0 alapállapotba visszatérés tiltott T 1 : Triplett állapot T 1 : alacsonyabb energiájú, hosszú élettartamú metastabil gerjesztett állapot Foszforeszcencia: spontán fotonemisszió metastabil (T 1 ) állapotból i s i =1 NEM TÁRGYALTUK Jablonski diagram a vibronikus átmenetekkel.1. Spontán fényemisszió: Lumineszcencia Fluoreszcencia és Foszforeszcencia abszorpció S 1 Intersystem crossing, majd hőleadás T 1 foszforeszcencia emisszió Fluoreszcencia: -Megengedett elektron-átmenetből (S1->S0) származó spontán fényemisszió -Élettartama rövid, τ ~ 1-10 ns <-> gerjesztési idő ~10-3 ns -Karakterisztikus fotonenergia(tartomány) szín jellemzi - Többféle gerjesztési átmenettel is gerjeszthető
13 .1. Spontán fényemisszió: Lumineszcencia Fluoreszcencia és Foszforeszcencia.1. Spontán fényemisszió: Lumineszcencia Fluoreszcencia és Foszforeszcencia spektrumok összehasonlítása Foszforeszcencia: -Spontán fényemisszió metastabil átmenetből -Az emittáló nívó élettartama hosszú τ ~ ms, sec metastabil állapot természetesen lumineszkáló aminosav Triptofán - egy fehérjében Absz. Fluo Foszf -Az emittált fény fotonenergiája kisebb mint a fluoreszcenciáé -Hosszú élettartam -> lehetőség a környezeti energialeadásra emissziós intenzitás igen kicsi -> orvosi alkalmazása csekély Absz Fluo Foszforeszc. T=10K Vibrációs relaxáció λfoszf > λfluo > λabsz Stokes-féle eltolódás Köszönöm a figyelmet A következők olvasmányok. Nem lesznek tételszerűen számon kérve Irodalom: N.J.Turro: Modern Molecular Photochemistry, Benjamin/Cummings Publishing Co, London, 1978 J.B.Birks: Photophysics of Aromatic Molecules, Wiley, 1970, p P.W.Atkins: Molecular Quantum Mechanics, Oxford University Press,1994
14 Egy fontos fogalom: A fény hullám polarizáltsága Poláros fény Poláros fény A térerősség vektor iránya meghatározott szabályszerűséget mutat időben és/vagy térben a. Síkban/lineárisan poláros fény A térerősség vektorok iránya a hullám mentén állandó síkot határoz meg. A térerősség vektor iránya meghatározott szabályszerűséget mutat időben és/vagy térben b. Cirkulárisan poláros fény jobbra - balra c r A térerősség vektor végpontja a terjedés iránya körüli spirálison mozog. A c vektor irányára merőleges síkra vetítve E és B egyenletes körmozgást végez. Jobbra cirkulárisan poláros fény E r x Poláros fény Poláros fény A térerősség vektor iránya meghatározott szabályszerűséget mutat időben és/vagy térben A linárisan poláros fény két, jobbra, ill. balra cirkulárisan poláros fény eredője Balra cirkulárisan poláros fény c r x A térerősség vektor végpontja a terjedés iránya körüli spirálison mozog. A c vektor irányára merőleges síkra vetítve E és B egyenletes körmozgást végez. Jobbra cirkulárisan poláros fény Azonos terjedési sebesség, frekvencia és amplitudó Optikailag aktív anyagok (molekulák, szerkezetek) a linárisan poláros fény térerősség-vektorának irányát elfordítják Oka: speciális aszimmetria tükörszimmetria hiánya A mintában a cirkulárisan poláros komponensek terjedési sebessége különböző Balra cirkulárisan poláros fény c r x Jobbra cirkulárisan poláros fény Az optikai forgatás mértéke a molekulák minőségre jellemző és arányos a részecskeszámmal Különböző terjedési sebesség, azonos amplitudó Azonos terjedési sebesség és amplitudó
15 Poláros fény A polarizáció (hullám-tulajdonság) szerepe fény-abszorpcióban, fény-emisszióban Elliptikusan poláros fény Cirkuláris dikroizmus RNS A molekulák gerjesztésekor elektronállapotváltozás Dipólus vektorral jellemezhető átmeneti momentum töltéseltolódás RNS-bázisok Függ a molekula szerkezetétől (elektronpályák szimmetriájától) a szerkezethez orientált pl. triptofán aminosav: a molekula sikjában Fotoszelekció: poláros fény elektromos térerősség vektora azokat az elektronokat gerjeszti, ahol a keltett dipólus-momentum és a térerősség vektor iránya (közelitőleg) megegyezik. Emisszióban is dipólus-jelleg érvényesül. A két cirkulárisan poláros komponens törésmutatóban és abszorbanciában is különbözik a kölcsönhatás után az eredő elliptikusan polárossá válik Polarizált gerjesztés Álló molekula Polarizált emisszió Az emisszió polarizációfokának (p) mérése p= I VV -I VH I VV +I VH V vertikális polarizáció H horizontális A fény forrásai, lézerek, biológiai hatások Ha a molekula a gerjesztett állapot ideje alatt elfordul az emisszió polarizációja csökken Beágyazó környezet (pl. plazmamembrán ) fluiditásának jellemzése
