A feladatlap 5 6. o. Országos döntı Számkeresztrejtvény
|
|
- Lilla Gyöngyi Bodnár
- 8 évvel ezelőtt
- Látták:
Átírás
1 A feladatlap 6. o. Országos döntı.. 8. Számkeresztrejtvény Azonosító: a b c Pontozás: A táblázatba beírt számokra - pont, összesen 7. A megoldásokra feladatonként pont, összesen 8 = 6 pont. Szerezhetı pontok száma összesen: = 7 p. Az üres és a betőket tartalmazó négyzetekbe kell írni a számokat. Vízszintes a. Egy személygépkocsi országúton km-en átlagosan 8 liter benzint fogyaszt, városban litert. A km-óra km-t mutat. Az út harmadát városban tette meg, a többit országúton. Hány liter benzint használhatott el eddig a gépkocsi? d f l n j h g o e m k i b. Viktor úgy helyezte el a kockáit, hogy az elsı sorba hármat rakott, s minden további sorba -vel többet. Hány kocka van az elsı öt sorban összesen? d. Egy lécet úgy főrészelnek két darabra, hogy az egyik -szor akkora, mint a másik. Hány cm hosszú a nagyobbik darab, ha az egész léc m 6 cm hosszú? f. Januártól júniusig minden nap feljegyeztem a napi középhımérsékletet. Január: - ºC, február: - ºC, március: 7 ºC, április: ºC, május: ºC, június: ºC. Hány ºC a hat hónap alatti átlagos napi kızéphımérséklet? g. Egy repülıgép 8 km-es útra indult. Az elsı leszállóhelyig megtette az út harmadrészét. Hány km van még hátra az útjából? cm cm h. A kıdarabot a mérıhengerbe tettük. Hány köbcentiméter a kıdarab térfogata?
2 j. Hány másodperc alatt halad át a híd lábához érkezı vonat a hídon, ha egy óra alatt 6 kilométert tesz meg? HÍD 7 8 km n. Egészítsd ki az alábbi cm -es, g tömegő kockákból álló építményt olyan téglatestté, amelynek alapterülete cm, s tömege g! Hány gramm a kiegészítéshez használt kockák tömege összesen? o. A strand medencéjét két tartályból töltik fel. Az egyikbıl és fél óra alatt 78 liter, a másikból 8 liter víz folyik a medencébe. Hány literrel több folyik a második tartályból a medencébe óra alatt? Függıleges a. Egy 6 literes medence óra alatt telik meg, ha egyenletesen folyik a csapból a víz. Hány liter víz folyik a medencébe 8 perc alatt? c. Egy m alapterülető lakás ára 8 millió Ft. Hány négyzetméternyi lakás ér 8 Ft-ot? e. Egy 8 m hosszú alumínium vezeték tömege 86 g. Hány gramm tömegő vezeték marad, ha felhasználunk belıle egy m-es darabot, majd egy 6 g tömegő részt?
3 g. Az edényben lévı olajnak 6 kg a tömege. Hány deciliter olajnak a tömege 7 g? (Az ábráról leolvasható az edényben lévı olaj mennyisége.) l h. Két autó egymással ellentétes irányba egyszerre indul el egy városból. Az egyik km-t tesz meg óránként, a másik km-t. Indulás után hány perc múlva lesz közöttük 6 km távolság? i. Egy km-es útnak megtettük a részét. Hány m-es utat kellett még megtennünk? k. Egy kismotor másfél perc alatt métert tett meg. Mennyi utat tett meg ilyen sebességgel perc mp alatt? l. Egy kerékpáros óra alatt ért A faluból a B faluba. Továbbra is ilyen sebességgel haladva 6 perc alatt ért a C faluba. Hány km-re van A-tól a C falu? A B km m. Egy m-es szalagnak levágták a részét. Hány cm maradt?
