V.3. GRAFIKONOK. A feladatsor jellemzői
|
|
- Jenő Kis
- 8 évvel ezelőtt
- Látták:
Átírás
1 V.3. GRAFIKONOK Tárgy, téma Grafikonok, diagramok. Előzmények A feladatsor jellemzői Egyenes vonalú egyenletes mozgás, sebesség út idő összefüggésének ismerete. Átlagsebesség. Cél Különböző grafikonok, diagramok készítésének elsajátítása, kész ábrák értelmezése, értékelése, adatok leolvasása. A feladatsor által fejleszthető kompetenciák Tájékozódás a térben + Ismeretek alkalmazása + Tájékozódás az időben + Problémakezelés és -megoldás + Tájékozódás a világ mennyiségi viszonyaiban + Alkotás és kreativitás + Tapasztalatszerzés + Kommunikáció + Képzelet + Együttműködés + Emlékezés Motiváltság + Gondolkodás + Önismeret, önértékelés Ismeretek rendszerezése A matematika épülésének elvei Ismerethordozók használata Felhasználási útmutató Csoportmunkára kiválóan alkalmas feladatsor. A feladatsorban többféle grafikon szerepel, így lehetőség van az egyes típusok előnyeinek és hátrányainak a megmutatására, illetve alkalmazhatósági lehetőségeinek ismertetésére. Az 1. feladat grafikonja kissé szokatlan módon készült, mert tartalmazza az adatok számértékét is. Magyarázzuk el a tanulóknak, hogy az ábrát hogy kell értelmezni! Lehetőség szerint vetítsük ki az ábrákat! V. Függvények, sorozatok V.3. Grafikonok 1.oldal/5
2 GRAFIKONOK Feladat sor 1. Áprilisban a hőmérséklet nagyon ingadozó, mint ezt a következő grafikon is mutatja: ( C) 30 Áprilisi nappali átlaghőmérsékletek ( C) dátum hőmérséklet ( C) A grafikon egy áprilisi hónap nappali átlaghőmérsékleti értékeit tartalmazza. a) Melyik napon volt a legmelegebb? b) Mely napokon volt a leghidegebb? c) Mely egymást követő napok között változott a legnagyobb mértékben a hőmérséklet? d) Mennyi az április havi átlaghőmérséklet? e) Hogy lehetne jellemezni a hőmérséklet szempontjából ezt a hónapot? f) Lehet-e jellemezni a fenti grafikon alapján ennek a hónapnak az időjárását? 2. Vannak olyan emberek, akik inkább sportolnak, mások inkább sportrendezvényeken szurkolnak. Sokan szeretik a focit, és a magyarok azt szeretnék, ha a magyar futballválogatott jól szerepelne, mindig nyerne. A válogatott között játszott mérkőzéseinek statisztikáját az alábbi ábra tartalmazza. Összehasonlítva a diagram oszlopait, milyen következtetéseket lehet levonni? Melyik év bizonyult a leggyengébbnek és melyik a legjobbnak? A magyar futballválogatott eredményei vereség döntetlen győzelem 100% 80% 60% % 20% 0% V. Függvények, sorozatok V.3. Grafikonok 2.oldal/5
3 3. Ha jó az idő, akkor sokan mennek kirándulni. Ki kerékpárral, ki gyalogosan, van aki egyedül, sokan társasággal. Balázs kerékpárral ment kirándulni. Megtett útját az idő függvényében az alábbi grafikon szemlélteti: a) Számold ki az egyes szakaszokon a sebességeket! b) Mennyi utat tett meg összesen? c) Mennyi volt az átlagsebessége? 4. Péter reggel 9 órakor elindult otthonról, és 5 km-t ment 1 óra alatt. Ezután megpihent, fél órát gyönyörködött a tájban. Majd továbbment, és 2 óra alatt 8 km-t tett meg. Ekkor megebédelt, így 1 órát pihent. Ebéd után elindult hazafelé, és háromnegyed ötre hazaért. Rajzold fel grafikonon Péter megtett útját az idő függvényében! 5. Jancsi és Juliska ugyanazon az úton haladtak, de egymással szemben. Olvass le minél több információt a grafikonról! Jancsi grafikonját (vékony) kék színű vonal, Juliskáét (vastag) piros vonal jelzi. V. Függvények, sorozatok V.3. Grafikonok 3.oldal/5
