II.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői
|
|
- Frigyes Gusztáv Juhász
- 9 évvel ezelőtt
- Látták:
Átírás
1 II.1. RAJZOLD LE EGY VONALLAL! Tárgy, téma A feladatsor jellemzői Kombinatorika, geometria, gráfelmélet alapvető ismereteinek elsajátítása egyszerű feladatokon keresztül. Előzmények Tulajdonképpen konkrét ismeret alig szükséges. A páros szám, páratlan szám fogalmakat kell ismerni. Cél A kombinatorikus gondolkodás fejlesztése rajzoláson, szabályalkotáson, szisztematikus megszámláláson és számoláson keresztül, érvelés és esetleges vitafolyamat segítségével. A modellalkotás és a szövegértés fejlesztése. A feladatsor által fejleszthető kompetenciák Tájékozódás a térben + Ismeretek alkalmazása + Tájékozódás az időben Problémakezelés és -megoldás + Tájékozódás a világ mennyiségi viszonyaiban + Alkotás és kreativitás + Tapasztalatszerzés + Kommunikáció + Képzelet + Együttműködés + Emlékezés + Motiváltság + Gondolkodás + Önismeret, önértékelés + Ismeretek rendszerezése A matematika épülésének elvei + Ismerethordozók használata Felhasználási útmutató A gráfelméleti alapfogalmak bevezetéséhez is használható a feladatsor, ebben az esetben nyugodtan lehet válogatni is a feladatok közül. A 2. feladathoz otthon is lehet készíteni további rajzokat, ábrákat, esetleg konkrét figurális ötleteket is meg lehet valósítani, azaz az elkészült rajz valamilyen jól felismerhető konkrét dolgot ábrázoljon (például arc, jármű, növény). A 6. feladatban lehet, hogy segítségre szorulnak a diákok, nem biztos, hogy mindenki látja a kapcsolatot a korábbi feladatok rajzos megoldásaival. Ha úgy ítéljük meg, hogy a tanulóknak nehézséget okoz a feladat ebben a formában, akkor megpróbálhatjuk átfogalmazni úgy, hogy az említett játékban résztvevők számát csökkentjük (ebben az esetben természetesen új táblázatot kell készíteni). A 7. feladatot el lehet kezdeni az órán, esetleg 2 3 fős csoportokban összegyűjteni minél több lerajzolási módot. A szisztematikus leírás lehet házi feladat is. Az 1. feladat megoldásakor egy-egy jó rajz elkészítése után ösztönözzük a gyerekeket az összes lehetséges kiindulópont megtalálására. A lehetetlenség [1. b) 3. ábrája, c) 2. ábrája] észrevétele és igazolása néha segítséggel is nehéz. Ha lehetséges, bátran biztassuk a gyerekeket szabályalkotásra! II. Kombinatorika, gráfok II.1. Rajzold le egy vonallal! 1.oldal/8
2 A 2. feladattal kapcsolatban várhatóan jó ábrák születnek majd. Mindenképpen kérjünk kifejezetten egyszerű ábrát, valamint olyat is, ami ránézésre bonyolult, de jól látszik rajta a lerajzolhatóság vagy annak lehetetlensége. A 3. feladatban elég a felismert összefüggésre hivatkozni, bár a teljes kilencszög lerajzolása szép feladat. A lerajzolás adminisztrálására lehet betű- vagy számjelölést használni, különböző színes ceruzával jelölni az egyes rajzrészeket, vagy az alábbi rajztechnikával dolgozni: A 4. és az 5. feladatban fontos a szöveg alapos megértése; továbbvisszük a gráfelméleti gondolatot (más-más absztrakciós szinten), és előkerül a lehetőségek szisztematikus megszámolása is. A 7. feladat részben klasszikus, lehet, hogy az alapkérdést ismerik is a gyerekek. Ez a feladat nagyfokú koncentrációt, kitartást és monotóniatűrést feltételez, ezek részleges hiányában fejlesztheti ezeket a kompetenciákat is. A feladatsor sok feladatot tartalmaz. Ha a rendelkezésre álló idő nem elég a feldolgozásához, vagy a tanár nem akarja a teljes időt a megoldással eltölteni, akkor a feladatsor néhány feladat kihagyásával rövidíthető. Egy javaslat a rövidebb változatra: kihagyható a 2. feladat (ez lényegében kreativitásfejlesztő, szórakoztató rész), továbbá a 3. c), d) és az 5., 6., 7. feladatok. II. Kombinatorika, gráfok II.1. Rajzold le egy vonallal! 2.oldal/8
3 RAJZOLD LE EGY VONALLAL! Feladat sor RAJT CÉL GYŐZELEM 1. Rajzold le egy vonallal a ceruza felemelése nélkül az alábbi ábrákat! (A már megrajzolt vonalon még egyszer áthaladni nem szabad, megrajzolt vonalat keresztezni szabad.) Az ábra melyik pontjában lehet egy sikeres rajzolást elkezdeni? Keresd meg az összes ilyen pontot! Jelöld ezeket színessel! a) b) c) 2. a) Tervezz olyan ábrákat, amit le lehet rajzolni egy vonallal! Legyen közöttük olyan ábra, ami látszólag bonyolult, de könnyen meg tudod mutatni, hogy le lehet rajzolni. [Például ilyen az 1. a) feladat 3. ábrája.] Legyen közöttük olyan ábra, ami egy konkrét dolgot felismerhetően ábrázol. b) Tervezz olyan ábrát, amit nem lehet lerajzolni egy vonallal! NEM MINDEGY 3. Meg lehet-e rajzolni az alábbi ábrákat egy vonallal, a ceruza felemelése nélkül? a) b) c) d) II. Kombinatorika, gráfok II.1. Rajzold le egy vonallal! 3.oldal/8
