A hang fizikai tulajdonságai, ultrahang, Doppler-elv
|
|
- Elvira Kocsis
- 8 évvel ezelőtt
- Látták:
Átírás
1 A hang fizikai tulajdonságai, ultrahang, Doppler-elv Kapsolódó tankönyvi fejezetek (Orvosi biofizika, Mediina kiadó, 006): II/.4 Hang-ultrahang ( oldal) VIII/4. Ultrahangos képalkotás - Direkt tomográfia. ( oldal) IX/5.. Ultrahang-terápia ( oldal) Dr. Goda Katalin 03. Hang: rugalmas közegben hullámként terjedő mehanikai rezgésállapot mehanikai hullám közeg nélkül nins hangterjedés! gázokban, folyadékok belsejében kizárólag longitudinális hullám közeg részeskéi a terjedés irányával párhuzamosan rezegnek sűrűség- és így nyomásingadozás a terjedési irány mentén (sűrűsödés, ritkulás) lágy szövetek (hangterjedés szempontjából) folyadéknak tekinthetők a hang longitudinális hullámként terjed szilárd testekben (és folyadékok felszínén) transzverzális hanghullám is kialakulhat terjedés irányára merőleges rezgés Longitudinális hullám pontszerű hangforrás esetén (D projekió) Hanghullám terjedése levegőben nyomásváltozások longitudinális hullám terjedés iránya transzverzális hullám a rezgésállapot terjed, nins nettó részeske transzport!
2 Hanghullám fizikai paraméterei Osztályozás frekvenia alapján terjedési irány hullámhossz (λ) közeg rezgőmozgást végző részeskéinek frekveniája (f) A, p max periódusidő(t) kitérés, max. kitérés (amplitúdó) (A) nyomáskülönbség( p); nyomásamplitúdó ( p max ) - hangnyomás hanghullám terjedési sebessége () = f T f Infrahang< (ember által érzékelt) hang < ultrahang < hiperhang Hallható hang (ember!) Hiperhang: 0 9 Hz Hz nyomásingadozás a hely- és idő függvényében: legegyszerűbb esetben (harmonikus rezgőmozgás) t x p( t,x ) pmax sin( ) T (a kitérés és a nyomásingadozás között π/ fáziseltérés van) T orvosi diagnosztikai képalkotó készülékek: tipikusan -0 MHz frekveniájú ultrahang terápiás alkalmazások általában kisebb UH frekveniák (de nagyobb intenzitások) Hanghullámok kialakulása, terjedése Piezoelektromosság piezoelektromos hatás UH detektálás inverz piezoelektromos hatás UH keltés közeg forrás - rezgő objektum, ami képes a közeg részeskéit megzavarni, mozgásba hozni; rezgés frekveniája hang frekveniája hanghullám terjedése közeg részeskéinek kölsönhatása által (közeg mehanikai deformáiója) mozgási energia és poteniális energia folyamatos egymásba alakulása mehanikai stressz indukált feszültség elektromos tér indukált stressz Ultrahang előállítása: inverz piezoelektromos hatás elektrosztrikió magnetosztrikió piezoelektromosság: nyomás által keltett elektromosság piezoelektromos anyagok: egyes kristályok (kvar, topáz, nádukor, stb.), kerámiák (pl. ólom irkónium titanát - PZT), biológiai anyagok (DNS, sontok, egyes fehérjék) direkt piezoelektromos hatás: mehnaikai stressz konverziója feszültséggé (töltés szétválás!) váltakozó mehanikai stressz (méretváltozás) váltakozó elektromos jel UH detektálás inverz piezoelektromos hatás: elektromos feszültség konverziója mehanika stresszé váltakozó feszültség alkalmazása periodikus méretváltozás/oszilláió UH keltése