4 MEGOLDÁSOK 1. a) 29-én. b) 13.; 14.; 15.;16. c) 10. és 11. d) 16,4 C e) Változó, ingadozó: tavaszi hűvös és kora nyári meleg is volt. Hónap végére stabilabbá vált a melegebb hőmérséklet. f) Nem, mert nem tudjuk a szél- és az esőviszonyokat ben volt a leggyengébb, mert sok a vereség és kevés a győzelem ban volt a legjobb, mert kevés a vereség és sok a döntetlen, illetve a győzelem ban jobb volt, mint 2005-ben, de 2007-ben megint sok a vereség, csapatunk gyengébb lett ban mutatkozott javulás. Egy másik szempont szerint viszont figyelembe vehetjük a meccsek számát és az elért pontszám viszonyát, ha tudjuk, hogy a győzelemért 3 pont, a döntetlenért 1 pont jár ben 13 mérkőzésen 12 pontot értek el, azaz egy meccsre kb. 0,92 pont jutott ban 8 mérkőzésen 12 pontot értek el, azaz egy meccsre 1,5 pont jutott ben 13 mérkőzésen 18 pontot értek el, azaz egy meccsre kb. 1,38 pont jutott ban 10 mérkőzésen 16 pontot értek el, azaz egy meccsre 1,6 pont jutott. Ebből is az látszik, hogy 2008-ban volt a válogatott a legjobb, és 2005-ben a leggyengébb, de a fejlődés hullámzó. Az eredmények persze függenek az ellenfelek kategóriájától is. Ha 2008-ban viszonylag gyengébb ellenfelekkel játszottunk, akkor nem biztos, hogy a válogatottunk lett erősebb. 3. a) 20 km/h; 0 km/h; 10 km/h. b) 80 km. 80 km km c) v átl 7, h h V. Függvények, sorozatok V.3. Grafikonok 4.oldal/5
5 km-re voltak kezdetben egymástól. Juliska 120 km-t tett meg 110 perc alatt, ezért átlagsebessége kb. 65,5 km/h volt. Jancsi ellenkező irányban haladt, 20 perccel később indult, 110 km-t tett meg 50 perc alatt, sebessége 132 km/h volt. Találkoztak Juliska indulása után 50 perccel, Juliska addig kb. 54,5 km-t, Jancsi 65,5 km-t tett meg. V. Függvények, sorozatok V.3. Grafikonok 5.oldal/5
V.2. GRAFIKONOK. A feladatsor jellemzői
V.2. GRAFIKONOK Tárgy, téma Grafikonok, diagramok. Előzmények A feladatsor jellemzői Egyenes vonalú egyenletes mozgás, sebesség út idő összefüggésének ismerete. Átlagsebesség. Cél Különböző grafikonok,
RészletesebbenIII.4. JÁRŐRÖK. A feladatsor jellemzői
III.4. JÁŐÖK Tárgy, téma A feladatsor jellemzői Algebra (és számelmélet), szöveges feladatok, mozgásos feladatok, geometria. Előzmények Az idő fogalma, mértékegység-váltás (perc óra), a sebesség fogalma:
RészletesebbenI.4. BALATONI NYARALÁS. A feladatsor jellemzői
I.4. BALATONI NYARALÁS Tárgy, téma A feladatsor jellemzői Logikai fogalmak: logikai kijelentés; minden; van olyan; ha, akkor; és; vagy kifejezések jelentése. Egyszerű logikai kapcsolatok mondatok között.
RészletesebbenVII.1. POLIÉDER-LABIRINTUSOK. A feladatsor jellemzői
VII.1. POLIÉDER-LABIRINTUSOK Tárgy, téma A feladatsor jellemzői Testek makettjének elkészítése, ismerkedés a testekkel szórakoztató formában. Előzmények Cél Egyszerűbb testek, tulajdonságaik. A térgeometriai
RészletesebbenV.9. NÉGYZET, VÁGOD? A feladatsor jellemzői
V.9. NÉGYZET, VÁGOD? Tárgy, téma A feladatsor jellemzői Geometriai megközelítésen keresztül a mértani sorozat tulajdonságaival, első n tagjának összegképletével való ismerkedés. Előzmények Téglalap területe,
RészletesebbenIV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői
IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai
RészletesebbenIX.2. ÁTLAGOS FELADATOK I. A feladatsor jellemzői
IX.2. ÁTLAGOS FELADATOK I. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, a számtani sorozat elemeinek összegére
RészletesebbenI.2. ROZSOMÁK. A feladatsor jellemzői
I.2. ROZSOMÁK Tárgy, téma A feladatsor jellemzői Kombinatorikai alapfeladatok, halmazok használata. Logikai kijelentések vizsgálata, értelmezése. A szövegértés képességének fejlesztése. Előzmények Cél
RészletesebbenVI.3. TORPEDÓ. A feladatsor jellemzői
VI.. TORPEDÓ Tárgy, téma A feladatsor jellemzői Tengelyes és középpontos tükrözés, forgatás, eltolás és szimmetriák. Előzmények A tanulók ismerik a tengelyes tükrözést, középpontos tükrözést, 0 -os pont
RészletesebbenIII.7. PRÍM PÉTER. A feladatsor jellemzői