4 Országos döntı A feladatlap 6. o. A számkeresztrejtvény megoldása Pontozás: A táblázatba beírt számokra - pont, összesen 7. A megoldásokra feladatonként pont, összesen 8 = 6 pont. Szerezhetı pontok száma összesen: = 7 pont. Vízszintes a. Az út km Az út harmadrésze km : = 7 km km-enként litert fogyaszt. 7 km-en 7 liter = 87 liter a fogyasztás. Az út kétharmad része km : = km km-enként 8 litert fogyaszt. km-en 8 liter = 7 liter a fogyasztás. Az összes benzinfelhasználás: 87 l + 7 l = l b. Az elsı öt sorban összesen kocka van d. 6 cm : = 7 cm f. ( ) : 6 = g. 8 km : = 7 km h. cm 6 cm = cm x x j. osztásköz km = m osztásköz m : = m A vonat hossza m = 8 m A híd hossza m = 6 m óra alatt 6 m perc alatt 6 m mp alatt m (8 m + 6 m)-t : = mp alatt tesz meg. n. cm g 6 cm g m = V : t a = 6 cm : cm = cm A kiegészítéshez használt kockák térfogata 6 cm cm = cm, tömege g. o. és fél óra alatt 8 l 78 l = literrel folyik ki több víz a.-ból. óra alatt l = liter.
5 Függıleges a. perc alatt 6 liter perc alatt 6 l : = liter 8 perc alatt liter 8 = liter c. m 8 Ft m 8 : = Ft 8 : = m -es lakás ér 8 Ft-ot. e. 8 m 86 g m 86 g : 8 = 7 g m 7 g = g Marad 86 g g = g m Ezután marad g 6 g = 7 g. 6g g. 8 liter olaj tömege 6 kg liter olaj tömege 6 kg : 8 = 8 kg liter = liter = dl 7 kg h. óra alatt km + km = 8 km-rel távolodnak egymástól. 6 km távolság (6 : 8) 7 óra = perc múlva lesz közöttük. i. m : 7 = m k. mp alatt m mp alatt m : = m 6 mp alatt m 6 = 6 m. l. osztásköz m osztásköz m : = m AB távolság m = m = km 6 perc alatt m-t tett meg. perc alatt m : 6 = m-t tett meg. 6 perc alatt m 6 = m = km-t tett meg. Az AC távolság km + km = km. m. cm : = cm maradt meg.
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. szakiskolai évfolyam 1. félév ESZKÖZÖK Matematika A 9. szakiskolai évfolyam Betűkészlet csoportalakításhoz A D G B E H C F G H I J Matematika A 9. szakiskolai
3 6. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2011. Egységnyi térfogatú anyag tömege
Jármezei Tamás Egységnyi térfogatú anyag tömege Mérünk és számolunk 211 FELADATGYŰJTEMÉNY AZ ÁLTALÁNOS ISKOLA 3 6. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 3 4. o.: 1 5. feladat 5 6. o.: 26 75. feladat
Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat
Az iskola Az osztály neme: Kompetenciaalapú mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m A változat Az iskola bélyegzője: Az MFFPPTI nem járul hozzá a feladatok részben vagy egészben történő
3 6. o. 3 4. o.: 1 50. feladat 5 6. o.: 26 75. feladat. Mérünk és számolunk 2012
73. Debrecenben az UNIÓ áruház 4 m 5 m-es oldalfalának tömege 26 kg. Ez a fal olyan üvegből készült, amelyből 1 m 3 -nek a tömege 26 kg. Milyen vastag ez az üvegfal? 1 m 3 -nek a tömege 26 kg 26 kg térfogata
Tehát az A, C, D szabályosan közlekedik, a B nem szabályosan.
Jedlik korcsoport Jedlik Ányos Fizikaverseny. (regionális) forduló 7. o. 017. március 01. 1. A következő sebességkorlátozó táblával találkoztunk. Az alábbi járművek közül melyik közlekedik szabályosan?