3 Kvarkristály piezoelektromos tulajdonsága (kiegészítő anyag) a Si- és O-atomtörzsei egy szabályos hatszög súsaiban helyezkednek el, a töltések súlypontja nyugalomban egybeesik, míg az atomtörzsek mérete különböző megfelelő irányból összenyomva a két szemközti oldalon lévő Si-atomok közelebb kerülnek egymáshoz, töltések súlypontja eltolódik egymáshoz képest Rezonania UH források transzduerek (energiafajták egymásba történő átalakítása) legnagyobb hatékonyságú átalakítás váltakozó feszültség frekveniája = piezoelektromos anyag sajátfrekveniája - rezonania első rezonania (f R ) piezoelektromos lapka vastagsága = UH hullámhossz fele (λ= 0,77-0,54 mm) orvosi UH piezoelektromos lapka vastagsága jellemzően néhány száz mikrométer az O-atomok oldalán azok negatív töltése, míg a másik oldalon a Si-atomok pozitív töltése érvényesül Elektrosztrikió dielektrikumok mehanikai deformáiója elektromos térben elektromos dipólok rendeződése méretsökkenés a tér irányában (arra merőlegesen növekedés) tér polaritásától nem függ a deformáió jellege, de mértékét a tér erőssége befolyásolja váltakozó tér váltakozó mértékű méretváltozást okoz nem megfordítható mehanikai deformáió ebben az esetben nem kelt elektromos teret Magnetosztrikió (oule-hatás) ferromágneses anyagok mehanikai deformáiója mágneses térerősség megváltozásának hatására (mágneses momentumok rendeződése) váltakozó erősségű mágneses tér váltakozó mértékű deformáió megfordítható - inverz magnetosztrikió (mehanikai deformáió mágneses tulajdonságok megváltozása) magnetosztrikiós transzduerek UH keltés és detektálás egyaránt Folytonos és impulzus UH -4 λ Kitérés f R f R 4f R Frequeny UH impulzusok változó amplitúdó szélesebb frekveniaeloszlás szélessége az impulzus hosszának rövidülésével növekszik Hang terjedési sebessége frekveniától független közeg sűrűsége (ρ) és összenyomhatósága határozza meg kompresszibilitás () egységnyi nyomásnövekedés által okozott relatív térfogatsökkenés V / V p lágy szövetek: 540 m/s víz: 500 m/s levegő: 330 m/s Néhány anyagra jellemző összenyomhatóság, sűrűség és hang terjedési sebesség értékek Hangsebesség () Anyag Összenyomhatóság () Sűrűség () 0 9 ms kg kgm -3 ms - Alumínium 0,009, Csont 0,08-0,05,38-, Máj 0,38, Vese 0,40, Vér 0,38, Zsír 0,5 0,9 460 Tüdő 5,9 0, Levegő 7650, hullámhossz szintén változik a közegtől függően (=fλ) orvosi ultrahang: -0MHz szövetekben: 0,77-0,54mm 3
4 Akusztikus impedania (Z) akusztikai keménység; mértékegysége: [Z] = kg. m -. s - közeg ellenállóképessége : mennyire nehéz a részeskéket mozgásba hozni a nyomás és a részeskesebesség hányadosa p Z v p v Z anyagi állandó Z Z Néhány anyag akusztikai keménysége Akusztikai keménység Anyag 0 6 kg m - s - Alumínium 7,8 Csont 7,80 Máj,65 Vese,6 Vér,6 Zsír,38 Tüdő 0,6 Levegő 0,00004 Hangintenzitás intenzitás ( [W/m ] energiaáram-sűrűség; teljesítménysűrűség sugárzás irányára merőleges egységnyi felületen időegység alatt áthaladó energia A: kitérés amplitúdó p eff Z p p max max / p Z orvosi gyakorlatban alkalmazott ultrahang intenzitások képalkotás: 0 mw/m ; terápiás élok: 0,-0 5 W/m nyomásingadozás tartománya poteniális szöveti károsodások! 00 mw/m max. intenzitás MHz-es diagnosztikai készülék esetén (FDA) eff Közeg és hang kölsönhatása I. Abszorpió közeg energiafelvétele (súrlódás, hőfejlődés) gyengülés 90%-a párhuzamos nyalábként terjedő hanghullám esetén: abszorpiós együttható (μ); rétegvastagság (x); felezési rétegvastagság (x f ) = 0 / x 0 e abszorpióképesség anyagi minőség frekvenia (f) UH diagnosztikai tartományban: μ f sillapítás (α), fajlagos sillapítás: α/(fx) a diagnosztikai UH frekveniatartományban anyagra jellemző állandó 0 0lg (db) α 0μx lg e Felező rétegvastagság néhány fontosabb szövetben Anyag Felező rétegvastagság (m) MHz 5 MHz Levegő 0,06 0,0 Csont 0, 0,04 Máj,5 0,5 Vér 8,5 3,0 Víz