III.7. PRÍM PÉTER Tárgy, téma A feladatsor jellemzői Számelmélet: osztó, többszörös, prímtényezős felbontás, legkisebb közös többszörös, legnagyobb közös osztó. Előzmények Cél Oszthatóság, prímtényezős
RészletesebbenXI.4. FŐZŐCSKE. A feladatsor jellemzői
XI.4. FŐZŐCSKE Tárgy, téma Előzmények Cél Egyenes arányosság. Egyenes arányosság ismerete. A feladatsor jellemzői Problémamegoldás fejlesztése. A projektmunka gyakorlása. A feladatsor által fejleszthető
RészletesebbenVI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN. A feladatsor jellemzői
VI.1. NEVEZETESSÉGEK HÁROMSZÖGORSZÁGBAN Tárgy, téma A feladatsor jellemzői Háromszögek nevezetes vonalai és pontjai: szögfelező, oldalfelező merőleges, magasság, beírt kör és középpontja, körülírt kör
RészletesebbenXI.5. LÉGY TE A TANÁR! A feladatsor jellemzői
XI.5. LÉGY TE A TANÁR! Tárgy, téma A feladatsor jellemzői Algebrai, geometriai, kombinatorikai és valószínűségszámítási tipikus gondolkodási hibák, buktatók. Előzmények Mérlegelv, másodfokú egyenletek
RészletesebbenVIII.4. PONT A RÁCSPONTOK? A feladatsor jellemzői
VIII.4. PONT A RÁCSPONTOK? Tárg, téma Geometria, algebra és számelmélet. Előzmének A feladatsor jellemzői Pontok ábrázolása koordináta-rendszerben, abszolút érték fogalma, oszthatóság fogalma, (skatula
RészletesebbenVI.8. PIO RAGASZT. A feladatsor jellemzői
VI.8. PIO RAGASZT Tárgy, téma A feladatsor jellemzői Pitagorasz-tétel alkalmazása gyakorlati problémákban. Előzmények Cél Pitagorasz-tétel, négyzetgyök, egyszerűbb algebrai azonosságok, egyenlet megoldása.
RészletesebbenIX.3. ÁTLAGOS FELADATOK II. A feladatsor jellemzői
IX.3. ÁTLAGOS FELADATOK II. Tárgy, téma Algebra, statisztika. Előzmények A feladatsor jellemzői Az aritmetikai átlag fogalma, oszthatósági alapismeretek, prímszám fogalma, elsőfokú és elsőfokú törtes egyenletek
RészletesebbenVII.4. RAJZOLGATUNK II. A feladatsor jellemzői
VII.4. RAJZOLGATUNK II. Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,
RészletesebbenVII.10. TORNYOSULÓ PROBLÉMÁK. A feladatsor jellemzői
VII.10. TORNYOSULÓ PROBLÉMÁK Tárgy, téma A feladatsor jellemzői Szögfüggvények a derékszögű háromszögben. A szinusztétel és a koszinusztétel alkalmazása gyakorlati problémák megoldásában. Előzmények Szinusz-
RészletesebbenFÖLDPRÖGETŐK TERMÉSZETTUDOMÁNYOS HÁZIVERSENY IV. FORDULÓ - Sakk 7 8. évfolyam
1. feladat A. Egy sakkozó 40 partit jatszott és 25 pontot szerzett (a győzelemért egy pont, a döntetlenért fél pont, a vereségért nulla pont jár). Mennyivel több partit nyert meg, mint amennyit elvesztett?
RészletesebbenMATEMATIKA ÉRETTSÉGI május 29. KÖZÉPSZINT
MATEMATIKA ÉRETTSÉGI 005. május 9. KÖZÉPSZINT 1) Mely x valós számokra igaz, hogy x I. 9? x 1 3. x 3. Összesen: pont ) Egy háromszög egyik oldalának hossza 10 cm, a hozzá tartozó magasság hossza 6 cm.
RészletesebbenV.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői
V.7. NÉPSZÁMLÁLÁS Tárgy, téma A feladatsor jellemzői Eponenciális egyenletek felírása és megoldása szöveges feladatok alapján. Szöveges feladatok alapján modellt alkotunk, amely alkalmas eponenciálisan
RészletesebbenMozgással kapcsolatos feladatok
Mozgással kapcsolatos feladatok Olyan feladatok, amelyekben az út, id és a sebesség szerepel. Az egyenes vonalú egyenletes mozgás esetén jelölje s= a megtett utat, v= a sebességet, t= az id t. Ekkor érvényesek
RészletesebbenVII.2. RAJZOLGATUNK. A feladatsor jellemzői
VII.2. RAJZOLGATUNK Tárgy, téma A feladatsor jellemzői Axonometrikus rajzok készítése megadott szempontok alapján, meglévő rajzok kiegészítése, azokban való tájékozódás. Előzmények Arányos számítások,
RészletesebbenA 2014-es kompetenciamérés eredményei. Országosan a 10. évfolyamon 78815 tanuló írta meg a felmérést.
A 2014-es kompetenciamérés eredményei Országosan a 10. évfolyamon 78815 tanuló írta meg a felmérést. Az országos átlag 2014-ben matematikából 1631 pont, szövegértésből 1597 pont. Az alábbi grafikon azt
RészletesebbenII.3. DOMINÓ GRÓF. A feladatsor jellemzői
II.. DOMINÓ GRÓF Tárgy, téma Gráfok, számelmélet, kombinatorika. Előzmények Cél A feladatsor jellemzői Nagy előny, ha a dominójátékot már ismerik a diákok korábbról. A gráfmodell kialakítása képességének
RészletesebbenPálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
RészletesebbenVII.3. KISKOCKÁK. A feladatsor jellemzői
VII.3. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek
RészletesebbenI.5. LOLKA ÉS BOLKA. A feladatsor jellemzői
I.5. LOLKA ÉS BOLKA Tárgy, téma Kombinatorika, skatulya-elv, számelmélet. Előzmények A feladatsor jellemzői A skatulya-elv alapszintű bevezetése, osztási maradékok ismerete, a prímszám fogalmának ismerete.
RészletesebbenMATEMATIKA PRÓBAÉRETTSÉGI 2013 I. rész
MATEMATIKA PRÓBAÉRETTSÉGI 203 I. rész. Oldja meg a következő egyenletet: x 2 25. Az egyenlet megoldása: 2. Egy vállalat 280 000 Ft-ért vásárol egy számítógépet. A számítógép évente 5%-ot veszít az értékéből.
RészletesebbenHaladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
RészletesebbenII.1. RAJZOLD LE EGY VONALLAL! A feladatsor jellemzői
II.1. RAJZOLD LE EGY VONALLAL! Tárgy, téma A feladatsor jellemzői Kombinatorika, geometria, gráfelmélet alapvető ismereteinek elsajátítása egyszerű feladatokon keresztül. Előzmények Tulajdonképpen konkrét
RészletesebbenPRÓBAÉRETTSÉGI MATEMATIKA május-június KÖZÉPSZINT. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 2003. május-június MATEMATIKA KÖZÉPSZINT I. Vizsgafejlesztő Központ Kedves Tanuló! Kérjük, hogy a feladatsort legjobb tudása szerint oldja meg! A feladatsorban található szürke téglalapokat
Részletesebben18. modul: STATISZTIKA
MATEMATIK A 9. évfolyam 18. modul: STATISZTIKA KÉSZÍTETTE: LÖVEY ÉVA, GIDÓFALVI ZSUZSA MODULJÁNAK FELHASZNÁLÁSÁVAL Matematika A 9. évfolyam. 18. modul: STATISZTIKA Tanári útmutató 2 A modul célja Időkeret
RészletesebbenKOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ
TÁMOP-3.1.4.-08/1-2009-0010. Fáy András Református Általános Iskola és AMI Gomba KOMPETENCIAALAPÚ TANMENET AZ 1. ÉVFOLYAM MATEMATIKA TANÍTÁSÁHOZ KÉSZÍTETTE: KURUCZNÉ BORBÉLY MÁRTA TANKÖNYVSZERZİ munkája
RészletesebbenII.4. LÓVERSENY. A feladatsor jellemzői
II.4. LÓVERSENY Tárgy, téma A feladatsor jellemzői Kombinatorika ismétlés nélküli és ismétléses permutáció, variáció és ismétlés nélküli kombináció. Leszámlálás. Előzmények Cél Egyszerű leszámlálási feladatok.
RészletesebbenSPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA. matematika
SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA matematika 9. évfolyam 1. Számtan, algebra 15 óra 2. Gondolkodási módszerek, halmazok, kombinatorika, valószínűség, statisztika 27 óra 3. Függvények, sorozatok,
RészletesebbenPálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
RészletesebbenNÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor II.-hoz Gedeon Veronika (Budapest) A javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. A pontszámok részekre
RészletesebbenIV.3. GONDOLJ, GONDOLJ... A feladatsor jellemzői
IV.3. GONDOLJ, GONDOLJ... Tárgy, téma A feladatsor jellemzői Elsőfokú egyenletek, egyenlőtlenségek megoldása. Ezek felhasználása szöveges feladatok megoldásánál. Előzmények Egyenletek, egyszerűbb algebrai
RészletesebbenFIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA. ÉRETTSÉGI VIZSGA május 14. JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM
Fizika középszint 0801 ÉRETTSÉGI VIZSGA 008. május 14. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útmutató utasításai
RészletesebbenVII.6. KISKOCKÁK. A feladatsor jellemzői
VII.6. KISKOCKÁK Tárgy, téma Térgeometria, algebra (és számelmélet). Előzmények Cél A kocka térfogata és felszíne. A feladatsor jellemzői A térszemlélet fejlesztése. Invariancia felismerése. Módszerek
RészletesebbenJAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 051 ÉRETTSÉGI VIZSGA 005. május 9. MATEMATIKA KÖZÉPSZINTŰ ÉRETTSÉGI VIZSGA Az írásbeli vizsga időtartama: 180 perc JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fontos tudnivalók
RészletesebbenTUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT
88 Budapest, Bródy Sándor u. 6. ostacím: Budapest, f. 76 Telefon: 8-5, 7-89, Fax: 7-89 Nyilvántartásba vételi szám: E-6/ Javítókulcs. osztály megyei. Titkos üzenetet kaptál. Szerencsére a titkosírás kulcsa
RészletesebbenFIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika középszint ÉRETTSÉGI VIZSGA 0. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,
RészletesebbenPálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
RészletesebbenIntézményi jelentés. 10. évfolyam. Szász Ferenc Kereskedelmi Szakközépiskola és Szakiskola 1087 Budapest, Szörény u OM azonosító:
FIT-jelentés :: 2010 Szász Ferenc Kereskedelmi Szakközépiskola és Szakiskola 1087 Budapest, Szörény u. 2-4. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika
RészletesebbenIntézményi jelentés. Összefoglalás
FIT-jelentés :: 2010 8900 Zalaegerszeg, Köztársaság u. 68. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén új, évfolyamfüggetlen skálát vezettünk
RészletesebbenIntézményi jelentés. 10. évfolyam
FIT-jelentés :: 2010 Babits Mihály Gimnázium 1047 Budapest, Tóth Aladár u. 16-18. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén új, évfolyamfüggetlen
RészletesebbenIntézményi jelentés. 10. évfolyam
FIT-jelentés :: 2010 Xántus János Idegenforgalmi Gyakorló Középiskola és Szakképző Iskola 1055 Budapest, Markó u. 18-20. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve
RészletesebbenFizika vetélkedő 7.o 2013
Fizika vetélkedő 7.o 2013 Osztályz«grade» Tárgy:«subject» at: Dátum:«date» 1 Hány Celsius fokot mutat a hőmérő? 2 Melyik állítás hamis? A Ez egy termikus kölcsönhatás. B A hőmérsékletek egy pár perc múlva
RészletesebbenIntézményi jelentés. 10. évfolyam
FIT-jelentés :: 2010 Budapest XXI. Kerület Csepel Önkormányzata Jedlik Ányos Gimnázium 1212 Budapest, Táncsics M. u. 92. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve
RészletesebbenVI.7. PITI PÉLDÁK. A feladatsor jellemzői
VI.7. PITI PÉLDÁK Tárgy, téa Pitagorasz tétele. Előzények A feladatsor jellezői Hároszög, téglalap, négyzet kerülete és területe, Pitagorasz-tétel, négyzetgyök fogala, irracionális száok Cél A Pitagorasz-tétel
RészletesebbenIntézményi jelentés. 10. évfolyam. Trefort Ágoston Kéttannyelvű Fővárosi Gyakorló Szakközépiskola 1191 Budapest, Kossuth tér 12. OM azonosító:
FIT-jelentés :: 2010 Trefort Ágoston Kéttannyelvű Fővárosi Gyakorló Szakközépiskola 1191 Budapest, Kossuth tér 12. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a
RészletesebbenI.1. OLIMPIA. A feladatsor jellemzői
I.1. OLIMPIA Tárgy, téma A feladatsor jellemzői Halmazok, adatok kezelése, logikai kijelentések vizsgálata. Előzmények Cél Halmaz fogalma, Venn-diagram, állítások igazságtartalma. A tanulók legyenek képesek
RészletesebbenIntézményi jelentés. 10. évfolyam
FIT-jelentés :: 2010 Dunaferr Szakközép- és Szakiskola 2400 Dunaújváros, Vasmű tér 1-2. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén új, évfolyamfüggetlen
Részletesebben1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre!
1. Határozd meg az a, b és c értékét, és az eredményeket közönséges tört alakban írd a megfelelő helyre! a) a = 9 4 8 3 = 27 12 32 12 = 5 12 a = 5 12. a) b = 1 2 + 14 5 5 21 = 1 2 + 2 1 1 3 = 1 2 + 2 3
Részletesebben11. modul: LINEÁRIS FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
RészletesebbenKövetelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
Részletesebbenb) B = a legnagyobb páros prímszám B = 2 Mivel csak egyetlen páros prímszám van, és ez a kettő, így egyben ő a legnagyobb is.
Teszt 01 a) A = 90 és 135 legkisebb közös többszöröse A = 270 Prímtényezős felbontás után: 90 = 2 3 3 5 és 135 = 3 3 3 5, így az l.k.k.t. a 2 3 3 3 5, ami pedig 27 10, azaz 270. b) B = a legnagyobb páros
Részletesebben10. JAVÍTÓKULCS ORSZÁGOS KOMPETENCIAMÉRÉS MATEMATIKA. példaválaszokkal. s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T É V F O L Y A M
10. É V F O L Y A M ORSZÁGOS KOMPETENCIAMÉRÉS JAVÍTÓKULCS MATEMATIKA s u l i N o v a K h t. É R T É K E L É S I K Ö Z P O N T 2 0 0 6 példaválaszokkal Hány órából áll egy hét? Válasz: A feleletválasztós
RészletesebbenMATEMATIKA C 6. évfolyam 2. modul TANGRAMOK
MATEMATIKA C 6. évfolyam 2. modul TANGRAMOK Készítette: Köves Gabriella MATEMATIKA C 6. ÉVFOLYAM 2. MODUL: TANGRAMOK TANÁRI ÚTMUTATÓ 2 A modul célja Időkeret Ajánlott korosztály A képességfejlesztés fókuszai
RészletesebbenGyakorló feladatok Egyenletes mozgások
Gyakorló feladatok Egyenletes mozgások 1. Egy hajó 18 km-t halad északra 36 km/h állandó sebességgel, majd 24 km-t nyugatra 54 km/h állandó sebességgel. Mekkora az elmozdulás, a megtett út, és az egész
RészletesebbenAzonosító jel: ÉRETTSÉGI VIZSGA május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA. Időtartam: 45 perc OKTATÁSI MINISZTÉRIUM
ÉRETTSÉGI VIZSGA 2005. május 29. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA I. Időtartam: 45 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI MINISZTÉRIUM Matematika középszint írásbeli vizsga I. összetevő
RészletesebbenSebesség A mozgás gyorsaságát sebességgel jellemezzük. Annak a testnek nagyobb a sebessége, amelyik ugyanannyi idő alatt több utat tesz meg, vagy
Haladó mozgások Alapfogalmak: Pálya: Az a vonal, amelyen a tárgy, test a mozgás során végighalad. Megtett út : A pályának az a szakasza, amelyet a mozgó tárgy, test megtesz. Elmozdulás: A kezdőpont és
RészletesebbenIntézményi jelentés. 10. évfolyam
FIT-jelentés :: 2010 Tömörkény István Gimnázium és Művészeti Szakközépiskola, Instiltuto de Ensenanza Secundaria y Escula de Arles Tömörkény István,Tömörkény István Gymnasium und Fachmittelschule für Kunst
RészletesebbenMATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
8. évfolyam Mat2 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.
RészletesebbenMATEMATIKA a 8. évfolyamosok számára. Mat2 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
8. évfolyam Mat2 Javítási-értékelési útmutató MTEMTI a 8. évfolyamosok számára Mat2 JVÍTÁSI-ÉRTÉELÉSI ÚTMUTTÓ javítókulcsban feltüntetett válaszokra a megadott pontszámok adhatók. pontszámok részekre bontása
RészletesebbenBevezetés. 3. Egy ötfős társaságban Mindenkinek legalább 1 ismerőse van. Rajzoljon meg néhány lehetőséget!
Bevezetés A megoldásokat a feladatsor végén találod! 1. Hencidát út köti össze Kukutyimmal, Boncidával, Lustafalvával és Dágványoshetyével. Boncidáról Álmossarokra is vezet út. Lustafalvát út köti össze
RészletesebbenSzapora négyzetek Sorozatok 4. feladatcsomag
Sorozatok 3.4 Szapora négyzetek Sorozatok 4. feladatcsomag Életkor: Fogalmak, eljárások: 10 12 sorozat tengelyes szimmetria összeszámlálás különböző szempontok szerint átdarabolás derékszögű elforgatás
RészletesebbenIntézményi jelentés. 10. évfolyam. Szent-Györgyi Albert Általános Iskola és Gimnázium 1093 Budapest, Lónyay u. 4/c-8. OM azonosító: 035282
FIT-jelentés :: 2010 Szent-Györgyi Albert Általános Iskola és Gimnázium 1093 Budapest, Lónyay u. 4/c-8. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika
RészletesebbenMintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak?