4 ÚTFESTÉS Az alábbi térképen Gibabó sziget úthálózatát látjuk. Az utak mindig két települést kötnek össze, és ha két út találkozik, akkor az egyiket a másik fölött felüljáróként építették meg. Az országutakon középen van egy felfestett folyamatos vagy szaggatott vonal, a máshol is szokásos módon. A festés azonban már kissé elkopott, ezért megbízzák Mekk Elek mestert az újrafestéssel. A mester úgy kalkulál, hogy minden útvonalon elég pontosan egyszer végigmennie a festést végző kis járművel, így az a legolcsóbb megoldás, ha minden úton csak egyszer jár. Mekk Elek úgy dönt, hogy a festést Sebonában kezdi és Yamiban fogja befejezni. Sebona Tufi Pamta Ambala Yami 4. a) Helyes volt-e Mekk Elek döntése? Ha igen, miért? Ha nem, honnan kellene indulnia és hol kellene befejeznie? b) Hányféleképpen juthat Mekk Elek Sebonából Yamiba, ha a lehető legtöbb útfestést akarja elkészíteni úgy, hogy frissen festett úton még egyszer ne menjen végig? Olyan jól sikerült az útfestés Gibabón, hogy három közeli sziget is megrendelte az utak csíkozásának újrafestését. Az útfestést hasonló elven szeretnék magvalósítani mint Gibabón: lehetőleg minden úton csak egyszer kelljen végigmenni. A három szigeten az utak szintén mindig két települést kötnek össze, és ha két út találkozik, akkor az egyiket a másik fölött felüljáróként építették meg. (Két település között természetesen egynél több közvetlen utat nem építettek, és bármely településről el lehet jutni bármelyikre az utak mentén.) A szigetekről beküldték az úthálózatok tervrajzát Mekk Elek logisztikai központjába, de ott véletlenül egy-egy tintapaca csöppent a térképekre. Szerencsére a fekete folt alatt település nem volt. 5. Döntsd el, hogy melyik úthálózatot lehet újrafesteni úgy, mint Gibabó szigetén, és melyik úthálózat festését nem lehet ilyen módon elvégezni! Sosa Reju Babuna Yube Finti Sal Sana Qanda Vanba Mamsu Tuka Peve Gimu Pojo Awuba Rudu Ugvi Yuwuwa sziget Bisunda sziget Umada sziget II. Kombinatorika, gráfok II.1. Rajzold le egy vonallal! 4.oldal/8
5 SZÓLÁNC A szólánc nevű játék a következőképpen zajlik: az első játékos mond egy szót, rámutat valakire, aki az elhangzott szó utolsó szótagjával kezdődő szót mond, majd ő is mutat valakire, aki az elhangzott szó utolsó szótagjával kezdődő szót mond és így tovább. (Például: ablak lakatos Toscana naptár ) Anna, Balázs, Ági, Piroska, Dani és János szóláncoztak egyet, Peti pedig játék közben készített egy táblázatot, amiben feljegyezte, hogy ki kire hányszor mutatott. (Például Anna sorában azt látjuk, hogy Balázsra egyszer, Ágira, Piroskára és Danira egyszer sem, Jánosra pedig kétszer mutatott.) Anna Balázs Ági Piroska Dani János Anna Balázs Ági Piroska Dani János a) Ki lehetett az első játékos? b) Írd le a játékosok egy lehetséges sorrendjét a játék során! HÁZÉPÍTÉS 7. Szeretnénk ezt a házat egy vonallal a ceruza felemelése nélkül lerajzolni. a) Az ábra melyik pontjában lehet egy sikeres lerajzolást elkezdeni? b) A házépítésnél előbb a falakat építik meg, majd a tetőt rakják fel. Van-e olyan lerajzolási mód, amiben a tető készül el utoljára? c) Hányféleképpen lehet lerajzolni a házat úgy, hogy az elején legyen az alapozás (az alsó vonal), aztán épüljenek fel a falak, a falak után készüljön el a födém, majd ezek után a tető? Két lerajzolás akkor különböző, ha a megfelelő vonalak rajzolási sorrendje különböző. II. Kombinatorika, gráfok II.1. Rajzold le egy vonallal! 5.oldal/8
6 MEGOLDÁSOK 1. a) A rajzolás a lenti három ábra bármelyik pontjában elkezdhető. [Magyarázat a b) feladat megoldásában.] b) Az első két ábrát csak a megjelölt pontokban elkezdve lehet lerajzolni egy vonallal, a harmadik ábrát pedig nem lehet egy vonallal lerajzolni. c) Magyarázat: Figyeljük meg a csúcsokat! (Csúcs alatt most a sokszögek csúcsát értjük.) Ha egy csúcson a rajz közben áthaladunk, akkor egy bejövő és egy kimenő vonalat elhasználtunk. Így áthaladáskor mindig kettővel csökken a csúcsnál megrajzolandó vonalak száma. Akkor vagyunk készen, ha minden csúcsnál elfogytak a vonalak. Ha egy pont nem kezdő vagy befejező pont a rajzban, akkor ott páros sok vonalnak kell találkoznia. (Csak így csökkenhet nullára a megrajzolandó vonalak száma.) A kezdőpont és a befejező pont különleges. Ha nem esnek egybe, akkor a rajtuk áthaladó vonalpárokon kívül a kezdőpontnál van még egy kimenő kezdővonal, illetve a végpontnál van még egy bejövő záróvonal, azaz itt páratlan sok vonal találkozik. Ha a kezdőpont és a végpont egybeesik, akkor minden pontban páros sok vonal találkozott. Egy vonallal lerajzolható ábránál más eset nincs. A harmadik ábrán azonban négy olyan pont is van, amelynél páratlan sok vonal fut össze. Így ezt nem lehet lerajzolni egy vonallal. [A megfogalmazásban szándékosan kerültük a gráfelméleti terminológiát, de ha a tanár úgy gondolja, bátran lehet használni az idevágó fogalmakat.] Az első és a harmadik ábrát csak a megjelölt pontokban elkezdve lehet lerajzolni egy vonallal, a második ábrát pedig nem lehet egy vonallal lerajzolni, a magyarázat ugyanaz, mint a b) feladatban. II. Kombinatorika, gráfok II.1. Rajzold le egy vonallal! 6.oldal/8