Bor Pál Fizikaverseny, középdöntő 2012/2013. tanév, 8. osztály
Bor Pál Fizikaverseny, középdöntő 2012/201. tanév, 8. osztály I. Igaz vagy hamis? (8 pont) Döntsd el a következő állítások mindegyikéről, hogy mindig igaz (I) vagy hamis (H)! Írd a sor utolsó cellájába
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet: 1 1 = 7. 5 Ezt rendezve
a) A dobogó aljának (a földdel érintkező részének) a területe 108 dm 2. Hány dm élhosszúságú volt egy kocka?...
Térgeometria 2004_01/8 A szabályos dobókockák szemközti lapjain lévő számok összege mindig 7. Amelyik hálóból nem készíthető szabályos dobókocka, az alá írj N betűt, amelyikből készíthető, az alá írj I
Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 018.04.07. Curie Matematika Emlékverseny 6. évfolyam Országos döntő Megoldása 017/018. Feladat 1... 4.. 6. Összesen Elérhető
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora
MATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
8. évfolyam at2 Javítási-értékelési útmutató EI a 8. évfolyamosok számára at2 JVÍÁSI-ÉRÉELÉSI ÚUÓ javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. pontszámok részekre bontása csak
Öveges korcsoport Jedlik Ányos Fizikaverseny 2. (regionális) forduló 8. o március 01.
Öveges korcsoport Jedlik Ányos Fizikaverseny. (regionális) forduló 8. o. 07. március 0.. Egy expander 50 cm-rel való megnyújtására 30 J munkát kell fordítani. Mekkora munkával nyújtható meg ez az expander
DÖNTİ április évfolyam
Bor Pál Fizikaverseny 20010/2011-es tanév DÖNTİ 2011. április 9. 8. évfolyam Versenyzı neve:.. Figyelj arra, hogy ezen kívül még két helyen (a bels ı lapokon erre kijelölt téglalapokban) fel kell írnod
Feladatgyűjtemény matematikából
Feladatgyűjtemény matematikából 1. Pótold a számok között a hiányzó jelet: 123: 6 a 45:9.10 2. Melyik az a kifejezés, amelyik 2c-7 tel nagyobb, mint a 3c+7 kifejezés? 3. Határozd meg azt a legnagyobb természetes
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2013/2014-es tanév DÖNTŐ 2014. április 26. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár
Hatvani István fizikaverseny Döntő. 1. kategória
1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,
MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.
1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE
1. A MÁSODIK OSZTÁLYBAN TANULTAK ISMÉTLÉSE 1. Írd le számokkal! Hat, tizenhat,,hatvan, hatvanhat, ötven, száz, tizenhét, húsz nyolcvankettı, nyolcvanöt. 2. Tedd ki a vagy = jelet! 38 40 2 42 50+4
Pálmay Lóránt Matematikai Tehetségkutató Verseny január 8.
Pálmay Lóránt Matematikai Tehetségkutató Verseny 2016. január 8. Fontos információk: Az alábbi feladatok megoldására 90 perced van. A feladatokat tetszőleges sorrendben oldhatod meg. A megoldásokat indokold,
DÖNTŐ 2013. április 20. 7. évfolyam
Bor Pál Fizikaverseny 2012/2013-as tanév DÖNTŐ 2013. április 20. 7. évfolyam Versenyző neve:.. Figyelj arra, hogy ezen kívül még két helyen (a belső lapokon erre kijelölt téglalapokban) fel kell írnod
Kompetencia Alapú Levelező Matematika Verseny
Név: Iskola: Kompetencia Alapú Levelező Matematika Verseny 2012. december 10. 2. forduló Pótlapok száma: db. 1. Egy telek területe 2000 m 2. Adja meg az érdeklődő angol vevőnek, hány négyzetlábbal egyenlő
Megoldások p a.) Sanyi költötte a legkevesebb pénzt b.) Sanyi 2250 Ft-ot gyűjtött. c.) Klára
Megoldások 1. feladat: A testvérek, Anna, Klára és Sanyi édesanyjuknak ajándékra gyűjtenek. Anna ötször, Klára hatszor annyi pénzt gyűjtött, mint Sanyi. Anna az összegyűjtött pénzének 3/10 részéért, Klára
Jó munkát! 8. OSZTÁLY 2 = C = A B =
BEM JÓZSEF Jelszó:... MEGYEI MATEMATIKAVERSENY Terem: I. FORDULÓ 2019. január 1. Hely:.... Tiszta versenyidő: 4 perc. Minden feladatot indoklással együtt oldj meg! A részműveletek is pontot érnek. Számológép
Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-2.