16 Fény-keltő mechanizmusok és fényforrások A napsugárzás emissziós spektruma 1. Hőmérsékleti sugárzás folytonos spektrum Oka: anyagok belső szerkezetének termikusan gerjesztett rezgései 4 M = σ T Fény? T-től függ λ T = konst max Izzószálas fényforrások Nem gazdaságos! A Nap emissziós spektruma A látás érzékenységi görbéje Wolfram szál spektruma (Sollux lámpákban) A Nap hőmérsékleti sugárzása A Föld légkörét elérő sugárzás A Föld felszínét elérő sugárzás Halogén gáz töltet a szál párolgása ellen M : teljes kisugárzott intenzitás az emissziós spektrum görbe alatti területe A Nap sugárázásának UV tartományát a légkör elnyelése szűri ki O 3 tartalom! Fény-keltő mechanizmusok és fényforrások. 1. Lumineszcencián Metal vapour (e.g. Hg) lamps alapuló fényforrások Alapja: gázkisülési csövekben keltett elektrolumineszcencia - (az üvegbúra elnyeli az UV fényt, a kvarz nem) + - -Alacsony nyomású fémgőz-lámpák Pl. - Na-lámpa sárga fénye - germicidlámpa: alacsony nyomású higanygőz vonalas emissziós spektruma 54 nm-en elnyelődik baktériumok genetikai állományában sterilizáló hatás -Ívlámpák nagy nyomású Hg, Xe vagy Na-lámpák, ionizált plazma ívkisülése folytonos spektrum jellegzetes vonalakkal
17 Fémgőz lámpák - Fénycsövek Pl. alacsony nyomású Hg gőz + _ Kisnyomású Na-gőz lámpa emissziós spektruma Falra párologtatott vékony réteg bevonat A gáz-töltet elektrolumineszcenciája (Hg esetén UV fény) gerjeszti a fal bevonatának fotolumineszcenciáját. Ez már látható fény, ami áthatol az üvegfalon. A kilépő fény spektruma a bevonattól függ, célja a Nap spektrumának közelítése. Üvegfalú cső Jó fényhozam kompakt csövek Nagy-nyomású Na-gőz lámpa emissziós spektruma Erythema lámpa : λ a nm közeli UV- tartományban, uviol üvegfal Hg-gőz lámpa Speciális fényforrások: lézerek indukált és spontán emisszió - Modern megoldás világításra: szilárd félvezető diódák LED- Light Emitting Diode + - p n Áram hatása: pl. lyukak diffundálnak az n-tipusú félvezető vegyértéksávjába rekombináció a vezetési elektronokkal fényemisszió Spontán emissziós fény : Az egyes elektronátmenetek térben és időben rendezetlenül, véletlenszerűen történnek. Az egyes hullámvonulatok fázisa egymástól független. A fény inkoherens Indukált emissziós fény: A fényfotonok emisszióját az emittálandó fotonenergiával azonos energiájú foton jelenléte indukálja. A kibocsátott hullámvonulat a kiváltóval azonos fázisban lép ki, együtt koherensek
18 A lézerek működési elve indukált fényemisszió Fényerősítés indukált emisszióban --- populáció inverzió Átmeneti valószínűségek Einstein együtthatók: B ag abszorpció B ga indukált emisszió A ga spontán emisszió B a, g B g,a A g, a alap gerj ΔJ ' = K ( hf ) ΔJ ' = K ( hf ) Δt = Δx c ΔJ ' = K J ' = J ' e [ B1N B1N1] B[ N N ] J ' Δt [ N N ] μx 1 1 J ' Δx J ' Δt μ = K( N N ) 1 Populáció-inverzió fényerősítés Feltétel: hf = ΔE ga fotonsugárzás jelenléte B 1,N1J ' = B,1N J ' B 1, = B,1 + AN Termikus egyensúly: abszorpciók száma= spontán és indukált emissziók száma/idő állapotú rendszerben nem alakul ki LASER: Light Amplification by the Stimulated Emission of Radiation 1961, Rubin-lézer HOGYAN VALÓSÍTHATÓ MEG? Feltételek A lézerek működési feltételei A lézer anyaga Gáz, folyadék, szilárd test Követelmény: a gerjesztési és emissziós elektron-átmenetek három energiaállapoton belül történjenek, amelyek közül az egyik magasabb nívónak legyen hosszú az élettartama lézer-nívó A lézer anyag gerjesztése Az elektronok gerjesztése külső forrásból: Pl. gázkisülés, fényimpulzus Intenzív gerjesztés a felső nívó populálása átmenet a metastabíl nívóra N m a hosszú élettartam N g gerjesztés sugárzás nélküli átmenet metastabil lézer nívó N m miatt megnő, az alsó nívó kiürül: N m >>N 0 N 0 populáció inverzió: a fényerősítés feltétele