7 2. a) Látszólag bonyolult ábrák: Ugyanúgy lerajzolható, mint az 1. a) 3. ábrája. A lerajzolás iránya például a vastag szaggatott pöttyözött vonalak mentén halad. b) Felismerhető rajz, például egy autó: 3. a) Nem lehet. [Lásd 1.b), több mint két csúcsból páratlan sok vonal indul.] b) Ha az ötszög csúcsai A, B, C, D és E, akkor egy lehetséges lerajzolás: ABCDEACEBDA. c) Nem lehet. [Lásd 1.b), több mint két csúcsból páratlan sok vonal indul.] d) Ha a hétszög csúcsai A, B, C, D, E, F és G, akkor egy lehetséges lerajzolás: ABCDEFGACEGBDFADGCFBEA. E D C F E D A B G C A B a) feladathoz b) feladathoz c) feladathoz d) feladathoz 4. a) Mekk Elek döntése helyes, hiszen Sebona és Yami azok a települések, ahonnan páratlan számú út indul ki, és csak ezek azok. Tehát Sebonában kell kezdenie a festést, és Yamiban kell befejeznie, vagy fordítva. b) A települések kezdőbetűjét használjuk. Sebonából Yamiba érkezve az összes utat át tudja festeni Mekk Elek a feltételeknek megfelelően. A lehetséges útsorrendek: STYAPSY SPAYTSY SYAPSTY STYSPAY SPAYSTY SYTSPAY Tehát hatféleképpen juthat el Sebonából Yamiba. II. Kombinatorika, gráfok II.1. Rajzold le egy vonallal! 7.oldal/8
8 5. Yuwuwa sziget: meg lehet valósítani a kívánt módon történő festést. Minden településről két-két út indul. Bármelyik településen elkezdve az festést a továbbhaladás biztosított és egyértelmű. A végén visszaérkezünk a kiindulási helyre. (Meg lehet kérdezni, hogy hányféleképpen lehet elvégezni a festést? Válasz: Bármely településen elkezdhetjük, és a kezdésnél két útból választhatunk, a többi már ezek után egyértelműen adódik, tehát tízféleképpen.) Bisunda sziget: meg lehet valósítani a festést. Pojótól Quanda felé haladva a településekből induló utak száma: 1, 2, 2, 3, 2. Mivel két páratlan úttal rendelkező település van, így a terv megvalósítható, ha valamelyikükből indul a festés, akkor a másik településen ér majd véget. Umada sziget: nem lehet megvalósítani a festést. Négy olyan település is van, amiből három-három út indul [lásd 1. b)]. 6. a) Próbáljuk meg lerajzolni a játékot! A gyerekek legyenek a pontok, a rámutatás pedig egy-egy nyíl. A rajz elkészítéséhez figyelembe kell vennünk az alábbiakat: Anna Balázs Ági Piroska Dani János Hányszor mutatott valakire Hányszor mutatattak rá Ha a kezdő és az utolsó játékos ugyanaz lenne, akkor minden egyes játékos ugyananynyiszor mutatott volna valakire, mint ahányszor rámutattak. Leolvasható, hogy most nem ez a helyzet. Anna eggyel többször mutatott, mint ahányszor rámutattak, illetve Jánosra eggyel többször mutattak, mint ahányszor ő mutatott másra. Így nyilván Anna kezdte a játékot és János fejezte be. b) A játék egy lehetséges menete: A B Á P A J B D P J B A J Á P J. 7. a) Mivel van az ábrának két olyan pontja, ahol három vonal találkozik, így csak ezekből a pontokból lehet elkezdeni a sikeres rajzolást. (Lásd 1. feladat!) A rajzolás egy (sok) lehetséges megvalósítása a d) feladat megoldásában. b) Mivel az egyik megjelölt pontban elkezdve a rajzolást mindig a másik megjelölt pontban ér véget, így a tető nem készülhet el utoljára. c) Számozzuk be a vonalakat! A lehetséges lerajzolások: és Más nem lehet. a) és b) feladathoz c) és d) feladathoz II. Kombinatorika, gráfok II.1. Rajzold le egy vonallal! 8.oldal/8
II.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői
II.1. RAJZOLD LE EGY VONALLAL! Tárgy, téma A feladatsor jellemzői Kombinatorika, geometria, gráfelmélet alapvető ismereteinek elsajátítása egyszerű feladatokon keresztül. Előzmények Tulajdonképpen konkrét
III.4. JÁRŐRÖK. A feladatsor jellemzői
III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:
VII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői
VII.1. POLIÉDER-LABIRINTUSOK Tárgy, téma A feladatsor jellemzői Testek makettjének elkészítése, ismerkedés a testekkel szórakoztató formában. Előzmények Cél Egyszerűbb testek, tulajdonságaik. A térgeometriai
I.4. BALATONI NYARALÁS. A feladatsor jellemzői
I.4. BALATONI NYARALÁS Tárgy, téma A feladatsor jellemzői Logikai fogalmak: logikai kijelentés; minden; van olyan; ha, akkor; és; vagy kifejezések jelentése. Egyszerű logikai kapcsolatok mondatok között.
V.9. NÉGYZET, VÁGOD? A feladatsor jellemzői
V.9. NÉGYZET, VÁGOD? Tárgy, téma A feladatsor jellemzői Geometriai megközelítésen keresztül a mértani sorozat tulajdonságaival, első n tagjának összegképletével való ismerkedés. Előzmények Téglalap területe,
V.3. GRAFIKONOK. A feladatsor jellemzői
V.3. GRAFIKONOK Tárgy, téma Grafikonok, diagramok. Előzmények A feladatsor jellemzői Egyenes vonalú egyenletes mozgás, sebesség út idő összefüggésének ismerete. Átlagsebesség. Cél Különböző grafikonok,
IX.2. ÁTLAGOS FELADATOK I. A feladatsor jellemzői
IX.2. ÁTLAGOS FELADATOK I. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, a számtani sorozat elemeinek összegére
VIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői
VIII.4. PONT A RÁCSPONTOK? Tárg, téma Geometria, algebra és számelmélet. Előzmének A feladatsor jellemzői Pontok ábrázolása koordináta-rendszerben, abszolút érték fogalma, oszthatóság fogalma, (skatula
IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői
IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai
I.2. ROZSOMÁK. A feladatsor jellemzői
I.2. ROZSOMÁK Tárgy, téma A feladatsor jellemzői Kombinatorikai alapfeladatok, halmazok használata. Logikai kijelentések vizsgálata, értelmezése. A szövegértés képességének fejlesztése. Előzmények Cél
VI.3. TORPEDÓ. A feladatsor jellemzői
VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont
III.7. PRÍM PÉTER. A feladatsor jellemzői
III.7. PRÍM PÉTER Tárgy, téma A feladatsor jellemzői Számelmélet: osztó, többszörös, prímtényezős felbontás, legkisebb közös többszörös, legnagyobb közös osztó. Előzmények Cél Oszthatóság, prímtényezős
VII.4. RAJZOLGATUNK II. A feladatsor jellemzői
VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,
Alapfogalmak II. Def.: Egy gráf összefüggő, ha bármely pontjából bármely pontjába eljuthatunk egy úton.
lapfogalmak II Nézzük meg mégegyszer a königsbergi séták problémáját! város lakói vasárnaponként szerettek sétálni a szigeteken. Felvetődött a kérdés, hogy hogyan lehetne olyan sétát tenni a városban,
VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői
VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Tárgy, téma A feladatsor jellemzői Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör
II.3. DOMINÓ GRÓF. A feladatsor jellemzői
II.. DOMINÓ GRÓF Tárgy, téma Gráfok, számelmélet, kombinatorika. Előzmények Cél A feladatsor jellemzői Nagy előny, ha a dominójátékot már ismerik a diákok korábbról. A gráfmodell kialakítása képességének
VII.2. RAJZOLGATUNK. A feladatsor jellemzői
VII.2. RAJZOLGATUNK Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,
Gráfelméleti alapfogalmak-1
KOMBINATORIKA ELŐADÁS osztatlan matematika tanár hallgatók számára Gráfelméleti alapfogalmak Előadó: Hajnal Péter 2015 1. Egyszerű gráfok Nagyon sok helyzetben egy alaphalmaz elemei között kitűntetett
XI.5. LÉGY TE A TANÁR! A feladatsor jellemzői
XI.5. LÉGY TE A TANÁR! Tárgy, téma A feladatsor jellemzői Algebrai, geometriai, kombinatorikai és valószínűségszámítási tipikus gondolkodási hibák, buktatók. Előzmények Mérlegelv, másodfokú egyenletek
VI.8. PIO RAGASZT. A feladatsor jellemzői
VI.8. PIO RAGASZT Tárgy, téma A feladatsor jellemzői Pitagorasz-tétel alkalmazása gyakorlati problémákban. Előzmények Cél Pitagorasz-tétel, négyzetgyök, egyszerűbb algebrai azonosságok, egyenlet megoldása.
IX.3. ÁTLAGOS FELADATOK II. A feladatsor jellemzői
IX.3. ÁTLAGOS FELADATOK II. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, elsőfokú és elsőfokú törtes egyenletek
VII.10. TORNYOSULÓ PROBLÉMÁK. A feladatsor jellemzői
VII.10. TORNYOSULÓ PROBLÉMÁK Tárgy, téma A feladatsor jellemzői Szögfüggvények a derékszögű háromszögben. A szinusztétel és a koszinusztétel alkalmazása gyakorlati problémák megoldásában. Előzmények Szinusz-
I.5. LOLKA ÉS BOLKA. A feladatsor jellemzői
I.5. LOLKA ÉS BOLKA Tárgy, téma Kombinatorika, skatulya-elv, számelmélet. Előzmények A feladatsor jellemzői A skatulya-elv alapszintű bevezetése, osztási maradékok ismerete, a prímszám fogalmának ismerete.
XI.4. FŐZŐCSKE. A feladatsor jellemzői
XI.4. FŐZŐCSKE Tárgy, téma Előzmények Cél Egyenes arányosság. Egyenes arányosság ismerete. A feladatsor jellemzői Problémamegoldás fejlesztése. A projektmunka gyakorlása. A feladatsor által fejleszthető
Feladatok a MATEMATIKA. standardleírás 2. szintjéhez
Feladatok a MATEMATIKA standardleírás 2. szintjéhez A feladat sorszáma: 1. Standardszint: 2. Gondolkodási és megismerési módszerek Halmazok Képes különböző elemek közös tulajdonságainak felismerésére.
VII.3. KISKOCKÁK. A feladatsor jellemzői
VII.3. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek
II.4. LÓVERSENY. A feladatsor jellemzői
II.4. LÓVERSENY Tárgy, téma A feladatsor jellemzői Kombinatorika ismétlés nélküli és ismétléses permutáció, variáció és ismétlés nélküli kombináció. Leszámlálás. Előzmények Cél Egyszerű leszámlálási feladatok.
VII.6. KISKOCKÁK. A feladatsor jellemzői
VII.6. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek
Alkossunk, játsszunk együtt!
SZKB_101_03 Gombamese II. lkossunk, játsszunk együtt! Én és a MÁSIK modul szerzõje: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYM 30 Szociális, életviteli és környezeti kompetenciák
rtórendszerek rendszerek tervezése gyakorlat
Gyárt rtórendszerek rendszerek tervezése 1 gyakorlat G Miskolci Egyetem Gépgyártástechnológiai Tanszék Miskolc, 2005. 2 1. előadás Műveleti sorrendtervezés 3 Követelmények Személyre szóló tervezési feladat
Alapfogalmak. Ha a gráf valamely két csúcsát egynél több él köti össze, akkor azt többszörös élnek nevezzük.
Alapfogalmak A gráfelmélet a matematika tudományának viszonylag fiatal részterülete. Az első gráfelméleti probléma a XVIII. sz. elején lépett fel ennek megoldása Euler nevéhez fűződik. A Königsberg (mai
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN
MATEMATIKA C 9. évfolyam 1. modul IDŐBEN A TÉRBEN Készítette: Kovács Károlyné MATEMATIKA C 9. ÉVFOLYAM 1. MODUL: IDŐBEN A TÉRBEN TANÁRI ÚTMUTATÓ 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály
Bevezetés. 3. Egy ötfős társaságban Mindenkinek legalább 1 ismerőse van. Rajzoljon meg néhány lehetőséget!
Bevezetés A megoldásokat a feladatsor végén találod! 1. Hencidát út köti össze Kukutyimmal, Boncidával, Lustafalvával és Dágványoshetyével. Boncidáról Álmossarokra is vezet út. Lustafalvát út köti össze
Síkbarajzolható gráfok, duális gráf
Síkbarajzolható gráfok, duális gráf Papp László BME November 8, 2018 Gráfok lerajzolása Definíció: Egy G gráf diagramján a gráf olyan lerajzolását értjük ahol a csúcsok különböző síkbeli pontok, illetve
V.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői
V.7. NÉPSZÁMLÁLÁS Tárgy, téma A feladatsor jellemzői Eponenciális egyenletek felírása és megoldása szöveges feladatok alapján. Szöveges feladatok alapján modellt alkotunk, amely alkalmas eponenciálisan
Gráfelmélet Megoldások
Gráfelmélet Megoldások 1) a) Döntse el az alábbi négy állítás közül melyik igaz és melyik hamis! Válaszát írja a táblázatba! A: Egy 6 pontot tartalmazó teljes gráfnak 15 éle van B: Ha egy teljes gráfnak
Matematika C 3. évfolyam. Melyikhez tartozom? 4. modul. Készítette: Abonyi Tünde
Matematika C 3. évfolyam Melyikhez tartozom? 4. modul Készítette: Abonyi Tünde Matematika C 3. évfolyam 4. modul Melyikhez tartozom? MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
szka102_10 É N É S A V I L Á G Készítette: Kovácsné Vojnovics Éva Solymos Éva SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 2.
szka102_10 É N É S A V I L Á G Iskolaorvosnál és iskolafogászaton Készítette: Kovácsné Vojnovics Éva Solymos Éva SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK A 2. ÉVFOLYAM 104 Szociális, életviteli
Az első három perctől
P o l g á r a d e m o k r á c i á b a n z első három perctől az utolsóig Helyünk a világban, beszélgetés a végtelenről az időben Készítette: Bányai László SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK
SZERZŐ: Kiss Róbert. Oldal1
A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva különböző dinamikus (időben változó) ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3
Színes érettségi feladatsorok matematikából középszint írásbeli
Színes érettségi feladatsorok matematikából középszint írásbeli I. rész 1. Mivel egyenlő ( x 3) 2, ha x tetszőleges valós számot jelöl? A) x 3 B) 3 x C) x 3 2. Mekkora az a és b szöge az ábrán látható
A 2017/2018 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai. INFORMATIKA II. (programozás) kategória
Oktatási Hivatal A 217/218 tanévi Országos Középiskolai Tanulmányi Verseny döntő fordulójának feladatai 1. feladat: Csatornák (24 pont) INFORMATIKA II. (programozás) kategória Egy város csomópontjait csatornahálózat
SZERZŐ: Kiss Róbert. Oldal1
A LOGO MindStorms NXT/EV3 robot grafikus képernyőjét használva különböző ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott alakzatok (kör, téglalap, szakasz, pont) meghatározó
Szín számokkal Képábrázolás
2. foglalkozás Szín számokkal Képábrázolás Összegzés A számítógépek a rajzokat, fényképeket és más képeket pusztán számokat használva tárolják. A következő foglalkozás bemutatja, hogyan tudják ezt csinálni.
A feladat sorszáma: Standardszint: 4 6. Számfogalom. kialakítása. Számfogalom. kialakítása. Számfogalom. kialakítása
A feladat sorszáma: Standardszint: 4 6. A standard(ok), amelye(ke)t a feladattal mérünk: Számtan, számelmélet, algebra Számfogalom kialakítása Használja a valamennyivel több, valamennyivel kevesebb fogalmát
Ismétlő feladatsor: 10.A/I.
Ismétlő feladatsor: 0.A/I. Harasztos Barnabás 205. január. Feladat Mekkora az alábbi ábrán (szürkével) jelölt síkidom összterülete? A terület egységének a négyzetrács egy négyzetének területét tekintjük!
4. Lecke. Körök és szabályos sokszögek rajzolása. 4.Lecke / 1.
4.Lecke / 1. 4. Lecke Körök és szabályos sokszögek rajzolása Az előző fejezetekkel ellentétben most nem újabb programozási utasításokról vagy elvekről fogunk tanulni. Ebben a fejezetben a sokszögekről,
KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ
TÁMOP-3.1.4.-08/1-2009-0010. Fáy András Református Általános Iskola és AMI Gomba KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ KÉSZÍTETTE: KURUCZNÉ BORBÉLY MÁRTA TANKÖNYVSZERZİ munkája
Feladatok MATEMATIKÁBÓL
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára III. 1. Számítsuk ki a következő hatványok értékét! 2. Írjuk fel gyökjelekkel a következő hatványokat! 3. Az ötnek hányadik hatványa a következő kifejezés?
IV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői
IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai. 81f 2 + 90l 2 f 2 + l 2
Az Országos Középiskolai Tanulmányi Verseny 2005-2006. tanévi első fordulójának feladatmegoldásai matematikából, a II. kategória számára 1. Két iskola tanulói műveltségi vetélkedőn vettek részt. A 100
Euler tétel következménye 1:ha G összefüggő síkgráf és legalább 3 pontja van, akkor: e 3
Síkgráfok Kuratowski-tétel: egy gráf akkor és csak akkor síkba rajzolható gráf, ha nincs olyan részgráfja, ami a K 5 -el, vagy a K 3,3 -altopologikusan izomorf (homeomorf). Euler síkgráfokra vonatkozó
MATEMATIKA II. A VIZSGA LEÍRÁSA
MATEMATIKA II. A VIZSGA LEÍRÁSA A vizsga részei 180 perc 15 perc 240 perc 20 perc Egy téma összefüggő II. I. II. kifejtése megadott 135 perc szempontok szerint I. 45 perc Definíció, ill. tétel kimondása
GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS
GEOMATECH TANULMÁNYI VERSENYEK 2015. ÁPRILIS Eddig nehezebb típusú feladatokkal dolgoztunk. Most, hogy közeledik a tavaszi szünet, játékra hívunk benneteket! Kétszemélyes játékokat fogunk játszani és elemezni.
24. tétel. Kombinatorika. A grá fok.
2009/2010 1 Huszk@ Jenő 24. tétel. Kombinatorika. A grá fok. 1.Kombinatorika A kombinatorika a véges halmazokkal foglalkozik. Olyan problémákat vizsgál, amelyek függetlenek a halmazok elemeinek mibenlététől.
Dr. Enyedy Andor Református Általános Iskola, Óvoda és Bölcsőde 3450 Mezőcsát Szent István út 1-2.
5. osztály 1. feladat: Éva egy füzet oldalainak számozásához 31 számjegyet használt fel. Hány lapja van a füzetnek, ha az oldalak számozását a legelső oldalon egyessel kezdte? 2. feladat: Janó néhány helység
MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN. 10. modul TESTRÉSZEINK! Készítette: Schmittinger Judit
MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN 10. modul TESTRÉSZEINK! Készítette: Schmittinger Judit MATEMATIKA B 1. ÉVFOLYAM EMBER A TERMÉSZETBEN 10. modul: TESTRÉSZEINK 2 A modul célja Időkeret Ajánlott
MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK
MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 2. MODUL: TANGRAMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai
Egybevágóság, hasonlóság
Egybevágóság, hasonlóság 3.4 Alapfeladat Egybevágóság, hasonlóság 4. feladatcsomag a tükörszimmetria minél többféle tapasztalása; globális látványként megkülönböztetése egyéb szimmetriáktól a vizsgálódás
SZKA_101_23 Kérlek, segíts! A modul szerzõje: Kurucz Lászlóné. Én és a világ SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1.
SZKA_101_23 Kérlek, segíts! Én és a világ A modul szerzõje: Kurucz Lászlóné SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 1. ÉVFOLYAM 244 Szociális, életviteli és környezeti kompetenciák tanári MODULVÁZLAT
MATEMATIK A 9. évfolyam. 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA
MATEMATIK A 9. évfolyam 1. modul: HALMAZOK KÉSZÍTETTE: LÖVEY ÉVA Matematika A 9. évfolyam. 1. modul: HALMAZOK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Halmazokkal
Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók I. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Logika-Gráfok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Matematika A 9. szakiskolai évfolyam. 14. modul GEOMETRIAI ALAPFOGALMAK. Készítette: Vidra Gábor
Matematika A 9. szakiskolai évfolyam 14. modul GEOMETRIAI ALAPFOGALMAK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 14. modul: GEOMETRIAI ALAPFOGALMAK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret
Gubancok. Hajnal Péter. SZTE, Bolyai Intézet
Gubancok SZTE, Bolyai Intézet 2010 Bevezető feladat Három ház három kút feladat Adott a síkon három ház és három kút. Bevezető feladat Három ház három kút feladat Adott a síkon három ház és három kút.
kié nagyobb? 10. modul Készítette: Abonyi tünde
kié nagyobb? 10. modul Készítette: Abonyi tünde kié nagyobb? A modul célja Időkeret Ajánlott korosztály A tudatos észlelés, a megfigyelés és a figyelem fejlesztése. Saját megfigyelések, megtapasztalások
VI.9. KÖRÖK. A feladatsor jellemzői
VI.9. KÖRÖK Tárgy, téma A feladatsor jellemzői A kör területe, arányok változatlansága sokszorozás esetén. Előzmények Cél A kör részeinek területe egyszerű esetben, szimmetriák, a négyzet és átlójának
PISA2006. Nyilvánosságra hozott feladatok matematikából
PISA2006 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Autózás 5 Füzetkészítés 7 Kerékpárok 10 Nézd a tornyot 12 Testmagasság Autózás M302 AUTÓZÁS Kati autózni ment. Útközben egy macska
Matematika A 9. szakiskolai évfolyam. 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK!
Matematika A 9. szakiskolai évfolyam 1. modul GONDOLKODJUNK, RENDSZEREZZÜNK! MATEMATIKA A 9. szakiskolai évfolyam 1. modul:gondolkodjunk, RENDSZEREZZÜNK! Tanári útmutató 2 A modul célja Időkeret Ajánlott
A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba
A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata
TÁJÉKOZTATÓ. Matematikai kompetenciák fejlesztése tréning Nyilvántartásba vételi szám: E-000819/2014/D004
TÁJÉKOZTATÓ Matematikai kompetenciák fejlesztése tréning /D004 A képzés során megszerezhető kompetenciák A képzésben résztvevő Ismeri : ismeri a mennyiség fogalmát. ismeri a számok nagyságrendjét, ismeri
Segítünk egymásnak. A matematika nem játék? 2. ÉVFOLYAM É N É S A M Á S I K. Készítette: Lissai Katalin
SZKb_102_06 Segítünk egymásnak A matematika nem játék? É N É S A M Á S I K Készítette: Lissai Katalin SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 2. ÉVFOLYAM tanári SEGÍTÜNK EGYMÁSNAK 53 MODULVÁZLAT
SZKC_105_05. A modul szerzõi: Kardos Ágnes, Korbai Katalin. a z é n d i m e n z i ó i SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 5.
EGY KIS JÓ CSELEKEDET SZKC_105_05 a z é n d i m e n z i ó i modul szerzõi: Kardos Ágnes, Korbai Katalin SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 5. ÉVFOLYM tanári egy kis jócselekedet 5. évfolyam
Síkgráfok (négyszín-tétel, Kuratowski-tétel, Euler-formula)
Síkgráfok (négyszín-tétel, Kuratowski-tétel, Euler-formula) Kombinatorika 11. előadás SZTE Bolyai Intézet Szeged, 2016. április 26. 11. ea. Síkgráfok 1/9 Definíció. Egy gráf síkgráf, ha lerajzolható úgy
Projektfeladat Földrajzi ismeretszerzés rajzolás segítségével
Projektfeladat Földrajzi ismeretszerzés rajzolás segítségével Készítette: Kedves Júlia - Toró Norbert - Tóth Enikő 2010. február 18. Megbeszéltük az előadás előtt, hogy mi leszünk majd egy csoportban.
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Gráfelmélet II. Gráfok végigjárása
Gráfelmélet II. Gráfok végigjárása DEFINÍCIÓ: (Séta) A G gráf egy olyan élsorozatát, amelyben a csúcsok és élek többször is szerepelhetnek, sétának nevezzük. Egy lehetséges séta: A; 1; B; 2; C; 3; D; 4;
Hány darab? 5. modul
Hány darab? 5. modul Készítette: KÖVES GABRIELLA 2 Hány darab? A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Tapasztalati úton ismerkedés az adat fogalmával. Tapasztalatszerzés az
IV. Matematikai tehetségnap 2013. szeptember 28. IV. osztály
IV. osztály 1. feladat. Ha leejtünk egy labdát, akkor az feleakkora magasságra pattan fel, mint ahonnan leejtettük. Milyen magasról ejtettük le a labdát, ha ötödször 10 cm magasra pattant fel? 2. feladat.
Programozási nyelvek 2. előadás
Programozási nyelvek 2. előadás Logo forgatás tétel Forgatás tétel Ha az ismétlendő rész T fok fordulatot végez és a kezdőhelyére visszatér, akkor az ismétlések által rajzolt ábrák egymás T fokkal elforgatottjai
Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk.
Óravázlat 2. osztályos matematika Tananyag: Számfogalom erősítése a 100-as számkörben. Játékpénzzel számolunk. Oktatási cél: Pénzhasználat, pénzváltás. Játék a játékpénzzel párokban. Megismerési képességek
ÉLETPÁLYA- ÉPÍTÉS MATEMATIKA TANÁRI ÚTMUTATÓ KOMPETENCIATERÜLET B. 6. évfolyam
ÉLETPÁLYA- ÉPÍTÉS KOMPETENCIATERÜLET B MATEMATIKA TANÁRI ÚTMUTATÓ 6. évfolyam A kiadvány az Educatio Kht. kompetenciafejlesztő oktatási program kerettanterve alapján készült. A kiadvány a Nemzeti Fejlesztési
A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.
Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.
MATEMATIKA C 8. évfolyam 9. modul HOL A VÉGE?
MATEMATIKA C 8. évfolyam 9. modul HOL A VÉGE? Készítette: Surányi Szabolcs MATEMATIKA C 8. ÉVFOLYAM 9. HOL A VÉGE? TANÁRI ÚTMUTATÓ A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A
Próba érettségi feladatsor április I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe
VI.7. PITI PÉLDÁK. A feladatsor jellemzői
VI.7. PITI PÉLDÁK Tárgy, téa Pitagorasz tétele. Előzények A feladatsor jellezői Hároszög, téglalap, négyzet kerülete és területe, Pitagorasz-tétel, négyzetgyök fogala, irracionális száok Cél A Pitagorasz-tétel
Elméleti képzés a kezdő és haladó tájfutóknál!
EDZŐI KONFERENCIA 2014 Elméleti képzés a kezdő és haladó tájfutóknál! Fehér Ferenc ELMÉLETI KÉPZÉS A KEZDŐ ÉS HALADÓ TÁJFUTÓKNÁL A tájékozódási futás fizikai sportág, azonban a fizikai felkészültség senkit
Szapora négyzetek Sorozatok 4. feladatcsomag
Sorozatok 3.4 Szapora négyzetek Sorozatok 4. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 sorozat tengelyes szimmetria összeszámlálás különböző szempontok szerint átdarabolás derékszögű elforgatás
MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN
MŰVELTSÉGTERÜLET OKTATÁSA TANTÁRGYI BONTÁS NÉLKÜL AZ ILLYÉS GYULA ÁLTALÁNOS ISKOLA 5. A OSZTÁLYÁBAN Készítette: Adorjánné Tihanyi Rita Innováció fő célja: A magyar irodalom és nyelvtan tantárgyak oktatása
A foglalkozás céljának eléréséhez a következő tevékenységeket végezzük el:
A FOGLAKOZÁS ADATAI: SZERZŐ Kiss Róbert A FOGLALKOZÁS CÍME Dinamikus rajzolás robotképernyőn A FOGLALKOZÁS RÖVID LEÍRÁSA A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva
Programozásban kezdőknek ajánlom. SZERZŐ: Szilágyi Csilla. Oldal1
Milyen kincseket rejt az erdő? Kubu maci és barátai segítségével választ kapunk a kérdésre. A mesekönyv szerkesztése közben a tanulók megismerkednek a Scatch programozás alapjaival. Fejlődik problémamegoldó
Borbély Sándor Országos Tanulmányi Verseny. Vác Matematika. 5. osztály. Javítókulcs. Összesen: 100 p. Név: Iskola:
Borbély Sándor Országos Tanulmányi Verseny Vác 2016 Matematika 5. osztály Javítókulcs Összesen: 100 p Név: Iskola: 1. Gábor új mobiltelefont kapott. A számát rejtvényben árulta el barátainak. Keresd meg
Írd le, a megoldások gondolatmenetét, indoklását is!
0 Budapest VIII., Bródy Sándor u.. Postacím: Budapest, Pf. 7 Telefon: 7-900 Fax: 7-90. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ 0. április. HARMADIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ Írd le,
Gráfelméleti alapfogalmak
1 Gráfelméleti alapfogalmak Gráf (angol graph= rajz): pontokból és vonalakból álló alakzat. pontok a gráf csúcsai, a vonalak a gráf élei. GRÁ Irányítatlan gráf Vegyes gráf Irányított gráf G H Izolált pont
DIFER Szolnok Városi Óvodák
DIFER 2014-2015 Szolnok Városi Óvodák Fontos felismerések (Nagy József): Szélsőséges fejlettségbeli különbségek jellemzőek: hatéves korban ötévnyi! A személyiség alaprendszerét- az alapkészségeket- minden
Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei
Számítástudomány alapjai Megoldások 7. gyakorlat Síkgráfok, dualitás, gyenge izomorfia, Whitney-tételei 90. A konvex poliéder egyes lapjait határoló élek száma legyen k! Egy konvex poliéder egy tetszőleges
8. OSZTÁLY ; ; ; 1; 3; ; ;.
BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat
Érdemes egy n*n-es táblázatban (sorok-lányok, oszlopok-fiúk) ábrázolni a két színnel, mely éleket húztuk be (pirossal, kékkel)
Kombi/2 Egy bizonyos bulin n lány és n fiú vesz részt. Minden fiú pontosan a darab lányt és minden lány pontosan b darab fiút kedvel. Milyen (a,b) számpárok esetén létezik biztosan olyan fiúlány pár, akik
SZKB_104_12 É N É S A M Á S I K NÉHA NEHÉZ DÖNTENI. A modul szerzője: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK B 4.
SZK_104_12 É N É S M Á S I K NÉH NEHÉZ DÖNTENI modul szerzője: Iván Márta SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 4. ÉVFOLYM 146 SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK TNÁRI MODULVÁZLT