5 II. Szóródás hanghullám irányváltozása a közeg részeskéin terjedési irány mentén intenzitásgyengülést okoz másodlagos szóródás f S III. Közegek határán lejátszódó jelenségek különböző akusztikus impedaniájú közegek határán reflexió különböző hangsebesség törés (ilyenkor legtöbbször Z is különbözik) Reflexió reflexióképesség (R): reflektált intenzitás és beeső intenzitás hányadosa R ha Z és Z eltérése nagy R teljes visszaverődés R 0 Z Z R Z Z Gyakorlati alkalmazásokban: abszorpiós együttható korrekiója a szóródás miatt absz szórás Z Z merőleges beesés visszavert hullám Z >Z > ferde beesés megtört hullám Néhány határfelület reflexiós tényezője (R) Izom/vér 0,0009 Zsír/máj 0,006 Zsír/izom 0,0 Csont/izom 0,4 Csont/zsír 0,48 Lágy szövet/levegő 0,99!!! Törés visszavert hullám α > > megtört hullám sin sin Z =, így ha: α > β > UH-diagnosztika satolóközeget kell alkalmazni a forrás és a test között (gél; víz ha megoldható) sontárnyék, kőárnyék Z satoló Z forrás Z szövet Fókuszálás (a lense a szállítóközeghez képest nagyobb hangsebességgel jellemezhető, szilárd anyagból készül) Z > Z (hasonló esetén) törés miatti irányváltozás UH-diagnosztikában fals eredményt adhat a határfelületek helyéről 5
6
7
8 Ultrahang diagnosztika Feloldóképesség Térbeli feloldás axiális és laterális feloldóképesség vs. gyengülés/behatolási mélység magasabb frekvenia jobb feloldás, de nagyobb gyengülés felszínhez közeli vs. mélyebben fekvő struktúrák Sugárirányú (axiális) felbontás az UH nyaláb mentén fekvő struktúrák megkülönböztetése impulzus hossz és frekvenia magasabb frekvenia rövidebb impulzus jobb felbontás 5 MHz transduer, 3 yles in a pulse,5 MHz transduer, 3 yles in a pulse Feloldás határa elméletben: hullámhossz fele gyakorlatban: ~,5hullámhossz (0,75mm 3MHz esetén) Doppler-effektus I. A B Doppler-effektus II. álló forrás, v sebességgel mozgó visszaverő objektum v látszólagos relatív sebesség: f D =(v/)f (abszolút értékben) ha v és nem párhuzamos (Θ szöget zárnak be) Christian Doppler (84) forrás és megfigyelő egymáshoz képest mozog észlelt frekvenia eltér az eredetitől álló forrás mozgó megfigyelő ill. mozgó forrás álló megfigyelő esete kvantitatíve eltér ha v<< elhanyagolható különbség, bármelyik használható álló forrás mozgó megfigyelő esetén: Doppler-eltolódás (f D ): f észlelt > f eredeti f D v f ( ) v f ' f f f ' f észlelt < f eredeti forrás (Θ v v os f D f v f D f os UH frekveniaeltolódás mozgó struktúrák sebességének meghatározása pl. véráramlás vizsgálata (vörösvértestek UH szóró entrumok) 8
9 UH hatásai Primer hatások: hangsugárnyomás kavitáió rövid élettartamú, folyadékmentes üregek keletkezése (<00 μm) folyadék részeskék közötti összetartó/kohéziós erők megszűnnek a váltakozó nyomó- és húzófeszültségek következtében expanziós fázis buborékok keletkezése; kompresszió zsugorodás határintenzitás frekvenia, viszkozitás megszűnéskor hatalmas hőmérséklet- és nyomáskülönbségek alakulnak ki abszorpió Szekunder hatások: mehanikai kavitáió másodlagos hatása környező szilárd részeskék eróziója sebességkülönbség az eltérő méretű részeskék között dörzsölő hatás diszpergálás, tisztítás, stb. mehanikai hatás + abszorpió hőhatás kémiai (abszorpió gerjesztés kémiai reakiók) biológiai hatás (pl. bakteriid hatás) Példák az UH hatásainak orvosi alkalmazására: nagy intenzitású fókuszált UH terápia (HIFU) extrakorporális lökéshullámokkal végzett kőzúzás (ESWL) 9
vmax A részecskék mozgása Nyomás amplitúdó értelmezése (P) ULTRAHANG ULTRAHANG Dr. Bacsó Zsolt c = f λ Δt = x/c ω (=2π/T) x t d 2 kitérés sebesség
ULTRAHANG Dr. Basó solt kitérés A részeskék mozgása x y Asinω t Δt x/ ω (π/t) sebesség gyorsulás d y x v Aω osω t d t d v x a Aω sinω t d t ULTRAHANG Hang mehanikai rezgés longitudinális hullám inrahang
A hang fizikai tulajdonságai, ultrahang, Doppler-elv Dr. Goda Katalin 2019.