19 A lézerek működési feltételei A lézerek működési feltételei Fényerősítés indukált emisszióval Az optikai rezonátor Populáció inverzió mellett a rendszer a hf= E m -E 0 fotonenergiájú sugárzást erősíti, ilyen foton indukálja az emissziót 99.9% Erősíti a lézer tengelyével egyirányú sugárzást Leszűkíti az emisszió hullámhossztartományát 99% L = m λ N m nagy néhány spontán emisszió E 0 -ra fényerősítés állóhullámok kialakulása
Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Sugárzások és biológiai rendszerek
Elmaradt ábra a fehérje-dinamikáról Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások Dr. Fidy Judit egyetemi tanár 014 Febr.6 Tormaperoxidáz Foszfoglicerát kináz Sugárzások
RészletesebbenElektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Dr. Fidy Judit egyetemi tanár 2012 Febr.15
Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások Dr. Fidy Judit egyetemi tanár 2012 Febr.15 Sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások
RészletesebbenElektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások. Sugárzások és biológiai rendszerek
Elektromágneses sugárzások és biológiai rendszerek Ionizáló és nem-ionizáló sugárzások Dr. Fidy Judit egyetemi tanár 01 Febr.15 Tormaperoxidáz Foszfoglicerát kináz Sugárzások és biológiai rendszerek Ionizáló
RészletesebbenAbszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
RészletesebbenLumineszcencia Fényforrások
Kiegészítés: színkeverés Lumineszcencia Fényforrások Alapszinek additív keverése Alapszinek kiegészítő szineinek keverése: Szubtraktív keverés Fidy udit Egyetemi tanár 2015, November 5 Emlékeztető.. Abszorpciós
RészletesebbenLumineszcencia. Lumineszcencia. mindenütt. Lumineszcencia mindenütt. Lumineszcencia mindenütt. Alapjai, tulajdonságai, mérése. Kellermayer Miklós
Alapjai, tulajdonságai, mérése Kellermayer Miklós Fotolumineszcencia Radiolumineszcencia Fotolumineszcencia Radiolumineszcencia Aurora borrealis (sarki fény) Biolumineszcencia GFP-egér Biolumineszcencia
RészletesebbenNév... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
RészletesebbenSzerves oldott anyagok molekuláris spektroszkópiájának alapjai
Szerves oldott anyagok molekuláris spektroszkópiájának alapjai 1. Oldott molekulában lejátszódó energetikai jelenségek a Jablonski féle energia diagram alapján 2. Példák oldatok abszorpciójára és fotolumineszcenciájára
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
RészletesebbenOPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
RészletesebbenLumineszcencia spektrometria összefoglaló
Lumineszcencia spektrometria összefoglaló Ismétlés: fény (elektromágneses sugárzás) elnyelés: abszorpció elektron gerjesztés: excitáció alap és gerjesztett állapot atomi energiaszintek, energiaszintek
RészletesebbenAz elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
RészletesebbenLumineszcencia spektrometria összefoglaló
Lumineszcencia spektrometria összefoglaló Ismétlés: fény (elektromágneses sugárzás) elnyelés: abszorpció elektron gerjesztés: excitáció alap és gerjesztett állapot atomi energiaszintek, energiaszintek
RészletesebbenLumineszcencia spektroszkópia
Lumineszcencia spektroszkópia Elektron+vibrációs+rotációs-spektroszkópia alapjai 213. február Fizika-Biofizika II. szemeszter Orbán József PTE ÁOK Biofizikai Intézet Definíciók, törvények SPEKTROSZKÓPIAI
RészletesebbenAbszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
RészletesebbenTartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
RészletesebbenAbszorpciós fotometria
A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség
RészletesebbenFluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Modern Biofizikai Kutatási Módszerek 2012. 11. 08. Fotonok és molekulák ütközése Fény (foton) ütközése a molekulákkal fényszóródás abszorpció E=hν
RészletesebbenRöntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
RészletesebbenMűszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
RészletesebbenSpeciális fluoreszcencia spektroszkópiai módszerek
Speciális fluoreszcencia spektroszkópiai módszerek Fluoreszcencia kioltás Fluoreszcencia Rezonancia Energia Transzfer (FRET), Lumineszcencia A molekuláknak azt a fényemisszióját, melyet a valamilyen módon
RészletesebbenA fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás
A fény keletkezése Hőmérsékleti sugárzás Hőmérsékleti sugárzás Lumineszcencia Lézer Tapasztalat: a forró testek Hőmérsékleti sugárzás Környezetének hőfokától függetlenül minden test minden, abszolút nulla
RészletesebbenMézerek és lézerek. Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19.
és lézerek Berta Miklós SZE, Fizika és Kémia Tsz. 2006. november 19. Fény és anyag kölcsönhatása 2 / 19 Fény és anyag kölcsönhatása Fény és anyag kölcsönhatása E 2 (1) (2) (3) E 1 (1) gerjesztés (2) spontán
RészletesebbenFluoreszcencia módszerek (Kioltás, Anizotrópia, FRET)
Fluoreszcencia módszerek (Kioltás, Anizotrópia, FRET) Biofizika szeminárium PTE ÁOK Biofizikai Intézet Huber Tamás 2014. 02. 11-13. A gerjesztett állapotú elektron lecsengési lehetőségei Gerjesztés Fluoreszcencia
RészletesebbenOrvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
RészletesebbenLumineszcencia. Lumineszcencia. Molekulaszerkezet. Atomszerkezet
Lumineszcencia Lumineszcencia Alapok, tulajdonságok Molekula energiája Spinállapotok Lumineszcencia típusai Lumineszcencia átmenetei A lumineszcencia paraméterei A lumineszcencia mérése Polarizáció, anizotrópia
RészletesebbenBiofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
RészletesebbenE (total) = E (translational) + E (rotation) + E (vibration) + E (electronic) + E (electronic
Abszorpciós spektroszkópia Abszorpciós spektrofotometria 29.2.2. Az abszorpciós spektroszkópia a fényabszorpció jelenségét használja fel híg oldatok minőségi és mennyiségi vizsgálatára. Abszorpció Az elektromágneses
RészletesebbenAbszorpciós spektroszkópia
Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses
RészletesebbenA lézer alapjairól (az iskolában)
A lézer alapjairól (az iskolában) Dr. Sükösd Csaba c. egyetemi tanár Budapesti Műszaki és Gazdaságtudományi Egyetem Tartalom Elektromágneses hullám (fény) kibocsátása Hogyan bocsát ki fényt egy atom? o
RészletesebbenFluoreszcencia 2. (Kioltás, Anizotrópia, FRET)
Fluoreszcencia 2. (Kioltás, Anizotrópia, FRET) Gerjesztés A gerjesztett állapotú elektron lecsengési lehetőségei Fluoreszcencia 10-9 s k f Foszforeszcencia 10-3 s k ph 10-15 s Fizika-Biofizika 2. Huber
RészletesebbenA fény tulajdonságai
Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó
RészletesebbenBevezetés a fluoreszcenciába
Bevezetés a fluoreszcenciába Gerjesztett Excited Singlet szingulett Manifold állapot S1 Jablonski diagram Belső internal konverzió conversion S2 k isc k -isc Triplett állapot Excited Triplet Manifold T1
RészletesebbenAbszorpciós fotometria
2013 január Abszorpciós fotometria Elektron-spektroszkópia alapjai Biofizika. szemeszter Orbán József PTE ÁOK Biofizikai ntézet Definíciók, törvények FÉNYTAN ALAPOK SMÉTLÉS - Elektromágneses sugárzás,
RészletesebbenReakciókinetika és katalízis
Reakciókinetika és katalízis 8. előadás: 1/18 A fény hatására lejátszódó folyamatok részlépései: az elektromágneses sugárzás (foton) elnyelése ill. kibocsátása - fizikai folyamatok a gerjesztett részecskék
RészletesebbenFotokémiai alapfogalmak, a fotonok és a molekulák kölcsönhatása
Fotokémiai alapfogalmak, a fotonok és a molekulák kölcsönhatása A fotokémia tárgya A földi élet számára alapvető a Nap mint energiaforrás Termodinamika. főtétele: zárt rendszer energiája állandó Termodinamika.