Hozzárendelési szabályok.doc 1 / 6 Mintapélda1 Hányféleképpen állhatnak sorba egy bolt pénztáránál a vásárlók, ha 3-an, 4-en, 5-en, k-an vannak? Mintapélda2 Karcsi nyáron 435 Ft-os órabérért dolgozott.
Részletesebben1/8. Iskolai jelentés. 10.évfolyam matematika
1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,
RészletesebbenIntézményi jelentés. 10. évfolyam
FIT-jelentés :: 2010 2800 Tatabánya, Fő tér 1. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén új, évfolyamfüggetlen skálát vezettünk be, amelyen
RészletesebbenIntézményi jelentés. 8. évfolyam
FIT-jelentés :: 2010 Lenkey János Általános Iskola 3300 Eger, Markhot Ferenc u. 6. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén új, évfolyamfüggetlen
RészletesebbenJó munkát! 8. OSZTÁLY 2 = C = A B =
BEM JÓZSEF Jelszó:... MEGYEI MATEMATIKAVERSENY Terem: I. FORDULÓ 2019. január 1. Hely:.... Tiszta versenyidő: 4 perc. Minden feladatot indoklással együtt oldj meg! A részműveletek is pontot érnek. Számológép
RészletesebbenIntézményi jelentés. 10. évfolyam. Corvin Mátyás Gimnázium és Műszaki Szakközépiskola 1165 Budapest, Mátyás király tér 4. OM azonosító:
FIT-jelentés :: 2010 Corvin Mátyás Gimnázium és Műszaki Szakközépiskola 1165 Budapest, Mátyás király tér 4. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika
RészletesebbenIntézményi jelentés. 10. évfolyam. Révai Miklós Gimnázium és Kollégium 9021 Győr, Jókai u. 21. OM azonosító:
FIT-jelentés :: 2010 9021 Győr, Jókai u. 21. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén új, évfolyamfüggetlen skálát vezettünk be, amelyen
RészletesebbenLevelező Matematika Verseny Versenyző neve:... Évfolyama:... Iskola neve:... Postára adási határidő: november 22. Feladatok
Postára adási határidő: 2017. november 22. Tollal dolgozz! Feladatok 1.) A következő játék neve dominosztó. Az a feladat, hogy a megadott dominókat helyezd el úgy, hogy az adott sor vagy oszlop végén található
RészletesebbenHány darab? 5. modul
Hány darab? 5. modul Készítette: KÖVES GABRIELLA 2 Hány darab? A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok Tapasztalati úton ismerkedés az adat fogalmával. Tapasztalatszerzés az
RészletesebbenOktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz. Fejlesztőfeladatok
Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok MATEMATIKA 4. szint 2015 Oktatáskutató és Fejlesztő Intézet
Részletesebbenkompetenciakompetenciakompetenci akompetenciakompetenciakompeten ciakompetenciakompetenciakompete nciakompetenciakompetenciakompet
kompetenciakompetenciakompetenci akompetenciakompetenciakompeten ciakompetenciakompetenciakompete nciakompetenciakompetenciakompet A 2017. évi kompetenciamérés eredményei enciakompetenciakompetenciakomp
RészletesebbenIntézményi jelentés. 10. évfolyam
FIT-jelentés :: 2010 Szentannai Sámuel Gimnázium, Szakközépiskola és Kollégium 5300 Karcag, Szentannai Sámuel u. 18. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve
RészletesebbenIntézményi jelentés. 10. évfolyam. Bolyai János Gimnázium és Kereskedelmi Szakközépiskola 2364 Ócsa, Falu Tamás u. 35. OM azonosító:
FIT-jelentés :: 2010 Bolyai János Gimnázium és Kereskedelmi Szakközépiskola 2364 Ócsa, Falu Tamás u. 35. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika
RészletesebbenOktatási azonosító Tantárgy Elért pontszám Magyar nyelv Matematika Magyar nyelv Matematika
Oktatási azonosító Tantárgy Elért pontszám 76894971600 Magyar nyelv 28 76894971600 Matematika 18 75983808936 Magyar nyelv 22 75983808936 Matematika 17 78988181589 Magyar nyelv 32 78988181589 Matematika
RészletesebbenIntézményi jelentés. 8. évfolyam
FIT-jelentés :: 2010 8900 Zalaegerszeg, Köztársaság u. 68. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén új, évfolyamfüggetlen skálát vezettünk
RészletesebbenMérnöki alapok 1. előadás
Mérnöki alapok 1. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:
RészletesebbenIntézményi jelentés. 8. évfolyam
FIT-jelentés :: 2010 Radnóti Miklós Gimnázium 2120 Dunakeszi, Bazsanth Vince u. 10. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén új, évfolyamfüggetlen
RészletesebbenIntézményi jelentés. 8. évfolyam
FIT-jelentés :: 2010 Terézvárosi Általános Iskola és Magyarangol, Magyar-német Két Tannyelvű Általános Iskola, Pedagógiai Szolgáltató Központ 1065 Budapest, Pethő Sándor u. 4. Figyelem! A 2010. évi Országos
RészletesebbenKosztolányi József Kovács István Pintér Klára Urbán János Vincze István. tankönyv. Mozaik Kiadó Szeged, 2013
Kosztolányi József Kovács István Pintér Klára Urbán János Vincze István tankönyv 0 Mozaik Kiadó Szeged, 03 TARTALOMJEGYZÉK Gondolkodási módszerek. Mi következik ebbõl?... 0. A skatulyaelv... 3. Sorba rendezési
RészletesebbenFIT-jelentés :: Telephelyi jelentés. 8. évfolyam :: Általános iskola
FIT-jelentés :: 2010 8. évfolyam :: Általános iskola Pázmány Péter Katolikus Egyetem Vitéz János Gyakorló Általános Iskola 2500 Esztergom, Helischer u. 5. Figyelem! A 2010. évi Országos kompetenciaméréstől
RészletesebbenA kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba
A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata
RészletesebbenIntézményi jelentés. 10. évfolyam. Árpád Szakképző Iskola és Kollégium 8000 Székesfehérvár, Seregélyesi út OM azonosító:
FIT-jelentés :: 2010 Árpád Szakképző Iskola és Kollégium 8000 Székesfehérvár, Seregélyesi út 88-90. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén
RészletesebbenScherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE
Scherlein Márta Dr. Hajdu Sándor Köves Gabriella Novák Lászlóné MATEMATIKA 1. A FELMÉRŐ FELADATSOROK ÉRTÉKELÉSE A felmérő feladatsorok értékelése A felmérő feladatsorokat úgy állítottuk össze, hogy azok
RészletesebbenFIT-jelentés :: Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. OM azonosító: Telephely kódja: 001. Telephelyi jelentés
FIT-jelentés :: 2010 10. évfolyam :: 4 évfolyamos gimnázium Karinthy Frigyes Gimnázium 1183 Budapest, Thököly u. 7. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a
RészletesebbenI. Szakközépiskola
I. Szakközépiskola - 2018 Knáb László Megyei Matematika Verseny Kedves Versenyző! A feladatok megoldásához használhatsz számológépet! Sok sikert kívánunk! *Kötelező 1. Név: * 2. Középiskola * Bornemissza
Részletesebben= 4perc40sec időtartamig v 2. = 4perc55sec időtartamig v 3
Első feladat a) Ioana, Catalin és Raluca VI-os osztálytársak, villamossal mennek haza.útközben mérik az időt a mobil telefonukkal és leolvassák a sebesség értékét a villamos sebességmérőjéről. A villamos
RészletesebbenTelephelyi jelentés. SZENT JÓZSEF GIMNÁZIUM ÉS KOLLÉGIUM 4024 Debrecen, Szent Anna u. 17. OM azonosító: Telephely kódja: 003
FIT-jelentés :: 2010 8. évfolyam :: 6 évfolyamos gimnázium 4024 Debrecen, Szent Anna u. 17. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve a matematika területén új,
RészletesebbenFIT-jelentés :: Blaskovits Oszkár Általános Iskola 2142 Nagytarcsa, Múzeumkert u OM azonosító: Telephely kódja: 001
FIT-jelentés :: 2010 8. évfolyam :: Általános iskola Blaskovits Oszkár Általános Iskola 2142 Nagytarcsa, Múzeumkert u. 2-4. Figyelem! A 2010. évi Országos kompetenciaméréstől kezdődően a szövegértés, illetve
RészletesebbenMATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 9. szakiskolai évfolyam 1. félév ESZKÖZÖK Matematika A 9. szakiskolai évfolyam Betűkészlet csoportalakításhoz A D G B E H C F G H I J Matematika A 9. szakiskolai
RészletesebbenMATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I. PRÓBAÉRETTSÉGI FELADATSOR
MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 1I PRÓBAÉRETTSÉGI FELADATSOR EGYENES ÚT AZ EGYETEMRE 11 FELADATSOR 11 FELADATSOR I rész Felhasználható idő: 45 perc 6x 1 111) Melyik állítás igaz az alábbi egyenlet
Részletesebben