A hang fizikai tulajdonságai, ultrahang, Doppler-elv Dr. Goda Katalin 2019. Kapcsolódó tankönyvi fejezetek (Orvosi biofizika, Medicina kiadó, 2006): II/2.4 Hang-ultrahang (146-155. oldal) VIII/4.2 Ultrahangos
Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed
Sugárzások mechanikai Nem ionizáló sugárzások Ionizálo sugárzások elektromágneses elektromágneses részecske Hang és ultrahang IH hallható hang UH alfa sugárzás béta sugárzás rádió hullámok infravörös fény
Hangintenzitás, hangnyomás
Hangintenzitás, hangnyomás Rezgés mozgás energia A hanghullámoknak van energiája (E) [J] A detektor (fül, mikrofon, stb.) kisiny felületű. A felületegységen áthaladó teljesítmény=intenzitás (I) [W/m ]
Ultrahang. A hang. A hanghullámot leíró függvény. Az ultrahang
A hang Ultrahang fizikai tulajdonságai előállítása diagnosztika terápia A hang: mechanikai hullám Közegre van szükség a terjedéséhez Szilárd testben: longitudinális vagy transzverzális hullám Folyadékok,
Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed
Sugárzások mechanikai Nem ionizáló sugárzások Ionizálo sugárzások elektromágneses elektromágneses részecske Hang és ultrahang IH hallható hang UH alfa sugárzás béta sugárzás rádió hullámok infravörös fény
Az ultrahang, mint fizikai jelenség; előállítása, tulajdonságai, diagnosztikai alkalmazásának fizikai alapjai
Az ultrahang, mint fizikai jelenség; előállítása, tulajdonságai, diagnosztikai alkalmazásának fizikai alapjai 03 Február Prof. Fidy Judit Dr. Leopold Augenbrugger (grazi kosmáros orvos fia) 76: perkusszió
Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.
Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
Rezgések és hullámok
Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő
Az élő anyag rugalmas tulajdonságainak felhasználása diagnosztikában és terápiában: ultrahang - módszerek. Hang: mechanikai hullám
Mai kérdés: Az élő anyag rugalmas tulajdonságainak felhasználása diagnosztikában és terápiában: ultrahang - módszerek Mennyi az 50 kv feszültséggel gyorsított elektron energiája ev egységben? 06 Márius
Diagnosztikai ultrahang
Diagnosztikai ultrahang A diagnosztikai ultrahang (UH) berendezések azt használják ki, hogy a hang terjed az emberi testben. Kibocsátanak egy ultrahang impulzust a testbe, majd detektálják, hogy mennyi
1. A hang, mint akusztikus jel
1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem
Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechankai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed
Sugárzások mechanikai Nem ionizáló sugárzások Ionizálo sugárzások elektromágneses elektromágneses részecske Hang és ultrahang IH hallható hang UH alfa sugárzás béta sugárzás rádió hullámok infravörös fény
Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői
Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési
Az élő anyag rugalmas tulajdonságainak felhasználása diagnosztikában és terápiában: ultrahang - módszerek. Hang: mechanikai hullám
Mai kérdés: Nevezzen meg két tulajdonságot, vagy jelenséget, ami megkülönbözteti a röntgensugárzást és a gamma-sugárzást. Emelje ki a különbséget. Az élő anyag rugalmas tulajdonságainak felhasználása diagnosztikában
Az ultrahang reflexiója. Az ultrahang orvosi alkalmazásainak alapjai. Visszaverődés. Terápa alapja az ultrahang elnyelődése
Az ultrahang orvosi alkalmazásainak alapjai Terápa alapja az ultrahang elnyelődése Diagnosztika alapja az ultrahang reflexiója Visszaverődés Az ultrahang reflexiója J R = R J 0 Z1 Z R = Z1 + Z 2 2 2 Ha
Az ultrahang, mint fizikai jelenség; előállítása, tulajdonságai, diagnosztikai alkalmazásának fizikai alapjai. Hang: mechanikai hullám
Az ultrahang, mint fizikai jelenség; előállítása, tulajdonságai, diagnosztikai alkalmazásának fizikai alapjai 04 Február Prof. Fidy Judit Dr. Leopold Augenbrugger (grazi kosmáros orvos fia) 76: perkusszió
Biofizika és orvostechnika alapjai
Biofizika és orvostechnika alapjai Ultrahang diagnosztika 1. Egy kevés fizika 2. Az ultrahang élettani hatásai 3. Egyszerű kísérletek fejben 4. Az ultrahang létrehozása 5. A mód 6. B mód 7. M mód 8. A
Kiegészítő anyag (videók) http://www.youtube.com/watch?v=gpcquuwqayw
Kiegészítő anyag (videók) Ruben-féle cső (Ruben s tube): http://www.youtube.com/watch?v=gpcquuwqayw Doppler UH (diagnosztikai cél): http://www.youtube.com/watch?v=fgxzg-j_hfw http://www.youtube.com/watch?v=upsmenyoju8
Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete
Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező
Ultrahangos anyagvizsgálati módszerek atomerőművekben