RészletesebbenAbszorpciós fotometria
abszorpció Abszorpciós fotometria Spektroszkópia - Színképvizsgálat Spektro-: görög; jelente kép/szín -szkópia: görög; néz/látás/vizsgálat Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2012. február Vizsgálatok
RészletesebbenKoherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon sugároznak ki elektromágneses hullámokat Pl: Termikus sugárzó Koherens
RészletesebbenDr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft
Dr. JUVANCZ ZOLTÁN Óbudai Egyetem Dr. FENYVESI ÉVA CycloLab Kft Atom- és molekula-spektroszkópiás módszerek Módszer Elv Vizsgált anyag típusa Atom abszorpciós spektrofotometria (AAS) A szervetlen Lángfotometria
RészletesebbenKoherens fény (miért is különleges a lézernyaláb?)
Koherens fény (miért is különleges a lézernyaláb?) Inkoherens fény Atomok egymástól függetlenül sugároznak ki különböző hullámhosszon, különböző fázissal fotonokat. Pl: Termikus sugárzó Koherens fény Atomok
RészletesebbenOptikai spektroszkópiai módszerek
Mi történhet, ha egy mintát fénnyel világítunk meg? Optikai spektroszkópiai módszerek megvilágító fény (elnyelt fény) minta átjutott fény Abszorpció UV-VIS, IR Smeller László kibocsátott fény Lumineszcencia
RészletesebbenMűszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
RészletesebbenAbszorpciós fotometria
abszorpció A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2013. január Elektromágneses hullám Transzverzális hullám elektromos térerősségvektor hullámhossz E B x mágneses térerősségvektor
RészletesebbenFOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK
FOTOKÉMIAI REAKCIÓK, REAKCIÓKINETIKAI ALAPOK Légköri nyomanyagok forrásai: bioszféra hiroszféra litoszféra világűr emberi tevékenység AMI BELÉP, ANNAK TÁVOZNIA IS KELL! Légköri nyomanyagok nyelői: száraz
RészletesebbenLumineszcencia alapjelenségek
Lumineszcencia alapjelenségek (Nyitrai Miklós; 211 február 7.) Lumineszcencia Definíció: Egyes anyagok spontán fénykibocsátása, a termikus fényemissziótól függetlenül, elektrongerjesztést követően. Lumineszcens
RészletesebbenTalián Csaba Gábor Biofizikai Intézet 2012. április 17.
SUGÁRZÁSOK. ELEKTROMÁGNESES HULLÁMOK. Talián Csaba Gábor Biofizikai Intézet 2012. április 17. MI A SUGÁRZÁS? ENERGIA TERJEDÉSE A TÉRBEN RÉSZECSKÉK VAGY HULLÁMOK HALADÓ MOZGÁSA RÉVÉN Részecske: α-, β-sugárzás
RészletesebbenA fény. Abszorpciós fotometria Fluoreszcencia spektroszkópia. A fény. A spektrumok megjelenési formái. A fény kettıs természete: Huber Tamás
A fény Abszorpciós fotometria Fluoreszcencia spektroszkópia. 2010. október 19. Huber Tamás PTE ÁOK Biofizikai Intézet E A fény elektromos térerısségvektor hullámhossz A fény kettıs természete: Hullám (terjedéskor)
RészletesebbenRöntgensugárzás. Röntgensugárzás
Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ
RészletesebbenLumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió
Fluoresz Fluores zcenc cencia ia spektroszkópia Lumineszcencia: a fényt kibocsátó rendszer nem a magas hőmérséklet miatt világít!!! Ez az ún. hideg emisszió emisszió jelensége. Orbán József Biofizika szeminárium
RészletesebbenATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
RészletesebbenA hőmérsékleti sugárzás
A hőmérsékleti sugárzás Felhevített tárgyak több száz fokos hőmérsékletet elérve először vörösen majd még magasabb hőmérsékleten sárgán izzanak, tehát fényt (elektromágneses hullámokat a látható tartományban)
RészletesebbenOptika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
RészletesebbenSzínképelemzés. Romsics Imre 2014. április 11.