5. osztály 1. feladat: Éva egy füzet oldalainak számozásához 31 számjegyet használt fel. Hány lapja van a füzetnek, ha az oldalak számozását a legelső oldalon egyessel kezdte? 2. feladat: Janó néhány helység
Mozgással kapcsolatos feladatok
Mozgással kapcsolatos feladatok Olyan feladatok, amelyekben az út, id és a sebesség szerepel. Az egyenes vonalú egyenletes mozgás esetén jelölje s= a megtett utat, v= a sebességet, t= az id t. Ekkor érvényesek
Egyenletek, egyenlőtlenségek IX.
Egyenletek, egyenlőtlenségek IX. Szöveges feladatok megoldása: A szöveges feladatok esetén írjunk fel egyenletet a korábban tanultak alapján, majd a kapott másodfokú egyenletet oldjuk meg a megoldóképlet
A fordított út módszere és a gráfok
A fordított út módszere és a gráfok 1. feladat: Ilonka az els nap elköltötte pénzének felét, a második nap a meglév pénzének egyharmadát, a harmadik nap a meglév pénz felét, negyedik nap a meglév pénz
Másodfokú egyenletek Gyakorló feladatok. Készítette: Porkoláb Tamás. Milyen p valós paraméter esetén lesz az alábbi másodfokú egyenlet egyik gyöke 5?
Másodfokú egyenletek Gyakorló feladatok Készítette: Porkoláb Tamás Gyökök Milyen p valós paraméter esetén lesz az alábbi másodfokú egyenlet egyik gyöke? 3 ( p ) = Milyen p paraméter esetén lesz a következı
TestLine - Matematika teszt Minta feladatsor
Hello! Ez egy matematikával kapcsolatos teszt. 15 kérdésből áll. Sok sikert! Ebben az egyenletben mennyi az x értéke? 32x+1-3x+2 = 162. (1 helyes válasz) 1. 1:37 Normál x=2 x=4 x=3 Egy iskolai kosárlabdacsapat
4) Hány fecskének van ugyanannyi lába, mint 33 kecskének? 6) A hét törpe életkorának összege 484 év. Mennyi lesz az életkoruk összege 4 év múlva?
PANNONHALMA TKT RADNÓTI MIKLÓS ÁLTALÁNOS ISKOLA, ÓVODA ÉS ALAPFOKÚ MŐVÉSZETOKTATÁSI INTÉZMÉNY Akik vonzódnak a matematikához, azokat izgalomba hozza a feladat, akiknek nincs érzékük hozzá, azokat elriasztja.
IX. PANGEA Matematika Verseny I. forduló 9. évfolyam
1. Két egymásba kapcsolódó fogaskerék közül az egyiken 4, a másikon 90 fog van. Hányat fordul a kisebbik kerék, amíg ismét ugyanazok a fogak találkoznak? A) 4 B) 8 C) 15 D) 360. A nyers hús sütés közben
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 3 matematikából
1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5
WWW.ORCHIDEA.HU 1 1.) Csaba egy 86 oldalas könyv 50 oldalát elolvasta. Hány nap alatt fejezi be a könyvet ha egy nap 9 oldalt olvas belőle? A) 6 B) 4 C) 3 D) 5 2.) Számítsd ki a végeredményt: 1 1 1 1 1
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5
XY_TANULÓ FELADATSOR 10. ÉVFOLYAM MATEMATIKA
XY_TNULÓ FELTSOR. ÉVFOLYM MTEMTIK MTEMTIK -. ÉVFOLYM. feladat: autószámlálás mc22 Rita egyik nap az erkélyen állva nézte az elhaladó autókat, és feljegyezte az egyes gépkocsimárkákat, valamint azt, hogy
matematikából 1. TESZT
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2.
Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária sokszínû gyakorló kompetenciafejlesztõ munkafüzet. kötet Mozaik Kiadó Szeged, Színesrúd-készlet. Törtek bõvítése és egyszerûsítése
matematikából 3. TESZT
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
PISA2000. Nyilvánosságra hozott feladatok matematikából
PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács
;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
EGYENLETEK. Mérleg-elv. = + x 1. = x + 12 2. 2 x + = 1 3x 10. = 1. 17. 13 3x. 5 x 11. ( ) Abszolutértékes egyenletek, egyenlőtlenségek. 28.
EGYENLETEK Mérleg-elv..... 6. + = 7 = + = 7+ 7+ 6 + = + = = ( ) 7. = + + 6 8 6 8. = 7 7 9.. 7 = + ( ) + + =. + Abszolutértékes egyenletek, egyenlőtlenségek. = 7. =. =. 8 = 6. 7 9 = 7. = 8. 8 = 9. =. 6.
MATEMATIKA VERSENY
Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
matematikából 2. TESZT
Szerb Köztársaság OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA
XY_TANULÓ FELADATSOR 8. ÉVFOLYAM MATEMATIKA
XY_TNULÓ FELTSOR 8. ÉVFOLYM MTEMTIK 1. feladat: akkumulátor mc006 Egy mobiltelefon akkumulátorának töltöttségi állapota a következőképpen változott két nap leforgása alatt. Habekapcsoljuk,denemhasználjuk,48óraalattmerülleteljesenatelefon.Folyamatoshasználatban
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt1 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zsebszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrendben oldhtod meg.
Mérések szabványos egységekkel
MENNYISÉGEK, ECSLÉS, MÉRÉS Mérések szabványos egységekkel 5.2 Alapfeladat Mérések szabványos egységekkel 2. feladatcsomag a szabványos egységek ismeretének mélyítése mérések gyakorlása a megismert szabványos
Jedlik Ányos Fizikaverseny 3. (országos) forduló 8. o A feladatlap
ÖVEGES korcsoport Azonosító kód: Jedlik Ányos Fizikaverseny. (országos) forduló 8. o. 0. A feladatlap. feladat Egy 0, kg tömegű kiskocsi két végét egy-egy azonos osszúságú és erősségű, nyújtatlan rugóoz
1. Egy 30 cm sugarú körszelet körívének hossza 120 cm. Mekkora a körív középponti szöge?
Matematika A 1. évfolyam II. negyedév témazáró A csoport 1. Egy 0 cm sugarú körszelet körívének hossza 10 cm. Mekkora a körív középponti szöge?. Egy szabályos négyoldalú gúla alakú piramis magassága 76
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2010/2011-es
ELLENİRIZD, HOGY A MEGFELELİ ÉVFOLYAMÚ FELADATSORT KAPTAD-E!
Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat Kata egy dobozban tárolja 20 darab dobókockáját. Mindegyik kocka egyszínő, piros, fehér, zöld vagy fekete. 17 kocka nem zöld, 12 nem fehér,
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3
DÖNTİ április évfolyam
Bor Pál Fizikaverseny 20010/2011-es tanév DÖNTİ 2011. április 9. 7. évfolyam Versenyzı neve:.. Figyelj arra, hogy ezen kívül még két helyen (a bels ı lapokon erre kijelölt téglalapokban) fel kell írnod
A Jedlik Ányos Országos Általános Iskolai Matematikaverseny FELADATAI MEGOLDÁSAI. 1. forduló. 3 4. o.: 1 50. feladat és 5 6. o.: 26 75.
MÉRÜNK ÉS SZÁMOLUNK 29 A Jedlik Ányos Országos Általános Iskolai Matematikaverseny FELADATAI és MEGOLDÁSAI 1. forduló 3. o.: 1 5. feladat és 5 6. o.: 26 75. feladat Szerkesztette: Jármezei Tamás szakértő
3. feladat Hány olyan nél kisebb pozitív egész szám van, amelyben a számjegyek összege 2?