Ultrahangos anyagvizsgálati módszerek atomerőművekben Hangfrekvencia 20 000 000 Hz 20 MHz 2 000 000 Hz 20 000 Hz 20 Hz anyagvizsgálatok esetén használt UH ultrahang hallható hang infrahang 2 MHz 20 khz
Kiegészítő anyag (videók) http://www.youtube.com/watch?v=gpcquuwqayw
Kiegészítő anyag (videók) Ruben-féle cső (Ruben s tube): http://www.youtube.com/watch?v=gpcquuwqayw Doppler UH (diagnosztikai cél): http://www.youtube.com/watch?v=fgxzg-j_hfw http://www.youtube.com/watch?v=upsmenyoju8
Hullámok, hanghullámok
Hullámok, hanghullámok Hullámokra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési
11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám
Az ultrahang orvosi alkalmazásai
Az ultrahang orvosi alkalmazásai Dóczy-Bodnár Andrea 2011. október 17. Az ultrahang orvosi alkalmazásai Ultrahang diagnosztika UH visszaverődése és/vagy szóródása az echo detektálása izom, lágy szövetek,
Az ultrahang diagnosztika fizikai alapjai
Az ultrahang diagnosztika fizikai alapjai Schay G. 2016 témák : A hang mint mechanikai hullám Frekvencia tartományok - ultrahang Ultrahang keltése Ultrahang transducerek technikai kérdések Távolságmérés
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
A hang mint mechanikai hullám
A hang mint mechanikai hullám I. Célkitűzés Hullámok alapvető jellemzőinek megismerése. A hanghullám fizikai tulajdonságai és a hangérzet közötti összefüggések bemutatása. Fourier-transzformáció alapjainak
Az Ampère-Maxwell-féle gerjesztési törvény
Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér
-2σ. 1. A végtelen kiterjedésű +σ és 2σ felületi töltéssűrűségű síklapok terében az ábrának megfelelően egy dipól helyezkedik el.
1. 2. 3. Mondat E1 E2 Össz Energetikai mérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. május 15. Neptun kód:... g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus
Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás
Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt
Mechanika, dinamika. p = m = F t vagy. m t
Mechanika, dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség.
Anyagvizsgálati módszerek
Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok Az akusztikus emisszió vizsgálata a műszaki diagnosztikában Anyagvizsgálati módszerek Roncsolásos metallográfia, kémia, szakító,
Hang ultrahang. Hang: mechanikai hullám (modell)
Hang ultrahang kosmai kérdés: mennyi bor van a hordóban? orvosi kérdés: mennyi levegő van a tüdőben? Augenbrugger (grazi kosmáros orvos ia, 76): perkusszió üreges szervek légtartalmának a vizsgálatára
A hullámok terjedése során a közegrészecskék egyensúlyi helyzetük körül rezegnek, azaz átlagos elmozdulásuk zérus.
HULLÁMOK MECHANIKAI HULLÁMOK Mechanikai hullám: ha egy rugalmas közeg egyensúlyi állapotát megbolygatva az előidézett zavar tovaterjed a közegben. A zavart a hullámforrás váltja ki. A hullámok terjedése
1. Az ultrahangos diagnosztika fizikai alapjai
1. Az ultrahangos diagnosztika fizikai alapjai 1.1. Harmonikus hullámmozgás A hullám egy rendszer olyan állapotváltozása, amely időbeli és térbeli periodicitást mutat, más megfogalmazásban a hullám valamely
Osztályozó vizsga anyagok. Fizika
Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes
Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?
Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám
Geometriai és hullámoptika. Utolsó módosítás: május 10..
Geometriai és hullámoptika Utolsó módosítás: 2016. május 10.. 1 Mi a fény? Részecske vagy hullám? Isaac Newton (1642-1727) Pierre de Fermat (1601-1665) Christiaan Huygens (1629-1695) Thomas Young (1773-1829)
Hangterjedés akadályozott terekben
Hangterjedés akadályozott terekben Hangelnyelés, hanggátlás: hangszigetelés Augusztinovicz Fülöp segédlet, 2014. Szakirodalom P. Nagy József: A hangszigetelés elmélete és gyakorlata Akadémiai Kiadó, Budapest,
Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak
Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra
Rezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus
9. évfolyam. Osztályozóvizsga tananyaga FIZIKA
9. évfolyam Osztályozóvizsga tananyaga A testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás: gyorsulás fogalma, szabadon eső test mozgása 3. Bolygók mozgása: Kepler törvények A Newtoni
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
Járműipari környezetérzékelés
Járműipari környezetérzékelés 2. előadás Dr. Aradi Szilárd Az ultrahangos érzékelés története Ultrasound_range_diagram.png: Original uploader was LightYear at en.wikipediaultrasound_range_diagram_png_(sk).svg:,
Pótlap nem használható!