Színképelemzés Romsics Imre 2014. április 11. 1 Más néven: Spektrofotometria A színképből kinyert információkból megállapítható: az atomok elektronszerkezete az elektronállapotokat jellemző kvantumszámok
RészletesebbenA hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
RészletesebbenSugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
RészletesebbenA fény keletkezése. Hőmérsékleti sugárzás. Hőmérsékleti sugárzás. Lumineszcencia. Lézer. Tapasztalat: a forró testek Hőmérsékleti sugárzás
A fény keletkezése Hőmérsékleti sugárzás Hőmérsékleti sugárzás Lumineszcencia Lézer Tapasztalat: a forró testek Hőmérsékleti sugárzás Környezetének hőfokától függetlenül minden test minden, abszolút nulla
RészletesebbenSzervetlen komponensek analízise. A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.
Szervetlen komponensek analízise A, Atomspektroszkópia B, Molekulaspektroszkópia C, Elektrokémia D, Egyéb (radiokémia, termikus analízis, stb.) A fény λ i( k r ωt + φ0 ) Elektromágneses sugárzás E( r,
RészletesebbenElektronszínképek Ultraibolya- és látható spektroszkópia
Elektronszínképek Ultraibolya- és látható spektroszkópia Elektronátmenetek elektromos dipólus-átmenetek (a molekula változó dipólusmomentuma lép kölcsönhatásba az elektromágneses sugárzás elektromos terével)
RészletesebbenAdatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
RészletesebbenA fény és az anyag kölcsönhatása
A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és
RészletesebbenBevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
RészletesebbenA fény mint elektromágneses hullám és mint fényrészecske
A fény mint elektromágneses hullám és mint fényrészecske Segítség az 5. tétel (Hogyan alkalmazható a hullám-részecske kettősség gondolata a fénysugárzás esetében?) megértéséhez és megtanulásához, továbbá
Részletesebben1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata
1. mérés: Benzolszármazékok UV spektrofotometriás vizsgálata A vegyi anyagok (atomok és molekulák) és az elektromágneses sugárzás kölcsönhatásának vizsgálata jelentős szerepet játszik ezen anyagok mind
RészletesebbenOPTIKA. Vozáry Eszter November
OPTIKA Vozáry Eszter 2015. November FÉNY Energia: elektromágneses hullám c = λf részecske foton ε = hf Szubjektív érzet látás fény és színérzékelés ELEKTROMÁGNESES SPEKTRUM c = λf ε = hf FÉNY TRANSZVERZÁLIS
RészletesebbenHogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Részletesebbenhttp://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését
RészletesebbenFluoreszcencia spektroszkópia
Elektromágneses spektrum Fluoreszcencia spektroszkópia Ujfalusi Zoltán A fény: elektromágneses hullám Biofizika szeminárium PTE ÁOK Biofizikai Intézet 2011. február 14-16. Lumineszcencia: a fényt kibocsátó
RészletesebbenCD-spektroszkópia. Az ORD spektroskópia alapja
CD-spektroszkópia Az ORD spektroskópia alapja - A XIX. század elején Biot megfigyelte, hogy bizonyos, a természetben előforduló szerves anyagok a lineárisan polarizált fény síkját elforgatják. - 1817-ben
RészletesebbenA LÉZERSUGÁRZÁS ALAPVETŐ ISMÉRVEI SPONTÁN VS. INDUKÁLT EMISSZIÓ A FÉNYERŐSÍTÉS FELTÉTELE A POPULÁCIÓ INVERZIÓ FELTÉTELE
A LÉZERSUGÁRZÁS ALAPVETŐ ISMÉRVEI Időbeli inkoherencia Térbeli inkoherencia Polikromatikus fény Kis energia sűrűség Nem poláros fény Spontán emisszió Térbeli koherencia Indukált emisszió Időbeli koherencia
RészletesebbenFluoreszcencia spektroszkópia
Fluoreszcencia spektroszkópia A fény: elektromágneses hullám Huber Tamás Biofizika szeminárium PTE ÁOK Biofizikai Intézet 2014. február 04-06. 1 Elektromágneses spektrum Lumineszcencia: gerjesztett állapotú
Részletesebben2, = 5221 K (7.2)
7. Gyakorlat 4A-7 Az emberi szem kb. 555 nm hullámhossznál a Iegnagyobb érzékenységű. Adjuk meg annak a fekete testnek a hőmérsékletét, amely sugárzásának a spektrális teljesitménye ezen a hullámhosszon
RészletesebbenA csillagközi anyag. Interstellar medium (ISM) Bonyolult dinamika. turbulens áramlások MHD
A csillagközi anyag Interstellar medium (ISM) gáz + por Ebből jönnek létre az újabb és újabb csillagok Bonyolult dinamika turbulens áramlások lökéshullámok MHD Speciális kémia porszemcsék képződése, bomlása
RészletesebbenA kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
RészletesebbenAz elektromágneses spektrum és a lézer
Az elektromágneses spektrum és a lézer A fény Ujfalusi Zoltán PTE ÁOK Biofizikai Intézet 2010. szeptember Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm
RészletesebbenLézerek. A lézerműködés feltételei. Lézerek osztályozása. Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok
Lézerek Lézerek A lézerműködés feltételei Lézerek osztályozása Folytonos lézerek (He-Ne) Impulzus üzemű lézerek (Nd-YAG, Ti:Sa) Ultrarövid impulzusok Extrém energiák Alkalmazások A lézerműködés feltételei
RészletesebbenRagyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól
Ragyogó molekulák: dióhéjban a fluoreszcenciáról és biológiai alkalmazásairól Kele Péter egyetemi adjunktus Lumineszcencia jelenségek Biolumineszcencia (biológiai folyamat, pl. luciferin-luciferáz) Kemilumineszcencia
RészletesebbenAtommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
RészletesebbenAz ionizáló sugárzások fajtái, forrásai
Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,
RészletesebbenAz áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai
Az áramlási citométer és sejtszorter felépítése és működése, diagnosztikai alkalmazásai Az áramlási citométer és sejtszorter felépítése és működése Kereskedelmi forgalomban kapható készülékek 1 Fogalmak
RészletesebbenInfravörös, spektroszkópia
Infravörös, Raman és CD spektroszkópia Spektroszkópia Az EM sugárzás abszorbcióján alapszik: látható (leggyakrabban kvantitatív) UV IR (inkább kvalitatív) RAMAN ESR (mikrohullám) NMR (rádióhullám) Fény
RészletesebbenAz időtől független Schrödinger-egyenlet (energia sajátértékegyenlet), A Laplace operátor derékszögű koordinátarendszerben
Atomfizika ψ ψ ψ ψ ψ E z y x U z y x m = + + + ),, ( h ) ( ) ( ) ( ) ( r r r r ψ ψ ψ E U m = + Δ h z y x + + = Δ ),, ( ) ( z y x ψ =ψ r Az időtől független Schrödinger-egyenlet (energia sajátértékegyenlet),
RészletesebbenAz Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
RészletesebbenAlkalmazás a makrókanónikus sokaságra: A fotongáz
Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,
RészletesebbenElektromágneses hullámegyenlet
Elektromágneses hullámegyenlet Valódi töltésektől és vezetési áramoktól mentes szigetelőkre felírva az első két egyenletet: Az anyagegyenletek továbbá: Ezekből levezethetők a homogén hullámegyenletek a
RészletesebbenAtomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
RészletesebbenMolekulaspektroszkópiai módszerek UV-VIS; IR
Molekulaspektroszkópiai módszerek UV-VIS; IR Fény és anyag kölcsönhatása! Optikai módszerek Fényelnyelés mérése (Abszorpción alapul) Fénykibocsátás mérése (Emisszión alapul) Atomspektroszkópiai módszerek
RészletesebbenAz optika tudományterületei
Az optika tudományterületei Optika FIZIKA BSc, III/1. 1. / 17 Erdei Gábor Elektromágneses spektrum http://infothread.org/science/physics/electromagnetic%20spectrum.jpg Optika FIZIKA BSc, III/1. 2. / 17
RészletesebbenOptika Gröller BMF Kandó MTI
Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Az elektromágneses spektrum Az anyag és a fény kölcsönhatása Visszaverődés, reflexió Törés, kettőstörés, polarizáció
RészletesebbenA CD alapjai. Fény: elektromágneses hullám, elektromos és mágneses tér időbeli és térbeli periodikus változása
Fehérje Analitika 2. Spektroszkópiás technikák MSC, 2011. tavaszi félév CD Cirkuláris Dikroizmus spektroszkópia A CD alapjai Fény: elektromágneses hullám, elektromos és mágneses tér időbeli és térbeli
Részletesebbenwww.biophys.dote.hu jelszó: geta5
www.biophys.dote.hu felhasználónév: hallgatok jelszó: geta5 Mi a Biofizika? 1. Fizikai módszerek alkalmazása biológiai rendszerek kutatására Pl. Rtg. diffrakciós kísérletek makromolekulák szerkezetének
RészletesebbenLaser / lézer. Egy kis történelem. Egy kis történelem. Egy kis történelem. 1917 - Albert Einstein: az indukált emisszió elméleti predikciója
Egy kis történelem 1917 - Albert Einstein: az indukált emisszió elméleti predikciója Laser / lézer 1954 - N.G. Basow, A.M. Prochorow, C. Townes: ammonia maser light amplification by stimulated emission
RészletesebbenNAGY ENERGIA SŰRŰSÉGŰ HEGESZTÉSI ELJÁRÁSOK
Budapesti Műszaki és Gazdaságtudományi Egyetem NAGY ENERGIA SŰRŰSÉGŰ HEGESZTÉSI ELJÁRÁSOK Dr. Palotás Béla Mechanikai Technológia és Anyagszerkezettani Tanszék Elektronsugaras hegesztés A katódból kilépő
RészletesebbenFény kölcsönhatása az anyaggal:
Fény kölcsönhatása az Fény kölcsönhatása az : szórás, abszorpció, emisszió Kellermayer Miklós Fényszórás A fényszórás mérése, orvosi alkalmazásai Lord Rayleigh (1842-1919) J 0 Light Fényforrás source Rayleigh
RészletesebbenConcursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVIII-a, Cluj-Napoca Proba teoretică, 1 iunie II. Feladat: Lézer (10 pont)
Concursul Preolimpic de Fizică România - Ungaria - Moldova Ediţia a XVIII-a, Cluj-Napoca Proba teoretică, 1 iunie 2015 II. Feladat: Lézer (10 pont) A lézer (LASER) mozaikszót Gordon Gould amerikai fizikus
RészletesebbenMunkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél
Munkagázok hatása a hegesztési technológiára és a hegesztési kötésre a CO 2 és a szilárdtest lézersugaras hegesztéseknél Fémgőz és plazma Buza Gábor, Bauer Attila Messer Innovation Forum 2016. december
RészletesebbenVisszaverődés. Optikai alapfogalmak. Az elektromágneses spektrum. Az anyag és a fény kölcsönhatása. n = c vákuum /c közeg
Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Az elektromágneses spektrum Az anyag és a fény kölcsönhatása Visszaverődés Visszaverődés, reflexió Törés, kettőstörés,
RészletesebbenOrvosi biofizika. 1 Az orvostudomány és a biofizika kapcsolata. Sugárzások a medicinában. gyakorlatok. 1. félév előadásai
Orvosi biofizika 1. félév: 1,5 óra előadás + óra gyakorlat. félév: óra előadás + óra gyakorlat Fizika az orvostudományban SE Biofizikai és Sugárbiológiai Intézet igazgató: Prof. Kellermayer Miklós tanulmányi
RészletesebbenSugárzások kölcsönhatása az anyaggal
Sugárzások kölcsönhatása az anyaggal Dr. Vincze Árpád vincze@oah.hu Mitől függ a kölcsönhatás? VÁLASZ: Az anyag felépítése A sugárzások típusai, forrásai és főbb tulajdonságai A sugárzások és az anyag
RészletesebbenBiofizika. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? A biológiában és orvostudományban alkalmazott fizikai módszerek tárgyalása
Biofizika Csik Gabriella Eötvös Loránd kora diákjait tréfásan jellemzi : határozott céllal jön az egyetemre, ügyvéd, politikus vagy orvos akar lenni. Amint az egyetembe lép, kritizálja tanárait, s az egész
Részletesebben