IX.3. ÁTLAGOS FELADATOK II. A feladatsor jellemzői
|
|
- Alexandra Pásztor
- 8 évvel ezelőtt
- Látták:
Átírás
1 IX.3. ÁTLAGOS FELADATOK II. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, elsőfokú és elsőfokú törtes egyenletek megoldása. Cél Az aritmetikai átlag fogalmának mélyítése. A szövegértés fejlesztése. A feladatsor által fejleszthető kompetenciák Tájékozódás a térben Ismeretek alkalmazása + Tájékozódás az időben Problémakezelés és -megoldás + Tájékozódás a világ mennyiségi viszonyaiban + Alkotás és kreativitás + Tapasztalatszerzés + Kommunikáció + Képzelet Együttműködés + Emlékezés Motiváltság + Gondolkodás + Önismeret, önértékelés Ismeretek rendszerezése + A matematika épülésének elvei Ismerethordozók használata + Felhasználási útmutató A feladatokat érdemes sorban megoldani, mert a feladatsorban fokozatosan nehezedő feladatok szerepelnek. Választhatunk a feladatokból otthoni munkát is. A feladatok többségében csak szám vagy egész szám szerepel, és a végén általában pozitív egész számokat kapunk eredményül. Érdemes a megbeszélések során arra is kitérni, hogy ha megengedünk a feladatban negatív számokat is szerepelni, akkor ez hogyan módosítja a probléma megoldását. A 4. b) feladattól kezdve a feladatsort inkább a tehetséges, érdeklődő diákoknak ajánljuk, mert a sikeres feladatmegoldáshoz szükséges készségek terén ezek meghaladják a tantervi igényeket. A szöveges feladatok a tanulók többségének nehézséget okoznak. Segítsük a diákokat az átlag fogalmának rugalmas használatában, azaz abban, hogy észrevegyék, nemcsak az adott számokból lehet kiszámolni az átlagukat, hanem az átlag és a darabszám alapján a számok összegét is meg tudjuk határozni. Ez a kulcsa sok feladatnak. Az eredményeket érdemes folyamatosan ellenőrizni, és az elakadó diákoknak azokhoz hasonló feladatokat adni, amely nehézséget okozott számukra, hogy folytathassák a felzárkózást a többiekhez. IX. Leíró statisztika IX.3. Átlagos feladatok II. 1.oldal/6
2 Ha tematikusan osztályozzuk a feladatokat, a következő csoportokat kapjuk: 1 6. a számok összege és darabszáma megadja az átlagot. 7. átlag és oszthatóság. 4. a), b), c) átlag fogalmának használata szöveges feladatban. 2. átlagok átlaga. Ha nehézségi fok szerint csoportosítjuk a feladatokat, akkor az alábbi felosztást kapjuk: minimumfeladatok: 1.; feladatok mindenkinek: 2., 3., 4. a); a legjobbaknak (is): 4. b), c), 5., 6., 7. IX. Leíró statisztika IX.3. Átlagos feladatok II. 2.oldal/6
3 ÁTLAGOS FELADATOK II. Feladat sor 1. a) Kati tizenhárom almát vett a piacon, átlagosan hat forintot fizetett egy darabért. Menynyit fizetett összesen az almákért? b) Nyolc barackért összesen 200 Ft-ot adtunk. Mennyit fizettünk átlagosan egy barackért? 2. a) Az üdítőskupakok belsejébe egy-egy számot nyomtatnak. Ha négy olyan kupakot összegyűjtünk, amelyekbe írt számok átlaga 7, akkor ezeket be lehet küldeni az üdítőitalt palackozó cégnek, és így nyereménysorsoláson veszünk részt. Sanyinak van két ilyen kupakja, a beleírt számok átlaga 5. Pistinek is van két kupakja, az azokban levő számok átlaga 9. Beküldhetik-e a nyereménysorolásra a négy kupakot? b) A gyártó cég a nagyobb haszon reményében hétre emeli a beküldhető kupakok számát és 14-re a számok átlagát. Pisti három kupakjában levő számok átlaga 6, Sanyi négy kupakjában levő számok átlaga 20. Beküldhetik-e ezt a hét kupakot? 3. Peti biológiából hét jegyet szerzett tavaly. Minden újabb jegye után kiszámolta, hogy hogyan áll biológiából, vagyis jegyeinek az (egy tizedesre kerekített) átlagát. Az átlagok, melyeket így kapott: 4,0 ; 4,5; 4,0; 4,0; 4,2; 3,8; 4,0. Milyen jegyeket szerzett az év során biológiából? 4. a) András az év elején kapott egy négyest történelemből, de az összes további jegyével folyamatosan javította az átlagát, ami az év végére pontosan 4,9 lett. Sorold fel András történelem jegyeit! b) Janka az év elején kapott angolból egy hármast, de az összes további jegyével folyamatosan javította az átlagát, ami az év végére pontosan 4,9 lett. Milyen jegyeket szerezhetett az év során, ha összesen harmincnál kevesebb osztályzatot kapott? c) Borinak fizikából nem volt hármasnál rosszabb jegye, de az átlaga az év végén 4,5 volt, így felelnie kellett, hogy el tudják dönteni, milyen osztályzatot kapjon. A feleletével éppen 4,6-ra javította az átlagát, így megkapta az ötöst. Hány jegye volt Borinak? Sorold fel Bori osztályzatait! IX. Leíró statisztika IX.3. Átlagos feladatok II. 3.oldal/6
4 5. Misi, a Langaléta Kosárlabda Klub centere a szezon eddigi 11 mérkőzésén átlagban 23 pontot dobott meccsenként. Ahhoz, hogy megkapja a legtöbb pontot szerző játékosnak járó vándorserleget, ezt az átlagot legalább 24 pontra kell feltornásznia. Legkevesebb hány pontot kell dobnia ehhez a mai szezonzáró mérkőzésén? 6. A Kutyaütő SC és a Kétballábas FC futballcsapatok összecsapásán a pályán levő Kutyaütők átlagéletkora 23 év volt, ami egy évvel több az éppen futballozó Kétballábasok átlagéletkoránál. A focimeccs 18. percében egy csúnya becsúszás után kiállították a Kutyaütők középcsatárát. Ekkor a két csapat pályán levő játékosainak átlagéletkora már egyenlő lett. Hány éves volt a kiállított játékos? (Egy focicsapatban egyszerre 11 játékos van a pályán.) 7. Az alábbi táblázatra sajnos három tintafolt került. Tudjuk, hogy a kilenc különböző prímszám átlaga páros szám. Milyen számok állnak a foltok alatt? 1. szám 2. szám 3. szám 4. szám 5. szám 6. szám 7. szám 8. szám 9. szám A kilenc szám átlaga IX. Leíró statisztika IX.3. Átlagos feladatok II. 4.oldal/6
5 1. a) 6 13 = 78 Ft-ot fizetett összesen. b) 200 : 8 = 25 Ft volt az átlagos ár. MEGOLDÁSOK 2. a) (5 + 9) : 2 = 7, vagy másképpen: a négy szám összege = 28, átlaguk 7. Tehát beküldhetik együtt. b) Most nem jó az első módszer, mert nem ugyanannyi szám van a két csoportban. A hét szám összege = 98, így az átlag 98 : 7 = 14. Tehát most is beküldhetik. 3. 4, 5, 3, 4, 5, 2, 5. Az egyes átlagok kiszámítása előtt kapott jegyei összege az átlagból és a darabszámból meghatározhatók, és ebből kiszámítható, hogy az utolsóként kapott jegye hányas volt. 4. a) A négyes után csak ötösökkel javíthatta az átlagát. Ha még n db ötöst szerzett, akkor az 4 n 5 átlaga: 4, 9, az egyenletet megoldva n = 9. n 1 András jegyei: 4, 5, 5, 5, 5, 5, 5, 5, 5, 5. b) A hármas után csak négyeseket és ötösöket szerezhetett. Mivel elég magas az átlaga, így nézzük meg először azt az esetet, amikor csak ötösöket (n darabot) szerzett a hármas 3 n 5 után. Ekkor az átlaga: 4, 9. Az egyenletet megoldva n = 19. n n 5 Ha szerzett egy négyest is, akkor az átlaga n darab ötös esetén: 4, 9, ahonnan n = 28, vagyis ekkor 30 jegye volt már, ami nem lehet. Ha több négyest szerez, ak- n 2 kor egyre több ötös kellene a 4,9-es átlag eléréséhez, ami kevesebb, mint 30 jeggyel nem lehetséges. Tehát Janka a 3-as után 19 db 5-öst szerzett. c) A feleletig k db jegye volt. A jegyek összege k 4,5. A felelettel javított, így biztos, hogy k 4,5 5 ötöst kapott. Vagyis az átlaga: 4, 6, ahonnan k = 4. Tehát az ötös felelet k 1 előtt négy jegye volt, melyek átlaga 4,5, vagyis az első négy jegy összege 4 4,5 = 18. Mivel nem volt hármasnál rosszabb jegye, így a jegyei lehettek: 3, 5, 5, 5 vagy 4, 4, 5, 5, ezekhez jött hozzá az ötös felelet megoldás x Ha x pontot dob, akkor az átlaga 24, ahonnan x megoldás Ha hozza a 23 pontot, akkor az átlaga 23 pont marad. Ahhoz, hogy 1 ponttal javítson az átlagán meccsenként egy-egy ponttal többet kellett volna dobnia, azaz összesen 12 ponttal többet, vagyis elég, ha 35 pontot dob az utolsó mérkőzésén (vagy ennél többet). IX. Leíró statisztika IX.3. Átlagos feladatok II. 5.oldal/6
6 6. A Kutyaütők összéletkora = 253 év volt. Ha a kiállítás után a pályán maradt 10 játékos átlagéletkora 22 év lett, akkor az összéletkoruk 220 év, vagyis a kiállított középcsatár 33 éves. 7. Mivel a számok átlaga páros, így annak kilencszerese, azaz a prímek összege is páros. Kilenc páratlan szám összege nem lehet páros, így az egyik prím az egyik folt alatt biztosan a 2. Ekkor az eddig ismert nyolc szám összege 105. A számok összege 9-cel osztható kell legyen, hiszen az átlaguk egész szám, és mivel a 105 kilenccel osztva hatot ad maradékul, így a hiányzó prím kilences maradéka a három. Vagyis a hiányzó prím hárommal osztható. Ez csak a 3 lehet. A prímek összege 108, így az átlaguk 12. IX. Leíró statisztika IX.3. Átlagos feladatok II. 6.oldal/6
IX.2. ÁTLAGOS FELADATOK I. A feladatsor jellemzői
IX.2. ÁTLAGOS FELADATOK I. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, a számtani sorozat elemeinek összegére
RészletesebbenIII.7. PRÍM PÉTER. A feladatsor jellemzői
III.7. PRÍM PÉTER Tárgy, téma A feladatsor jellemzői Számelmélet: osztó, többszörös, prímtényezős felbontás, legkisebb közös többszörös, legnagyobb közös osztó. Előzmények Cél Oszthatóság, prímtényezős
RészletesebbenV.9. NÉGYZET, VÁGOD? A feladatsor jellemzői
V.9. NÉGYZET, VÁGOD? Tárgy, téma A feladatsor jellemzői Geometriai megközelítésen keresztül a mértani sorozat tulajdonságaival, első n tagjának összegképletével való ismerkedés. Előzmények Téglalap területe,
RészletesebbenVIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői
VIII.4. PONT A RÁCSPONTOK? Tárg, téma Geometria, algebra és számelmélet. Előzmének A feladatsor jellemzői Pontok ábrázolása koordináta-rendszerben, abszolút érték fogalma, oszthatóság fogalma, (skatula
RészletesebbenIV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői
IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai
RészletesebbenXI.5. LÉGY TE A TANÁR! A feladatsor jellemzői
XI.5. LÉGY TE A TANÁR! Tárgy, téma A feladatsor jellemzői Algebrai, geometriai, kombinatorikai és valószínűségszámítási tipikus gondolkodási hibák, buktatók. Előzmények Mérlegelv, másodfokú egyenletek
RészletesebbenI.4. BALATONI NYARALÁS. A feladatsor jellemzői
I.4. BALATONI NYARALÁS Tárgy, téma A feladatsor jellemzői Logikai fogalmak: logikai kijelentés; minden; van olyan; ha, akkor; és; vagy kifejezések jelentése. Egyszerű logikai kapcsolatok mondatok között.
RészletesebbenI.2. ROZSOMÁK. A feladatsor jellemzői
I.2. ROZSOMÁK Tárgy, téma A feladatsor jellemzői Kombinatorikai alapfeladatok, halmazok használata. Logikai kijelentések vizsgálata, értelmezése. A szövegértés képességének fejlesztése. Előzmények Cél
RészletesebbenVI.3. TORPEDÓ. A feladatsor jellemzői
VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont
RészletesebbenIII.4. JÁRŐRÖK. A feladatsor jellemzői
III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:
RészletesebbenV.3. GRAFIKONOK. A feladatsor jellemzői
V.3. GRAFIKONOK Tárgy, téma Grafikonok, diagramok. Előzmények A feladatsor jellemzői Egyenes vonalú egyenletes mozgás, sebesség út idő összefüggésének ismerete. Átlagsebesség. Cél Különböző grafikonok,
RészletesebbenI.5. LOLKA ÉS BOLKA. A feladatsor jellemzői
I.5. LOLKA ÉS BOLKA Tárgy, téma Kombinatorika, skatulya-elv, számelmélet. Előzmények A feladatsor jellemzői A skatulya-elv alapszintű bevezetése, osztási maradékok ismerete, a prímszám fogalmának ismerete.
RészletesebbenV.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői
V.7. NÉPSZÁMLÁLÁS Tárgy, téma A feladatsor jellemzői Eponenciális egyenletek felírása és megoldása szöveges feladatok alapján. Szöveges feladatok alapján modellt alkotunk, amely alkalmas eponenciálisan
RészletesebbenVII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői
VII.1. POLIÉDER-LABIRINTUSOK Tárgy, téma A feladatsor jellemzői Testek makettjének elkészítése, ismerkedés a testekkel szórakoztató formában. Előzmények Cél Egyszerűbb testek, tulajdonságaik. A térgeometriai
RészletesebbenVII.3. KISKOCKÁK. A feladatsor jellemzői
VII.3. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek
RészletesebbenVI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői
VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Tárgy, téma A feladatsor jellemzői Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör
RészletesebbenVII.10. TORNYOSULÓ PROBLÉMÁK. A feladatsor jellemzői
VII.10. TORNYOSULÓ PROBLÉMÁK Tárgy, téma A feladatsor jellemzői Szögfüggvények a derékszögű háromszögben. A szinusztétel és a koszinusztétel alkalmazása gyakorlati problémák megoldásában. Előzmények Szinusz-
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. A fős osztály dolgozatot írt matematikából és a következő jegyek születtek: 6 darab jeles, 9 darab jó, 8 darab közepes, darab elégséges és darab elégtelen. Készíts gyakorisági táblázatot,
RészletesebbenXI.4. FŐZŐCSKE. A feladatsor jellemzői
XI.4. FŐZŐCSKE Tárgy, téma Előzmények Cél Egyenes arányosság. Egyenes arányosság ismerete. A feladatsor jellemzői Problémamegoldás fejlesztése. A projektmunka gyakorlása. A feladatsor által fejleszthető
RészletesebbenVII.4. RAJZOLGATUNK II. A feladatsor jellemzői
VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,
RészletesebbenVII.6. KISKOCKÁK. A feladatsor jellemzői
VII.6. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek
RészletesebbenVI.8. PIO RAGASZT. A feladatsor jellemzői
VI.8. PIO RAGASZT Tárgy, téma A feladatsor jellemzői Pitagorasz-tétel alkalmazása gyakorlati problémákban. Előzmények Cél Pitagorasz-tétel, négyzetgyök, egyszerűbb algebrai azonosságok, egyenlet megoldása.
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS
Matematika A 9. szakiskolai évfolyam 4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIKA A 9. szakiskolai évfolyam 4. modul: EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató
RészletesebbenIV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői
IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai
RészletesebbenVII.2. RAJZOLGATUNK. A feladatsor jellemzői
VII.2. RAJZOLGATUNK Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,
RészletesebbenOSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
RészletesebbenII.3. DOMINÓ GRÓF. A feladatsor jellemzői
II.. DOMINÓ GRÓF Tárgy, téma Gráfok, számelmélet, kombinatorika. Előzmények Cél A feladatsor jellemzői Nagy előny, ha a dominójátékot már ismerik a diákok korábbról. A gráfmodell kialakítása képességének
RészletesebbenSzámelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
RészletesebbenKÉSZÍTSÜNK ÁBRÁT évfolyam
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.
Részletesebben0645. MODUL SZÁMELMÉLET. Gyakorlás, mérés KÉSZÍTETTE: PINTÉR KLÁRA
0645. MODUL SZÁMELMÉLET Gyakorlás, mérés KÉSZÍTETTE: PINTÉR KLÁRA 0645. Számelmélet Gyakorlás, mérés Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A
RészletesebbenLevelező Matematika Verseny Versenyző neve:... Évfolyama:... Iskola neve:... Postára adási határidő: január 19. Feladatok
Postára adási határidő: 2017. január 19. Tollal dolgozz! Feladatok 1.) Az ábrán látható piramis természetes számokkal megszámozott kockákból áll. Az alsó szinten semelyik két kockának nincs ugyanolyan
Részletesebben0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA
0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály
Részletesebben46. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY NEGYEDIK OSZTÁLY
6. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató NEGYEDIK OSZTÁLY 1. Írd be az 1, 2, 5, 6, 7, 8, 9, 10, 11 és 12 számokat a kis körökbe úgy, hogy a szomszédos számok különbsége
RészletesebbenARITMETIKAI FELADATOK
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2017/2018.
Részletesebben18. modul: STATISZTIKA
MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret
RészletesebbenPróbaérettségi feladatsor_a NÉV: osztály Elért pont:
Próbaérettségi feladatsor_a NÉV: osztály Elért pont: I. rész A feladatsor 1 példából áll, a megoldásokkal maximum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy osztály tanulói a
RészletesebbenI.1. OLIMPIA. A feladatsor jellemzői
I.1. OLIMPIA Tárgy, téma A feladatsor jellemzői Halmazok, adatok kezelése, logikai kijelentések vizsgálata. Előzmények Cél Halmaz fogalma, Venn-diagram, állítások igazságtartalma. A tanulók legyenek képesek
Részletesebben2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN
Matematika A 9. szakiskolai évfolyam 2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN MATEMATIKA A 9. szakiskolai évfolyam 2. modul: MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN Tanári útmutató 2 A modul célja Időkeret
Részletesebben3. Mennyi annak a valószínűsége, hogy egy dobókockával kétszer egymás után dobva, egyszer páros, egyszer páratlan számot dobunk?
Valószínűségszámítás, gráfok, statisztika 1. Egy 660 fős iskola tanulóinak 60%-a lány. A lány tanulók 25%-a a 12. évfolyamra jár. Egy tetszőleges tanulót választva az iskola tanulói közül, mennyi a valószínűsége,
RészletesebbenII.4. LÓVERSENY. A feladatsor jellemzői
II.4. LÓVERSENY Tárgy, téma A feladatsor jellemzői Kombinatorika ismétlés nélküli és ismétléses permutáció, variáció és ismétlés nélküli kombináció. Leszámlálás. Előzmények Cél Egyszerű leszámlálási feladatok.
RészletesebbenKOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ
TÁMOP-3.1.4.-08/1-2009-0010. Fáy András Református Általános Iskola és AMI Gomba KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ KÉSZÍTETTE: KURUCZNÉ BORBÉLY MÁRTA TANKÖNYVSZERZİ munkája
RészletesebbenSPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA. matematika
SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA matematika 9. évfolyam 1. Számtan, algebra 15 óra 2. Gondolkodási módszerek, halmazok, kombinatorika, valószínűség, statisztika 27 óra 3. Függvények, sorozatok,
RészletesebbenC C. Ábrázold gráffal, hogy melyik csapat melyikkel játszott! Hány mérkőzés van még hátra a bajnokságból?
Matematika A 10. évfolyam Témazáró dolgozat 3. negyedév 1 A CSOPORT 1. Egy háromszög oldalainak hossza 7 cm, 8 cm és 1 cm. Egy hozzá hasonló háromszög leghosszabb oldala 0 cm. Milyen hosszú a háromszög
RészletesebbenKülönös közzétételi lista
Különös közzétételi lista 1. A pedagógusok iskolai végzettsége és szakképzettsége, hozzárendelve a helyi tanterv tantárgyfelosztásához Pedagógus azonosító száma 1. 79849671990 főiskola 2. 78216931335 főiskola
Részletesebben2. Feladatsor. N k = {(a 1,...,a k ) : a 1,...,a k N}
2. Feladatsor Oszthatóság, legnagyobb közös osztó, prímfaktorizáció az egész számok körében 1 Kötelező házi feladat(ok) 2., Határozzuk meg a ϕ:z Z, z [ z 5] leképezés magját. Adjuk meg a ker(ϕ)-hez tartozó
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenV. Békés Megyei Középiskolai Matematikaverseny 2012/2013 Megoldások 12. évfolyam
01/01 1. évfolyam 1. Egy röplabda bajnokságban minden csapat pontosan egyszer játszik a többi csapat mindegyikével. A bajnokságból még két forduló van hátra és eddig 104 mérkőzést játszottak le. Hány csapat
RészletesebbenÉrettségi feladatok: Statisztika
Érettségi feladatok: Statisztika 2003. Próba 14. Bergengóciában az elmúlt 3 évben a kormány jelentése szerint kiemelt beruházás volt a bérlakások építése. Ezt az állítást az alábbi statisztikával támasztották
RészletesebbenNÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5
RészletesebbenCSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7.
Pedagógusképzés támogatása TÁMOP-3.1.5/12-2012-0001 CSAHÓCZI ERZSÉBET CSATÁR KATALIN KOVÁCS CSONGORNÉ MORVAI ÉVA SZÉPLAKI GYÖRGYNÉ SZEREDI ÉVA: MATEMATIKA 7. TANKÖNYVISMERTETŐ TÓTFALUSI MIKLÓS Csahóczi
Részletesebben} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
Részletesebben5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS
MATEMATIK A 9. évfolyam 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS KÉSZÍTETTE: VIDRA GÁBOR Matematika A 9. évfolyam. 5. modul: ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató 2 A modul célja Időkeret Ajánlott
RészletesebbenKülönös közzétételi lista
Különös közzétételi lista 1. A pedagógusok iskolai végzettsége és szakképzettsége, hozzárendelve a helyi tanterv tantárgyfelosztásához Sorszám Pedagógus azonosító száma 1. 79849671990 főiskola 2. 78216931335
RészletesebbenI. Tanulói jogviszonyban álló vizsgázók:
A vizsgabizottság neve: 12.A K 29 29 28 1 0 1 4 9 14 1 matematika K 21 21 21 0 0 0 0 2 19 0 történelem K 29 29 29 0 0 1 9 10 9 0 angol nyelv K 18 18 18 0 0 0 4 5 9 0 német nyelv K 11 11 11 0 0 0 2 2 7
RészletesebbenPróba érettségi feladatsor 2008. április 11. I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2008 április 11 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe írja!
RészletesebbenVI.7. PITI PÉLDÁK. A feladatsor jellemzői
VI.7. PITI PÉLDÁK Tárgy, téa Pitagorasz tétele. Előzények A feladatsor jellezői Hároszög, téglalap, négyzet kerülete és területe, Pitagorasz-tétel, négyzetgyök fogala, irracionális száok Cél A Pitagorasz-tétel
RészletesebbenTÁMOP Munkába lépés. Zárókonferencia január 27.
TÁMOP 5.3.1 Munkába lépés Közismereti tárgyak felzárkóztató képzése Képzési tapasztalatok; módszertani kézikönyv bemutató Zárókonferencia 2011. január 27. Célkitűzések Kulcskompetenciák fejlesztése: Anyanyelvi
Részletesebben5 labda ára 5x. Ez 1000 Ft-tal kevesebb, mint a nyeremény 1p. 7 labda ára 7x. Ez 2200Ft-tal több, mint a nyeremény 1p 5 x x 2200
2014. november 28. 7. osztály Pontozási útmutató 1. Egy iskola kosárlabda csapata egy tornán sportszervásárlási utalványt nyert. A csapat edzője szeretne néhány kosárlabdát vásárolni az iskola számára.
RészletesebbenMegoldások 9. osztály
XXV. Nemzetközi Magyar Matematikaverseny Budapest, 2016. március 1115. Megoldások 9. osztály 1. feladat Nevezzünk egy számot prímösszeg nek, ha a tízes számrendszerben felírt szám számjegyeinek összege
RészletesebbenBevezetés. 3. Egy ötfős társaságban Mindenkinek legalább 1 ismerőse van. Rajzoljon meg néhány lehetőséget!
Bevezetés A megoldásokat a feladatsor végén találod! 1. Hencidát út köti össze Kukutyimmal, Boncidával, Lustafalvával és Dágványoshetyével. Boncidáról Álmossarokra is vezet út. Lustafalvát út köti össze
RészletesebbenISKOLÁD NEVE:... Az első három feladat feleletválasztós. Egyenként 5-5 pontot érnek. Egy feladatnak több jó megoldása is lehet. A) 6 B) 8 C) 10 D) 12
2. OSZTÁLY 1. Mennyi az alábbi kifejezés értéke: 0 2 + 4 6 + 8 10 + 12 14 + 16 18 + 20 A) 6 B) 8 C) 10 D) 12 2. Egy szabályos dobókockával kétszer dobok. Mennyi nem lehet a dobott számok összege? A) 1
Részletesebben2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.
Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi
Részletesebben2. Melyik kifejezés értéke a legnagyobb távolság?
1. Határozd meg, hogy az alábbi öt híres matematikus közül kinek volt a megélt éveinek száma prímszám? A) Rényi Alfréd (1921-1970) B) Kőnig Gyula (1849-1913) C) Kalmár László (1905-1976) D) Neumann János
Részletesebben43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ
43. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY MEGYEI FORDULÓ HATODIK OSZTÁLY JAVÍTÁSI ÚTMUTATÓ 1. Ismerkedj a 100 tulajdonságaival! I.) Állítsd elő a 100-at a,, b, 3, c, 4, d, 5 négyzetszám összegeként!
Részletesebben7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
Részletesebben16. modul: ALGEBRAI AZONOSSÁGOK
MATEMATIK A 9. évfolyam 16. modul: ALGEBRAI AZONOSSÁGOK KÉSZÍTETTE: VIDRA GÁBOR, DARABOS NOÉMI ÁGNES Matematika A 9. évfolyam. 16. modul: ALGEBRAI AZONOSSÁGOK Tanári útmutató 2 A modul célja Időkeret Ajánlott
Részletesebben1. Feladatsor. I. rész
. feladatsor. Feladatsor I. rész. Mely x valós számokra lesz ebben a sorrendben a cos x, a sinx és a tg x egy mértani sorozat három egymást követő tagja?... (). Egy rombusz egyik átlója 0 cm, beírható
Részletesebben8. OSZTÁLY ; ; ; 1; 3; ; ;.
BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat
RészletesebbenElőadó: Horváth Judit
Előadó: Horváth Judit Előkészítés Tapasztalatszerzés: tevékenység eszközhasználat játék Az összeadás, kivonás típusai Változtatás Hasonlítás Egyesítés A típusok variánsai Fordított, indirekt szövegű feladatok
RészletesebbenLevelező Matematika Verseny Versenyző neve:... Évfolyama:... Iskola neve:... Postára adási határidő: november 21. Feladatok
Postára adási határidő: 2018. november 21. Tollal dolgozz! Feladatok 1.)Bernáth és négy barátja négy napig a hegyekben síeltek. A négy éjszakára egy ötszemélyes apartmant béreltek ki. Három napon át, naponta
Részletesebben17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK
MATEMATIK A 9. évfolyam 17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK KÉSZÍTETTE: DARABOS NOÉMI ÁGNES Készítette: Darabos Noémi Ágnes Matematika A 9. évfolyam. 17. modul: EGYENLETEK,
RészletesebbenSzámelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes
RészletesebbenMATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.
1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon
RészletesebbenÁrvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó. Elsõ félév. Tizenkettedik, javított kiadás Mozaik Kiadó Szeged, 2013
Árvainé Libor Ildikó Lángné Juhász Szilvia Szabados Anikó Elsõ félév Tizenkettedik, javított kiadás Mozaik Kiadó Szeged, 0 ÖSSZEHASONLÍTÁS Húzd át azokat, amelyek nincsenek a fenti képen! Karikázz be annyit,
Részletesebben9. évfolyam Javítóvizsga felkészülést segítő feladatok
Halmazok: 9. évfolam Javítóvizsga felkészülést segítő feladatok. Adott két halmaz. A : a ; a : páros és B : ;;8;0;;;8;0;. Add meg a következő halmazműveleteket az elemek felsorolásával és készíts Venn
RészletesebbenMatematika levelezős verseny általános iskolásoknak II. forduló megoldásai
Matematika levelezős verseny általános iskolásoknak II. forduló megoldásai 1. Hány olyan téglalap van, amelynek csúcsai az alábbi négyzetrács rácspontjaira esnek? A téglalapok oldalai vagy,,függőlegesek"
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldás
Megoldás 1. Melyik mondat állítás a következőek közül? A: Szép idő van ma? B: A 100 szép szám. C: Minden prímszám páratlan. D: Bárcsak újra nyár lenne! Az állítás olyan kijelentő mondat, melyről egyértelműen
Részletesebben2015. évi Bolyai János Megyei Matematikaverseny MEGOLDÁSI ÉS ÉRTÉKELÉSI ÚTMUTATÓ 9. osztály
A közölt megoldási utak a feladatoknak nem az egyetlen helyes megoldási módját adják meg, több eltérő megoldás is lehetséges. Az útmutatótól eltérő megoldásokat a kialakult tanári gyakorlat alapján, az
RészletesebbenÍrásbeli szorzás. a) b) c)
Írásbeli szorzás 96 100 1. Számítsd ki a szorzatokat! a) 321 2 432 2 112 3 222 3 b) 211 2 142 2 113 3 112 4 c) 414 2 222 2 221 4 243 2 2. Becsüld meg a szorzatokat! Számítsd ki a feladatokat! a) 216 2
Részletesebben2.9. Az iskolai beszámoltatás, az ismeretek számonkérésének követelményei és formái
2.9. Az iskolai beszámoltatás, az ismeretek számonkérésének követelményei és formái A nevelők tanulók tanulmányi teljesítményének és előmenetelének értékelését, minősítését elsősorban az alapján végzik,
RészletesebbenMATEMATIKAI STANDARDFEJLESZTÉS
XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 MATEMATIKAI STANDARDFEJLESZTÉS Csapodi Csaba Tartalom 1. Az első változat elkészítése és a tapasztalatok 2. A második
RészletesebbenHány darab? 5. modul
Hány darab? 5. modul Készítette: KÖVES GABRIELLA 2 Hány darab? A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Tapasztalati úton ismerkedés az adat fogalmával. Tapasztalatszerzés az
RészletesebbenMatematika A 9. szakiskolai évfolyam. 13. modul SZÖVEGES FELADATOK. Készítette: Vidra Gábor
Matematika A 9. szakiskolai évfolyam 13. modul SZÖVEGES FELADATOK Készítette: Vidra Gábor MATEMATIKA A 9. SZAKISKOLAI ÉVFOLYAM 13. modul: SZÖVEGES FELADATOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott
Részletesebben11. modul: LINEÁRIS FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenIV.4. EGYENLŐTLENSÉGEK. A feladatsor jellemzői
IV.4. EGYENLŐTLENSÉGEK Tárgy, téma A feladatsor jellemzői Egyenlőtlenségek megoldási módszerei, egyenlőtlenségekre vezető szöveges feladatok megoldása. A legalább és legfeljebb fogalma. Előzmények Egyenletek
RészletesebbenSzámelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
RészletesebbenMatematika feladatbank I. Statisztika. és feladatgyűjtemény középiskolásoknak
Matematika feladatbank I. Statisztika Elméleti összefoglaló és feladatgyűjtemény középiskolásoknak ÍRTA ÉS ÖSSZEÁLLÍTOTTA: Dugasz János 2011 Fapadoskonyv.hu Kft. Dugasz János Tartalom Bevezető 7 Adatok
RészletesebbenÓravázlat. Tananyag: Műveletvégzés a 20-as számkörben tízes átlépéssel. A természetes szám fogalmának mélyítése a számtulajdonságok megfigyelésével.
Óravázlat Tantárgy: Matematika Osztály: BONI Széchenyi István Általános Iskola 1. e Tanít: Dr. Szudi Lászlóné Tananyag: Műveletvégzés a 20-as számkörben tízes átlépéssel Kiemelt kompetenciák: Matematika
RészletesebbenMunkába Lépés egy TÁMOP 5.3.1 projekt tanítás módszertani elemei. A program megvalósulását az Országos Foglalkoztatási Közalapítvány támogatja.
Munkába Lépés egy TÁMOP 5.3.1 projekt tanítás módszertani elemei Célkitűzések Kulcskompetenciák fejlesztése Anyanyelvi kommunikáció Matematikai kompetencia Digitális kompetencia A tanulás tanulása Személyközi
Részletesebbenaz Energetikai Szakközépiskola és Kollégium kisérettségiző diákjai számára ; halmaz összes részhalmazát!
1. témakör: HALMAZELMÉLET A feladatok megoldásához használjuk a Négyjegyű függvénytáblázatot! Halmazok: 8-9. oldal 1. Sorold fel az a b x y halmaz összes részhalmazát!. AdottU alaphalmaz, és annak két
RészletesebbenArany Dániel Matematikai Tanulóverseny 2008/2009-es tanév első (iskolai) forduló haladók II. kategória
Bolyai János Matematikai Társulat Oktatási és Kulturális Minisztérium Támogatáskezelő Igazgatósága támogatásával Arany Dániel Matematikai Tanulóverseny 00/009-es tanév első (iskolai) forduló haladók II.
RészletesebbenA 4.m osztálynak gyakorlásra a statisztika felmérőre
A 4.m osztálynak gyakorlásra a statisztika felmérőre 4. 2005. május, 8. feladat a), b) és c) része Az alábbi táblázat egy ország munkaképes lakosságának foglalkoztatottság szerinti megoszlását mutatja.
RészletesebbenII.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői
II.1. RAJZOLD LE EGY VONALLAL! Tárgy, téma A feladatsor jellemzői Kombinatorika, geometria, gráfelmélet alapvető ismereteinek elsajátítása egyszerű feladatokon keresztül. Előzmények Tulajdonképpen konkrét
RészletesebbenA pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.
Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.
Részletesebben1. ÉVFOLYAM 2. ÉVFOLYAM. Ábécés olvasókönyv 1. osztályosoknak. AP Első daloskönyvem 1. AP Ének-zenemunkafüzet 1-2.
1. ÉVFOLYAM FI-501020101/1 Ábécés olvasókönyv 1. osztályosoknak AP-012005 Első daloskönyvem 1. AP-012006 Ének-zenemunkafüzet 1-2. FI-501020105/1 FI-501020107/1 Írás munkafüzet 1. osztályosoknak 1. kötet
RészletesebbenBoronkay György Műszaki Középiskola és Gimnázium
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2014/2015.
RészletesebbenMATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. évfolyam 1. félév ESZKÖZÖK Matematika A 9. évfolyam 1. modul 1.1 dominó { 5-re végződő páros számok } { az x < 0 egyenlet megoldásai } { a Föld holdjai }
RészletesebbenPEDAGÓGIAI PROGRAM 3. SZÁMÚ MELLÉKLETE SZAKKÖZÉPISKOLA 3 ÉVES KÉPZÉS MATEMATIKA HELYI TANTERV
SZÉCHENYI ISTVÁN MEZŐGAZDASÁGI ÉS ÉLELMISZERIPARI SZAKGIMNÁZIUM, SZAKKÖZÉPISKOLA ÉS KOLLÉGIUM Hajdúböszörmény PEDAGÓGIAI PROGRAM 3. SZÁMÚ MELLÉKLETE SZAKKÖZÉPISKOLA 3 ÉVES KÉPZÉS... MOLNÁR MAGDOLNA ILONA
Részletesebben