1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika 2. ZH NÉV:.. 2018. november 29. Neptun kód:... Pótlap nem használható! g=10 m/s 2 ; εε 0 = 8.85 10 12 F/m; μμ 0 = 4ππ 10 7 Vs/Am; cc = 3
a terjedés és a zavar irányának viszonya szerint:
TÓTH A.: Hullámok (összefoglaló) Hullámtani összefoglaló A hullám fogalma és leírása A hullám valamilyen (mehanikai, elektromágneses, termikus, stb.) zavar térbeli tovaterjedése. Terjedésének mehanizmusa
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
Hangterjedés szabad térben
Hangterjeés szaba térben Bevezetés Hangszint általában csökken a terjeés során. Okai: geometriai, elnyelőés, fölfelület hatása, növényzet és épületek. Ha a hangterjeés több mint 100 méteren történik, a
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak
Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya
Hang ultrahang. Hang: mechanikai hullám (modell)
Hang ultrahang kosmai kérdés: mennyi bor van a hordóban? orvosi kérdés: mennyi levegő van a tüdőben? Augenbrugger (grazi kosmáros orvos ia, 76): perkusszió üreges szervek légtartalmának a vizsgálatára
Szent István Egyetem Fizika és folyamatirányítási Tanszék FIZIKA. rezgések egydimenziós hullám hangok fizikája. Dr. Seres István
Szent István Egyetem Fizika és folyamatirányítási Tanszék rezgések egydimenziós hullám hangok fizikája Dr. Seres István Harmonikus rezgőmozgás ( sin(ct) ) ( c cos(ct) ) c sin(ct) ( cos(ct) ) ( c sin(ct)
Dinamika. p = mυ = F t vagy. = t
Dinamika Mozgás, alakváltozás és ennek háttere Newton: a mozgás természetes állapot. A témakör egyik kulcsfontosságú fizikai mennyisége az impulzus (p), vagy lendület, vagy mozgásmennyiség. Klasszikus
Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.
SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi
Optika Gröller BMF Kandó MTI
Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola
Újpesti Bródy Imre Gimnázium és Ál tal án os Isk ola 1047 Budapest, Langlet Valdemár utca 3-5. www.brody-bp.sulinet.hu e-mail: titkar@big.sulinet.hu Telefon: (1) 369 4917 OM: 034866 Osztályozóvizsga részletes
Zaj,- rezgés és sugárzásvédelem NGB_KM015_ tanév tavasz 1. előadás. Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék
Zaj,- rezgés és sugárzásvédelem NGB_KM015_1 2017 2018. tanév tavasz 1. előadás Bedő Anett egyetemi tanársegéd SZE, AHJK Környezetmérnöki tanszék ELÉRHETŐSÉG Szoba: D 512 Telefonszám: 96/503-400/3103 E-mail:
Audiometria 1. ábra 1. ábra 1. ábra 1. ábra 1. ábra
Audiometria 1. Az izophongörbék (más néven azonoshangosság- görbék; gyakjegyzet 1. ábra) segítségével adjuk meg a táblázat hiányzó értékeit Az egy sorban lévő adatok egyazon tiszta szinuszos hangra vonatkoznak.
DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I. Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST
DR. DEMÉNY ANDRÁS-I)R. EROSTYÁK JÁNOS- DR. SZABÓ GÁBOR-DR. TRÓCSÁNYI ZOLTÁN FIZIKA I Klasszikus mechanika NEMZETI TANKÖNYVKIADÓ, BUDAPEST Előszó a Fizika című tankönyvsorozathoz Előszó a Fizika I. (Klasszikus
Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez
A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév
FOK Fogorvosi anyagtan fizikai alapjai tárgy kolokviumi kérdései 2012/13-es tanév I. félév A kollokviumon egy-egy tételt kell húzni az 1-10. és a 11-20. kérdések közül. 1. Atomi kölcsönhatások, kötéstípusok.
Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, december 05. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 NÉV: Gépészmérnöki alapszak, Mérnöki fizika 2. ZH, 2017. december 05. Neptun kód: Aláírás: g=10 m/s 2 ; ε 0 = 8.85 10 12 F/m; μ 0 = 4π 10 7 Vs/Am; c = 3 10 8 m/s Előadó: Márkus /
Mechanikai hullámok (Vázlat)
Mechanikai hullámok (Vázlat) 1. A hullám ogalma, csoportosítása és jellemzői a) A mechanikai hullám ogalma b) Hullámajták c) A hullámmozgás jellemzői d) A hullámok polarizációja 2. Egydimenziós hullámok
OPTIKA. Fénykibocsátás mechanizmusa fényforrás típusok. Dr. Seres István
OPTIKA Fénykibocsátás mechanizmusa Dr. Seres István Bohr modell Niels Bohr (19) Rutherford felfedezte az atommagot, és igazolta, hogy negatív töltésű elektronok keringenek körülötte. Niels Bohr Bohr ezt
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
Röntgendiffrakció. Orbán József PTE, ÁOK, Biofizikai Intézet november
Röntgendiffrakció Orbán József PTE, ÁOK, Biofizikai Intézet 2013. november Előadás vázlata Röntgen sugárzás Interferencia, diffrakció (elektromágneses hullámok) Kristályok szerkezete Röntgendiffrakció
ÉPÜLETEK ZAJVÉDELME Épületek rendeltetésszerű használatához tartozó követelmények Szerkezeti állékonyság Klímakomfort (hő- és páravédelem, frisslevegő, ) Természetes és mesterséges megvilágítás zajvédelem
Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal. 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD
Sugárzás kölcsönhatása az anyaggal 1. Fény kölcsönhatása az anyaggal 2. Ionizáló sugárzás kölcsönhatása az anyaggal KAD 2012.10.03 1976 2 1. 3 4 n 1 >n 2 5 6 7 8 9 10 11 12 13 14 2. Az ionizáló sugárzások
Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?
Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye
Hang: mechanikai hullám (modell) Ultrahangos képalkotó módszerek. síp. térbeli és időbeli periodicitás. rugó. függvény
Ultrahangos képalkotó módszerek Hang: mehanikai hullám (modell) síp rugó térbeli és időbeli periodiitás üggvény KAD.9.5 longitudinális hullám (gázokban és olyadékok belsejében sak ilyen) hidrosztatikai
Hangfrekvenciás mechanikai rezgések vizsgálata
Hangfrekvenciás mechanikai rezgések vizsgálata (Mérési jegyzőkönyv) Hagymási Imre 2007. május 7. (hétfő délelőtti csoport) 1. Bevezetés Ebben a mérésben a szilárdtestek rugalmas tulajdonságait vizsgáljuk
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
Biofizika. Sugárzások. Csik Gabriella. Mi a biofizika tárgya? Mi a biofizika tárgya? Biológiai jelenségek fizikai leírása/értelmezése
Mi a biofizika tárgya? Biofizika Csik Gabriella Biológiai jelenségek fizikai leírása/értelmezése Pl. szívműködés, membránok szerkezete és működése, érzékelés stb. csik.gabriella@med.semmelweis-univ.hu
Az elektromágneses tér energiája
Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége
a) Valódi tekercs b) Kondenzátor c) Ohmos ellenállás d) RLC vegyes kapcsolása
Bolyai Farkas Országos Fizika Tantárgyverseny 2016 Bolyai Farkas Elméleti Líceum, Marosvásárhely XI. Osztály 1. Adott egy alap áramköri elemen a feszültség u=220sin(314t-30 0 )V és az áramerősség i=2sin(314t-30
Orvosi biofizika. 1 Az orvostudomány és a biofizika kapcsolata. Sugárzások a medicinában. gyakorlatok. 1. félév előadásai
Orvosi biofizika 1. félév: 1,5 óra előadás + óra gyakorlat. félév: óra előadás + óra gyakorlat Fizika az orvostudományban SE Biofizikai és Sugárbiológiai Intézet igazgató: Prof. Kellermayer Miklós tanulmányi
Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele
Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:
Modern Fizika Labor. 17. Folyadékkristályok
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 11. A mérés száma és címe: 17. Folyadékkristályok Értékelés: A beadás dátuma: 2011. okt. 23. A mérést végezte: Domokos Zoltán Szőke Kálmán Benjamin
A hőmérsékleti sugárzás
A hőmérsékleti sugárzás Alapfogalmak 1. A hőmérsékleti sugárzás Értelmezés (hőmérsékleti sugárzás): A testek hőmérsékletével kapcsolatos, a teljes elektromágneses spektrumra kiterjedő sugárzást hőmérsékleti
ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek
ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát
Vezetők elektrosztatikus térben
Vezetők elektrosztatikus térben Vezető: a töltések szabadon elmozdulhatnak Ha a vezető belsejében a térerősség nem lenne nulla akkor áram folyna. Ha a felületen a térerősségnek lenne tangenciális (párhuzamos)
Hidrosztatika, Hidrodinamika
Hidrosztatika, Hidrodinamika Folyadékok alaptulajdonságai folyadék: anyag, amely folyni képes térfogat állandó, alakjuk változó, a tartóedénytől függ a térfogat-változtató erőkkel szemben ellenállást fejtenek
A munkavégzés a rendszer és a környezete közötti energiacserének a D hőátadástól eltérő valamennyi más formája.