Varga Tamás Matematikaverseny iskolai forduló 2010. 1. feladat A tengeren léket kapott egy hajó, de ezt csak egy óra múlva vették észre. Ekkorra már 3 m 3 víz befolyt a hajóba. Rögtön mőködésbe hoztak
Próbaérettségi feladatsor_b NÉV: osztály Elért pont:
Próbaérettségi feladatsor_b NÉV: osztály Elért pont: I. rész A feladatsor 12 példából áll, a megoldásokkal maimum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy derékszögű háromszög
KÖZÉPDÖNTİ 2010. március 20. 10.00. 7. évfolyam
Bor Pál Fizikaverseny 2009/2010-es tanév KÖZÉPDÖNTİ 2010. március 20. 10.00 7. évfolyam Versenyzı neve:.. Iskola:.. Felkészítı tanár neve:. Elérhetı pontszám 10 pont 10 pont 10 pont 10 pont 40 pont Pontszámok:
Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3
Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy
Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax:
5. OSZTÁLY 1.) Apám 20 lépésének a hossza 18 méter, az én 10 lépésemé pedig 8 méter. Hány centiméterrel rövidebb az én lépésem az édesapáménál? 18m = 1800cm, így apám egy lépésének hossza 1800:20 = 90cm.
MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok
Keresztnév: Vezetéknév:
Keresztnév: Vezetéknév: ertifikáltmérésmatematikai feladatlapja ertifikač nýtestzmatematiky eloslovenskétestovanie ž iakov9.roč níkazš T9-200 Kedvestanulók, amatematikaifeladatlapotkaptátokézez.teszt20feladatotartalmaz.
Egyenletek, egyenlőtlenségek VIII.
Egyenletek, egyenlőtlenségek VIII. 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet:
PRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.
A felmérési egység kódja:
A felmérési egység lajstromszáma: 0327 A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: Köiptech//50/Rea//Ált Könnyűipari technikus szakképesítés-csoportban, a célzott, 50-es
MATEMATIKA VERSENY
Vonyarcvashegyi Eötvös Károly Általános Iskola 2016. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
A települési szilárd hulladék egységnyi díjtételének meghatározása Érd MJV területére a I-IX havi adatok alapján
A települési szilárd hulladék egységnyi díjtételének meghatározása Érd MJV területére a 2014. I-IX havi adatok alapján A települési szilárd hulladékra vonatkozó közszolgáltatási díjat - egytényezős közszolgáltatási
PYTAGORIÁDA Az országos forduló feladatai 35. évfolyam, 2013/2014-es tanév. Kategória P 6
Kategória P 6 1. Írjátok le azt a számot, amely a csillag alatt rejtőzik: *. 5 = 9,55 2. Babszem Jankó 25 ször kisebb, mint Kukorica Jancsi. Írjátok le, hogy hány centiméter Babszem Jankó, ha Kukorica
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ április évfolyam. Versenyző neve:...
Bor Pál Fizikaverseny 2016/17. tanév DÖNTŐ 2017. április 22. 7. évfolyam Versenyző neve:... Figyelj arra, hogy ezen kívül még a további lapokon is fel kell írnod a neved! Iskola:... Felkészítő tanár neve:...
PRÓBAÉRETTSÉGI MATEMATIKA május-június EMELT SZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA EMELT SZINT Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
Hatvani István fizikaverseny forduló megoldások. 1. kategória
. kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m
Kvíz1. Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre.
Kvíz1 Name: 1. feladat Egy kutyákkal foglalkozó könyv szerint a kutyaéveket a következ táb- lázat segítségével lehet átszámítani emberi évekre. A táblázatban látható szabályszerségek alapján melyik képlettel
SZÁMKERESZTREJTVÉNYEK
Róka Sándor SZÁMKERESZTREJTVÉNYEK Bővített és átdolgozott kiadás TARTALOM Bevezetés 7 Keresztező feladatok (1 26 számkeresztrejtvény) 11 Egyszerűbb számkeresztrejtvények (27 33. számkeresztrejtvény) 83
835 + 835 + 835 + 835 + 835 5
Orchidea Iskola VI. Matematika verseny 20/20 II. forduló. A macska és az egér jobbra indulnak el. Ha az egér négyzetet ugrik, akkor a macska 2 négyzetet lép előre. Melyik négyzetnél éri utol a macska az
EGYENLETEK, EGYENLŐTLENSÉGEK
EGYENLETEK, EGYENLŐTLENSÉGEK Elsőfokú egyenletek megoldása mérleg elvvel Az egyenletek megoldása során a következő lépéseket hajtjuk végre: a kijelölt műveletek elvégzésével, az egynemű kifejezések összevonásával
Azononosító matrica FIGYELMESEN RÁRAGASZTANI MAT B MATEMATIKA. alapszint MATB.32.MA.R.K1.20 MAT B D-S032. MAT B D-S032 MAG.indd
Azononosító matrica FIGYELMESEN RÁRAGASZTANI MAT B MATEMATIKA alapszint MAT3.MR.K. MAT B D-S3 MAT B D-S3 MAG.indd 3.6.6. 3:5: Üres oldal MAT B D-S3 99 MAT B D-S3 MAG.indd 3.6.6. 3:5:3 ÁLTALÁNOS UTASÍTÁSOK
3 6. 3 4. o.: 1 50. feladat. 5 6. o.: 26 75. feladat. Mérünk és számolunk 2010 FELADATGYŐJTEMÉNY AZ ÁLTALÁNOS ISKOLA. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny
Mérünk és számolunk 21 FELADATGYŐJTEMÉNY AZ ÁLTALÁNOS ISKOLA 3 6. ÉVFOLYAMA SZÁMÁRA Jedlik-verseny I. forduló 3 4. o.: 1 5. feladat 5 6. o.: 26 75. feladat Szerkesztette: Jármezei Tamás Lektorálta: Dr.
Matematika feladatlap Test z matematiky
Keresztnév: Vezetéknév: Matematika feladatlap Test z matematiky E-testovanie T5-2018 Príprava na T5-2018 Kedves Tanulók! A matematika feladatlapot kaptátok kézhez. A feladatlap 30 feladatot tartalmaz.
XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA
XY_TANULÓ FELADATSOR 6. ÉVFOLYAM MATEMATIKA 1. 2. feladat: havi benzinköltség mc01901 Gábor szeretné megbecsülni, hogy autójának mennyi a havi benzinköltsége. Gábor autóval jár dolgozni, és így átlagosan
XI. PANGEA Matematika Verseny Döntő 4. évfolyam
1. A Budapest New York távolság légvonalban mérve kb. 7000 km. Egy repülőgép Budapestről indulva már megtette az út negyedét. Hány kilométer van még hátra? A) 1750 km B) 3500 km C) 2000 km D) 5250 km E)
= 4perc40sec időtartamig v 2. = 4perc55sec időtartamig v 3
Első feladat a) Ioana, Catalin és Raluca VI-os osztálytársak, villamossal mennek haza.útközben mérik az időt a mobil telefonukkal és leolvassák a sebesség értékét a villamos sebességmérőjéről. A villamos
U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :...
Jedlik Ányos Fizikaverseny regionális forduló Öveges korcsoport 08. A feladatok megoldása során végig századpontossággal kerekített értékekkel számolj! Jó munkát! :). A kapcsolási rajz adatai felhasználásával
Paraméterek listája mértékegység nélkül
Paraméterek listája mértékegység nélkül Ajtó orientáció Alkatrészek típusa Állapot Állásfoglalás Anyag Anyaga szerkezete Anyaga szövet Aprító típusa Audio/video eszközok csatlakozási száma Autó márka Autó
Figyeljük meg, hány dolgozata lett jobb, rosszabb, ugyanolyan értékű, mint az átlag!
Átlag Kidolgozott mintapélda Bence hét matematikadolgozatának érdemjegyei:,,,,,, Szeretné kiszámolni a dolgozatokra kapott érdemjegyeinek átlagát. Bence jegyei:,,,,,, Jegyek átlaga: ( + + + + + + ) : 7
KÖZLEKEDÉSI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2009. május 22. KÖZLEKEDÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
I. Szakközépiskola
I. Szakközépiskola - 2018 Knáb László Megyei Matematika Verseny Kedves Versenyző! A feladatok megoldásához használhatsz számológépet! Sok sikert kívánunk! *Kötelező 1. Név: * 2. Középiskola * Bornemissza
Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan
Mintafeladatsor Matematikaverseny ált. iskola 7-8.osztályosainak Bajza József Gimnázium és Szakközépiskola, Hatvan TOLLAL DOLGOZZ, SZÁMOLÓGÉPET NEM HASZNÁLHATSZ, A LAPRA SZÁMOLJ! 1. A következő ábrán egy
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
1. Pál kertje téglalap alakú, 15 méter hosszú és 7 méter széles. Hány métert tesz meg Pál, ha körbesétálja a kertjét?
1. Pál kertje téglalap alakú, 15 méter hosszú és 7 méter széles. Hány métert tesz meg Pál, ha körbesétálja a kertjét? A) 37 m B) 22 m C) 30 m D) 44 m E) 105 m 2. Ádám három barátjával közösen a kis kockákból
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET
Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET VAJDASÁGI PEDAGÓGIAI INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2010/2011-es
Érettségi feladatok: Trigonometria 1 /6
Érettségi feladatok: Trigonometria 1 /6 2003. Próba 14. Egy hajó a Csendes-óceán egy szigetéről elindulva 40 perc alatt 24 km-t haladt észak felé, majd az eredeti haladási irányhoz képest 65 -ot nyugat
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2008. NOVEMBER 22.) 3. osztály
3. osztály Hány olyan háromjegyű szám létezik, amelyben a számjegyek összege 5? Gyöngyi gyöngyszemeket fűz egy zsinegre. Először 1 pirosat, utána 2 sárgát, aztán 3 zöldet, majd újra 1 piros, 2 sárga és
KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉS-ÜZEMVITEL)
ÉRETTSÉGI VIZSGA 2015. május 19. KÖZLEKEDÉSI ALAPISMERETEK (KÖZLEKEDÉS-ÜZEMVITEL) EMELT SZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati
5-6. osztályos kategória
ISKOLA NEVE:. CSAPAT NEVE: TELEPÜLÉS:. 5-6. osztályos kategória 1. feladat lakásfelújítás Egy fiatal házaspár lakást vásárol Budapesten, a lakás árának csak a felét fizették ki az eladónak, ami 4 000 000
Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ. Generálna skúška. Test z matematiky
Moderné vzdelávanie pre vedomostnú spoločnosť/projekt je spolufinancovaný zo zdrojov EÚ Generálna skúška Test z matematiky Kedves Tanulók! A matematika feladatlapot kaptátok kézhez. A feladatlap 30 feladatot
Nemzetközi Mértékegységrendszer
Nemzetközi Mértékegységrendszer 1.óra A fizika tárgya, mérés, mértékegységek. Fűzisz Természet Fizika Mérés, mennyiség A testek, anyagok bizonyos tulajdonságait számszerűen megadó adatokat mennyiségnek
Matematika feladatlap
Keresztnév: TESZTFORMA A A TESZT KÓDJA Keresztnév: Vezetéknév: Matematika feladatlap Matematika feladatlap Test z matematiky Test z matematiky Príprava na Celoslovenské c testovanie žiakov 5. ročníka ZŠ
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2017. NOVEMBER 18.) 3. osztály
3. osztály Két polcon összesen 72 könyv található. Miután az első polcról a másodikra áttettünk 14 könyvet, mindkét polcon ugyanannyi könyv lett. Hány könyv volt eredetileg az első polcon? Helyezzetek