11. Transzportfolyamatok termodinamikai vonatkozásai 1 Melyik állítás HMIS a felsoroltak közül? mechanikában minden súrlódásmentes folyamat irreverzibilis. disszipatív folyamatok irreverzibilisek. hőmennyiség
Szeizmikus kutatómódszer I. Alkalmazott földfizika
Szeizmikus kutatómódszer I. Alkalmazott földfizika Szeizmikus méréseknél mesterségesen keltünk rezgéseket a földben, és a mélyből visszaérkező rugalmas hullámokat (P hullámok) regisztráljuk. A regisztrált
A hullám frekvenciája egyenlő a hullámforrás frekvenciájával, azzal a kikötéssel, hogy a hullámforrás és megfigyelő nyugalomban van.
Mechanikai hullámok 1) Alapfogalmak A rugalmas közegekben a külső behatás térben tovaterjed. Ezt nevezzük mechanikai hullámnak. A hullám lehet egy-, két- vagy háromdimenziós, mint például kifeszített húr
Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak
Periódikus mozgások Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periodikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó rezgőmozgása, Föld forgása, körhinta, óra
Az elektron hullámtermészete. Készítette Kiss László
Az elektron hullámtermészete Készítette Kiss László Az elektron részecske jellemzői Az elektront Joseph John Thomson fedezte fel 1897-ben. 1906-ban Nobel díj! Az elektronoknak, az elektromos és mágneses
Rezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus
Ultrahang orvosi alkalmazásairól. Hang: mechanikai hullám (modell)
Ultrahang orvosi alkalmazásairól kosmai kérdés: mennyi bor van a hordóban? orvosi kérdés: mennyi levegő van a tüdőben? Augenbrugger (grazi kosmáros orvos ia, 76): perkusszió üreges szervek légtartalmának
NE HABOZZ! KÍSÉRLETEZZ!
NE HABOZZ! KÍSÉRLETEZZ! FOLYADÉKOK FELSZÍNI TULAJDONSÁGAINAK VIZSGÁLATA KICSIKNEK ÉS NAGYOKNAK Országos Fizikatanári Ankét és Eszközbemutató Gödöllő 2017. Ötletbörze Kicsiknek 1. feladat: Rakj három 10
Hidegsajtoló hegesztés
Budapesti Műszaki és Gazdaságtudományi Egyetem SAJTOLÓ HEGESZTÉSI ELJÁRÁSOK 1. Hőbevitel nélküli eljárások Dr. Palotás Béla Mechanikai Technológia és Anyagszerkezettani Tanszék Hidegsajtoló hegesztés A
Oszcillátorok. Párhuzamos rezgőkör L C Miért rezeg a rezgőkör?
Oszcillátorok Párhuzamos rezgőkör L C Miért rezeg a rezgőkör? Töltsük fel az ábrán látható kondenzátor egy megadott U feszültségre, majd zárjuk az áramkört az ábrán látható módon. Mind a tekercsen, mind
Mechanika I-II. Példatár
Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását
Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály
Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test
Látás. Látás. A környezet érzékelése a látható fény segítségével. A szem a fényérzékelés speciális, páros szerve (érzékszerv).
Látás A szem felépítése és működése. Optikai leképezés a szemben, akkomodáció. Képalkotási hibák. A fotoreceptorok tulajdonságai és működése. A szem felbontóképessége. A színlátás folyamata. 2014/11/18
Rezgőmozgás, lengőmozgás, hullámmozgás
Rezgőmozgás, lengőmozgás, hullámmozgás A rezgőmozgás időben ismétlődő, periodikus mozgás. A rezgő test áthalad azon a helyen, ahol egyensúlyban volt a kitérítés előtt, és két szélső helyzet között periodikus
Bevezetés a lézeres anyagmegmunkálásba
Bevezetés a lézeres anyagmegmunkálásba FBN332E-1 Dr. Geretovszky Zsolt 2010. október 13. A lézeres l anyagmegmunkálás szempontjából l fontos anyagi tulajdonságok Optikai tulajdonságok Mechanikai tulajdonságok
Audiofrekvenciás jel továbbítása optikai úton
Audiofrekvenciás jel továbbítása optikai úton Mechanikai rezgések. Hanghullámok. Elektromágneses rezgések. Rezgésnek nevezünk minden olyan állapotváltozást, amely időben valamilyen ismétlődést mutat. A
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos