Az ultrahang orvosi alkalmazásai

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az ultrahang orvosi alkalmazásai"

Átírás

1 Az ultrahang orvosi alkalmazásai Dóczy-Bodnár Andrea október 17.

2 Az ultrahang orvosi alkalmazásai Ultrahang diagnosztika UH visszaverődése és/vagy szóródása az echo detektálása izom, lágy szövetek, csontok felszínének leképezése 2D és 3D képek (3D képek valós időben 4D) mozgás/sebesség információ is nyerhető 2-18 MHz (1-50 MHz) UH frekvencia (behatolási mélység vs. felbontás, ld. később) Nincs ionizáló sugárzás, nem invazív módszer Terápiás alkalmazások (i) Nagy intenzitású UH UH hő- és mechanikai hatása kívánt struktúrák (pl. tumor, vesekő, stb.) eltávolítása/roncsolása magasabb energiák, mint az UH diagnosztikában frekvenciák széles tartományban mozognak (de általában alacsonyabbak, mint a diagnosztikában) (ii) Alacsony intenzitású UH (pl. csontnövekedés stimulálása)

3 1. Ultrahang előállítása piezoelektromos transzducer inverz piezoelektromos hatás frekvencia, időtartam, pásztázás impulzus vs. folytonos ultrahang technikák 2. Ultrahang kölcsönhatása a humán szövetekkel A jó, a rossz és a csúf visszaverődés, szóródás jel (echo) abszorpció, visszaverődés, szóródás, törés UH gyengülése törés (refrakció) fals információ/artefaktum 3. Echo detektálása piezoelektromos transzducer piezoelektromos hatás echo intenzitása, érkezési ideje (és frekvenciája) 4. Adatfeldolgozás képalkotás erősítés képalkotás/megjelenítés térbeli felbontás Ultrahang diagnosztika

4 Ultrahang diagnosztika Transzducerek I. Tompító - egység Piezoelektromos lapka Illesztőréteg Z Közepes Nagy Kicsi Vastagság λ/2 λ/4 piezoelektromos lapka (kristály vagy kerámia) UH előállítása és detektálása (elektromos energia mechanikai energia) hatékony transzdukció rezonancia frekvencia (lapka vastagsága néhány száz μm hullámhossztól függ) egyetlen ill. több frekvencia kibocsátására képes transzducerek tompítóegység: magas UH abszorpcióképesség UH abszorpciója ebben az irányban illesztő réteg a transzducer és a vizsgált objektum között elősegíti az UH transzmisszióját a humán szövetekbe akusztikai keménység, méret (ld. táblázat) maximális energia kibocsátás a kívánt irányban

5 Ultrahang diagnosztika Transzducerek II. Diagnosztikai alkalmazások többsége: UH impulzusok egyetlen elektromos impulzus a lapka rövid ideig rezeg UH előállítása és detektálása ugyanazzal a transzducerrel sávszélesség, időtartam, ismétlési idő folyamatos hullámú UH technikák (pl. CW Doppler) UH előállítása és detektálása egymástól szeparáltan

6 Ultrahang diagnosztika Transzducerek III. UH-nyaláb fókuszálása nyaláb átmérő UH kép felbontása természetes fókuszálás nyaláb átmérője a közel- és távoltér határán a legkisebb (r 2 /λ) fókuszálási technikák konkáv transzducerek, akusztikus lencsék, elektronikus fókuszálás késleltető egységek Pásztázás fókuszált nyalábbal mechanikus pásztázás elektronikus módszerek (UH átalakító sorok, transducer array) linear és curved array több lapka hullámainak interferenciája fókuszálás egydimenziós képvonal eltolás 1 lapkával újabb képvonal

7 Viszaverődés különböző akusztikus impedanciájú közegek határán diagnosztikai információ UH gyengülése reflexióképesség (R), beesési szög szabályos ( tükröző ) visszaverődés lapos, sima felszín; λ UH visszaverő struktúra visszaverődés törvényei diffúz (szórt) visszaverődés nem teljesen sima, érdes visszaverő felszínről Szóródás UH hullámhosszánál kisebb részecskék (pl. vörösvértestek) frekvenciafüggő diagnosztikai információ + gyengülés Ultrahang diagnosztika Ultrahang viselkedése humán szövetekben I.

8 Néhány határfelület reflexiós tényezője (R) Izom/vér 0,0009 Zsír/máj 0,006 Zsír/izom 0,01 Csont/izom 0,41 Csont/zsír 0,48 Lágy szövet/levegő 0,99!!! UH-diagnosztika csatoló közeg (ld. illesztőréteg) a forrás és a test között (gél; víz ha megoldható) csontárnyék, kőárnyék

9 Ultrahang diagnosztika Ultrahang viselkedése humán szövetekben II. Abszorpció akusztikus energia hővé alakulása lágy szövetekben gyengülés 80-90%-át okozza frekvenciafüggő (μ frekvencia) felezési rétegvastagság, tompítás Törés különböző akusztikus impedanciájú közegek határán irányváltozása fals információ (pl. zsír, csontok) UH gyengülése

10 Felező rétegvastagság néhány fontosabb szövetben Anyag Felező rétegvastagság (cm) 2 MHz 5 MHz Levegő 0,06 0,01 Csont 0,1 0,04 Máj 1,5 0,5 Vér 8,5 3,0 Víz

11 Ultrahang diagnosztika Ultrahang viselkedése humán szövetekben III.

12 Ultrahang diagnosztika Impulzus-echo módszerek alapja UH impulzus visszaverődés visszatérő jel (echo) detektálása (amplitúdó, visszatérési idő, frekvencia eltolódás) jel erősítése és feldolgozása UH-kép megjelenítése (pl. katódsugárcső) 2 impulzus közötti szünet milliszekundumos nagyságrend (hangsebesség, visszaverő elemek távolsága) impulzus hossza mikroszekundum erősítés time gain compensation (TGC) erősítés echo-jel mélységének megfelelő szabályozása

13 Ultrahang diagnosztika Impulzus-echo módszerek I. Egydimenziós A (amplitúdó) képek rögzített helyzetű UH-fej, keskeny nyaláb echojelek egyetlen irányból különböző mélységből érkező jelek időtengelyen (x-tengely) egymásután jelennek meg visszaérkezési idő (t) visszaverő felület távolsága (d) a forrástól: ct=2d két echót okozó felület közötti távolság: d 12 =(ct 1 -ct 2 )/2 amplitúdó (y-tengely) ritkán használják diagnosztikai célokra

14 Ultrahang diagnosztika Impulzus-echo módszerek II. Egydimenziós B (brightness; fényesség) képek echo intenzitás képpont fényessége önállóan nem használják, további módszerek alapjául szolgál TM- (M-) mód (time and motion) visszaverő felületek mozgása a mérési irányban (pl. kardiológia) egymást követő impulzusokat követően detektált B-képek x-irányban (időskála) egymás mellé helyezve

15 Ultrahang diagnosztika Impulzus-echo módszerek III. Kétdimenziós B-kép, UH-tomográfia Egydimenziós B-képek sorozata a test valamely síkmetszetében pásztázás különböző irányokban végzett mérések 2d kép 2D B-képek sorozata 3D képek rekonstrukciója

16 Ultrahang diagnosztika Feloldóképesség I. Térbeli feloldás axiális és laterális feloldóképesség vs. gyengülés/behatolási mélység magasabb frekvencia jobb feloldás, de nagyobb gyengülés felszínhez közeli vs. mélyebben fekvő struktúrák Sugárirányú (axiális) felbontás az UH nyaláb mentén fekvő struktúrák megkülönböztetése impulzus hossz és frekvencia magasabb frekvencia rövidebb impulzus jobb felbontás 5 MHz transducer, 3 cycles in a pulse 2,5 MHz transducer, 3 cycles in a pulse Feloldás határa elméletben: hullámhossz fele gyakorlatban: ~1.5 hullámhossz (0.75mm 3MHz esetén)

17 Ultrahang diagnosztika Feloldóképesség II. Laterális felbontás egymás mellett fekvő objektumok (UH-nyalábra merőlegesen) nyaláb átmérője a frekvenciával fordítottan arányos fókuszzónában a legkisebb a nyaláb átmérője Feloldási határ néhány mm

18 Ultrahang diagnosztika Doppler-módszerek I. mozgó visszaverő/szóró objektum sebesség meghatározása a frekvencia eltolódása alapján (pl. véráramlás)

19 Ultrahang diagnosztika Doppler-módszerek II. Egydimenziós folyamatos hullámú (CW) Doppler folyamatos UH hullám két kristály (külön forrás és detektor) véráramlás a nyaláb mentén nincs mélységinformáció, átlagos áramlási sebességet határoznak meg átlagos áramlás nagysága emittált és visszavert hullámok szuperpozíciója periodikus amplitúdó oszcilláció (lebegés) frekvencia = Doppler-shift; hallható tartomány hangszóróval hallhatóvá tehető áramlás iránya visszaszórt hullám + referenciahullám (kicsit magasabb frekvencia) szuperpozíciója kapott jel frekvenciája az áramlás irányától függ hallható jel magassága fordítottja a Doppler alapjelenségnek Előnyök: mérőeszköz kicsi, olcsó, könnyen használható

20 Ultrahang diagnosztika Doppler-módszerek III. Egydimenziós impulzus Doppler (PD) emisszió és detektálás időben szeparált azonos transzducer előre beállított időablak (pozíció, hossz) mért terület mélysége és kiterjedése szabályozható eltérő sebességek a vizsgált elemben detektált jel frekvencia eloszlása (frekvencia analízis: Fourier transzformáció) Doppler frekvencia eltolódás spektrum ha Θ ismert sebesség spektrum meghatározható (de általában túl nagy a szög bizonytalansága) Doppler görbe: Doppler-eltolódás/sebesség idő függvény megjelenítése speciális egydimenziós B-kép: Doppler-shift /vagy sebesség (tengely mentén) + VVT-k száma (fényesség) (ennek időbeli változása is ábrázolható Doppler görbe másik típusa/doppler spektrum)

21 Duplex megjelenítés 2D B-kép és a Doppler görbe egyidejű megjelenítésa színkódolt Dopplerrel kombinálva triplex Színkódolt Doppler szürkeskálás 2D B-kép + Doppler információ sebesség iránya és nagysága kódolva van Ultrahang diagnosztika Doppler-módszerek IV.

22 Ultrahang terápiás alkalmazásai High Intensity Focused Ultrasound (HIFU) tumor lokalizálása (pl. B-módú UH képalkotással) tumor szövet roncsolása jól lokalizálható hőmérséklet emeléssel a szövetkárosodás kontrollálása a szöveti reflexió változásának a monitorozásával Extracorporal Shockwave Lithotripsy (ESWL) spektruma 100 khz -1 MHz ~ 50 MPa akusztikus nyomáshullám (lökéshullám)

23 Mágneses rezonanciás képalkotás (MRI) Dóczy-Bodnár Andrea október 17.

24 Az MRI az NMR alapjelenség speciális alkalmazása Magok mágneses momentumait ( 1 H atommagok) külső mágneses térben RF sugárzással gerjesztjük; a rendszerre jellemző rezonancia frekvenciákat és a hozzájuk tartozó spinek/mágneses momentumok relatív mennyiségét detektáljuk NMR jel! Mi a speciális az MRI-ben? NMR jelet képpé alakítjuk mágneses tér gradiensek segítségével lokalizáljuk a jelet Orvosi MRI: a főként vízben (és zsírban) megtalálható 1 H atommagok biztosítják a jelet

25 Mágneses rezonanciás képalkotás (MRI) 2 N Bkülső eltérő hely különböző B külső, azaz különböző frekvencia Hely a frekvencia alapján azonosítható Lineáris mágneses tér gradiens B külső (külső mágneses tér) MRI esetén: (i) B 0 homogén mágneses tér mindig jelen van spinek rendeződése (ii) lineáris mágneses tér gradiensek átmeneti időre kapcsolják be B 0 -al párhuzamos, de a tér adott irányában növekvő erősségű mágneses tér

26 Homogén mágneses tér (B 0 ) B 0 + lineáris mágneses tér gradiens 3 H-t tartalmazó elem esetén (egyszerűsített példa, természetesen az egész fej tartalmaz jelet ): homogén tér 1 csúcs az NMR spektrumban gradiens bekapcsolása egynél több jel, a gradiens irányától függően

27 Képalkotás alapjai szelet térfogatelemek (voxelek) 2D projekció pixel színe/árnyalata a mért paraméter aktuális értékétől függ n n pixel, felbontás a módszer érzékenységétől függ 2D képek 3D rekontsrukció

28 Szeletkijelölés MRI-ben B 0 merőleges a szelet síkjára mágneses tér gradiens (szintén merőleges a kívánt szelet síkjára) és az Rf impulzus egyidejű alkalmazása (pl. 90º-impulzus) csak a rezonancia feltételt teljesítő spinek gerjeszthetők helyfüggő szeletvastagság: gradiens meredeksége Rf impulzus sávszélessége

29 Back projection (visszavetítéses) MRI Hagyományos impulzus szekvencia: szeletkijelölés: Rf impulzus + szeletkijelölő gradiens (G S or G z ) G x és G y lineáris kombinációja különböző irányú mágneses tér gradinesek az XY síkban (kijelölt szelet) jel/spektrum detektálása jelek helyének lokalizálása

30 2D Fourier transzformációs eljárás Gyakorlatban ezt alkalmazzák szeletkijelölő gradiens fáziskódoló gradiens frekvenciakódoló gradiens C. Boesch, Molecular aspects of medicine :

31 1. A szeleten belül a homogén B 0 mágneses térben az összes spin együtt precesszál 2. fáziskódoló gradiens eltérő precessziós frekvencia az x- tengely mentén G Φ 3. fáziskódoló gradiens kikapcsolása azonos precessziós frekvencia, de a fáziskülönbség megmarad frekvenciakódoló gradiens bekapcsolása az y-tengely mentén jel detektálása G f Ld. mellékelt pps file

32 Általános séma: Letapogatás 128, 256, 512, 1024 stb. lépcsőben! Utána itt is egy lépcső váltás, majd G Φ ismétlése n n FID 2D FT n n összetartozó frekvencia (hely) és amplitúdó (intenzitás) képalkotás Inhomogenitás kiküszöbölése ekhó detektálása (180 -os impulzus és szeletkódoló gradiens egyidejű beiktatása G Φ után, detektálás az ekhó idejére időzítve) különböző impulzusszekvenciák az alkalmazástól függően

33 MRI felbontása: Jel/zaj arány Képméret/pixelek száma; szeletvastagság: pixelszám nő, szeletvastagság csökken jobb felbontás de! túl nagy pixelszám, ill. kis szeletvastagság esetén nem lesz elegendő jelet adó spin jel/zaj arány romlik T 2 : spin-spin relaxációs idő csökken felbontás csökken (rövidebb ideig van jel) mintavételezés

34 Többszeletes képalkotás: időmegtakarítás impulzusszekvenciák közötti ismétlési időt a spin-rács relaxáció határozza meg (általában sec várakozási idő) ezalatt az idő alatt másik szeletet gerjesztenek ν 1 ν 2 ν 3

35 Az MRI kép kontraszt spin denzitás (ρ), T 1 és T 2 függő Szövet T 1 (s) T 2 (ms) ρ CSF 0, Fehér áll. 0,76 1, Szürke áll. 1,09 2, Izom 0,95 1, ρ= vízben oldott 12 mm Ni Cl 2 esetén

36 Kontrasztozási lehetőségek az MRI-nél I. Belső kontraszt: különböző szövetek eltérő relaxációs ideje alapján detektálás és ismétlés megfelelő időzítése! Protondenzitás T 1 -súlyozott T 2 -súlyozott A B A B A B A B A Példa: hasonló 1 H koncentráció T 1,A >T 1,B T 2,A >T 2,B M XY rövid t d hosszú t i rövid t d rövid t i közepes t d hosszú t i T 2,A detektálás T 2,B idő T 1,B M Z T 1,A ismétlés idő protondenzitás T 1 T 2 C. Boesch, Molecular aspects of medicine :

37 Tumor detektálás Damadian: Tumor T 1 = 1.5 x (normal tissue T 1 ) tumor CT T 1 MRI

38 Vizsgált objektum mozgatása nélkül különböző irányú síkok vizsgálhatók axiális (fej, angiográfia) koronális (fej) szagittális (térd) Néhány speciális alkalmazás: diffúziós MRI: random molekuláris mozgások (víz diffúziója) és a diffúziót akadályozó struktúrákkal való kölcsönhatások detektálása, kvantitatív jellemzése; diffúzió irányfüggése (szöveti rendezettség) funkcionális MRI (BOLD vér oxigénszinttől függő kontraszt, pl. agyi aktivitás nyomon követése) mágneses rezonancia spektroszkópia (MRS) emberi test felületére helyezett tekercsekkel anyagcsere folyamatok nyomon követése a spektrumvonalak arányainak változása alapján mágneses rezonancia mikroszkópia MRI vs. CT: MRI-ben nincs ionizáló sugárzás, lágy szövetek kontrasztozási lehetősége (spindenzitás és relaxációs idők alapján)

39 Véroxigénszint-függő MRI kontraszt (BOLD) fmri legismertebb formája Pl. agyi aktivitás vizsgálata Hemoglobin: oxigénnel telített formában diamágneses; oxigén nélkül paramágneses T 2 súlyozott kép felvétele MR jel intenzitása függ a vér oxigénszintjétől magasabb oxigénszint magasabb intenzitás (T 2 hosszabb; nagyobb BOLD kontraszt) BOLD kontraszt: oxi- és deoxi-hemoglobin aránya véráramlás és az oxigénfogyasztás befolyásolja Kiegészítő anyag Washington Irving engedélyével

40 Kiegészítő anyag Mágneses rezonancia spektroszkópia (MRS)

41 Mágneses rezonancia mikroszkópia (μmri vagy MRM) MRI kisebb mérettartományban térbeli felbontás: 100 μm 3 Tesla, 37 C 9.4 Tesla, 37 C 11.7 Tesla, 15 C Kiegészítő anyag J.M. Tyszka et al., Curr. Op. Biotechnol : 93-99

vmax A részecskék mozgása Nyomás amplitúdó értelmezése (P) ULTRAHANG ULTRAHANG Dr. Bacsó Zsolt c = f λ Δt = x/c ω (=2π/T) x t d 2 kitérés sebesség

vmax A részecskék mozgása Nyomás amplitúdó értelmezése (P) ULTRAHANG ULTRAHANG Dr. Bacsó Zsolt c = f λ Δt = x/c ω (=2π/T) x t d 2 kitérés sebesség ULTRAHANG Dr. Basó solt kitérés A részeskék mozgása x y Asinω t Δt x/ ω (π/t) sebesség gyorsulás d y x v Aω osω t d t d v x a Aω sinω t d t ULTRAHANG Hang mehanikai rezgés longitudinális hullám inrahang

Részletesebben

Ultrahang. A hang. A hanghullámot leíró függvény. Az ultrahang

Ultrahang. A hang. A hanghullámot leíró függvény. Az ultrahang A hang Ultrahang fizikai tulajdonságai előállítása diagnosztika terápia A hang: mechanikai hullám Közegre van szükség a terjedéséhez Szilárd testben: longitudinális vagy transzverzális hullám Folyadékok,

Részletesebben

Az ultrahang reflexiója. Az ultrahang orvosi alkalmazásainak alapjai. Visszaverődés. Terápa alapja az ultrahang elnyelődése

Az ultrahang reflexiója. Az ultrahang orvosi alkalmazásainak alapjai. Visszaverődés. Terápa alapja az ultrahang elnyelődése Az ultrahang orvosi alkalmazásainak alapjai Terápa alapja az ultrahang elnyelődése Diagnosztika alapja az ultrahang reflexiója Visszaverődés Az ultrahang reflexiója J R = R J 0 Z1 Z R = Z1 + Z 2 2 2 Ha

Részletesebben

M N. a. Spin = saját impulzus momentum vektor: L L nagysága:

M N. a. Spin = saját impulzus momentum vektor: L L nagysága: Az MR és MRI alapjai Magmágneses Rezonancia Spektroszkópia (MR) és Mágneses Rezonancia Képalkotás (MRI) uclear Magnetic Resonance: Alapelv felfedezéséért Fizikai obel díj, 1952 Felix Bloch és Edward M.

Részletesebben

A hang fizikai tulajdonságai, ultrahang, Doppler-elv Dr. Goda Katalin 2019.

A hang fizikai tulajdonságai, ultrahang, Doppler-elv Dr. Goda Katalin 2019. A hang fizikai tulajdonságai, ultrahang, Doppler-elv Dr. Goda Katalin 2019. Kapcsolódó tankönyvi fejezetek (Orvosi biofizika, Medicina kiadó, 2006): II/2.4 Hang-ultrahang (146-155. oldal) VIII/4.2 Ultrahangos

Részletesebben

Kiegészítő anyag (videók) http://www.youtube.com/watch?v=gpcquuwqayw

Kiegészítő anyag (videók) http://www.youtube.com/watch?v=gpcquuwqayw Kiegészítő anyag (videók) Ruben-féle cső (Ruben s tube): http://www.youtube.com/watch?v=gpcquuwqayw Doppler UH (diagnosztikai cél): http://www.youtube.com/watch?v=fgxzg-j_hfw http://www.youtube.com/watch?v=upsmenyoju8

Részletesebben

Kiegészítő anyag (videók) http://www.youtube.com/watch?v=gpcquuwqayw

Kiegészítő anyag (videók) http://www.youtube.com/watch?v=gpcquuwqayw Kiegészítő anyag (videók) Ruben-féle cső (Ruben s tube): http://www.youtube.com/watch?v=gpcquuwqayw Doppler UH (diagnosztikai cél): http://www.youtube.com/watch?v=fgxzg-j_hfw http://www.youtube.com/watch?v=upsmenyoju8

Részletesebben

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok

Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok MR-ALAPTANFOLYAM 2011 SZEGED Mágneses rezonanciás képalkotás AZ MRI elve, fizikai alapok Martos János Országos Idegtudományi Intézet Az agy MR vizsgálata A gerinc MR vizsgálata Felix Bloch Edward Mills

Részletesebben

Biofizika és orvostechnika alapjai

Biofizika és orvostechnika alapjai Biofizika és orvostechnika alapjai Ultrahang diagnosztika 1. Egy kevés fizika 2. Az ultrahang élettani hatásai 3. Egyszerű kísérletek fejben 4. Az ultrahang létrehozása 5. A mód 6. B mód 7. M mód 8. A

Részletesebben

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed Sugárzások mechanikai Nem ionizáló sugárzások Ionizálo sugárzások elektromágneses elektromágneses részecske Hang és ultrahang IH hallható hang UH alfa sugárzás béta sugárzás rádió hullámok infravörös fény

Részletesebben

Diagnosztikai ultrahang

Diagnosztikai ultrahang Diagnosztikai ultrahang A diagnosztikai ultrahang (UH) berendezések azt használják ki, hogy a hang terjed az emberi testben. Kibocsátanak egy ultrahang impulzust a testbe, majd detektálják, hogy mennyi

Részletesebben

Az ultrahang diagnosztika fizikai alapjai

Az ultrahang diagnosztika fizikai alapjai Az ultrahang diagnosztika fizikai alapjai Schay G. 2016 témák : A hang mint mechanikai hullám Frekvencia tartományok - ultrahang Ultrahang keltése Ultrahang transducerek technikai kérdések Távolságmérés

Részletesebben

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechankai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechankai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed Sugárzások mechanikai Nem ionizáló sugárzások Ionizálo sugárzások elektromágneses elektromágneses részecske Hang és ultrahang IH hallható hang UH alfa sugárzás béta sugárzás rádió hullámok infravörös fény

Részletesebben

Ultrahang és elektromos impulzusok alkalmazása

Ultrahang és elektromos impulzusok alkalmazása Ultrahang és elektromos impulzusok alkalmazása Ultrahang: 0 khz nél magasabb frekvenciájú mechanikai hullám. A mechanikai hullámok (hang, ultrahang) terjedéséhez közegre van szükség. Dr. Voszka István

Részletesebben

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény

Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció

Részletesebben

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2011. szeptember 28. Magmágneses rezonanciához kapcsolódó Nobel-díjak * Otto Stern, USA: Nobel Prize in Physics

Részletesebben

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői

Rezgés, Hullámok. Rezgés, oszcilláció. Harmonikus rezgő mozgás jellemzői Rezgés, oszcilláció Rezgés, Hullámok Fogorvos képzés 2016/17 Szatmári Dávid (david.szatmari@aok.pte.hu) 2016.09.26. Bármilyen azonos időközönként ismétlődő mozgást, periodikus mozgásnak nevezünk. A rezgési

Részletesebben

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki.

Mechanikai hullámok. Hullámhegyek és hullámvölgyek alakulnak ki. Mechanikai hullámok Mechanikai hullámnak nevezzük, ha egy anyagban az anyag részecskéinek rezgésállapota továbbterjed. A mechanikai hullám terjedéséhez tehát szükség van valamilyen anyagra (légüres térben

Részletesebben

A hang fizikai tulajdonságai, ultrahang, Doppler-elv

A hang fizikai tulajdonságai, ultrahang, Doppler-elv 03.09.30. A hang fizikai tulajdonságai, ultrahang, Doppler-elv Kapsolódó tankönyvi fejezetek (Orvosi biofizika, Mediina kiadó, 006): II/.4 Hang-ultrahang (46-55. oldal) VIII/4. Ultrahangos képalkotás -

Részletesebben

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós

A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel. Készítette: Jakusch Pál Környezettudós A nehézfémek növényi vízháztartásra gyakorolt hatásának vizsgálata Mágneses Rezonancia készülékkel Készítette: Jakusch Pál Környezettudós Célkitűzés MR készülék növényélettani célú alkalmazása Kontroll

Részletesebben

Időjárási radarok és produktumaik

Időjárási radarok és produktumaik ORSZÁGOS METEOROLÓGIAI SZOLGÁLAT Időjárási radarok és produktumaik Hadvári Marianna Országos Meteorológiai Szolgálat Távérzékelési Osztály 2018. október 6. Alapítva: 1870 Radio Detection And Ranging 1935

Részletesebben

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed

Hang és ultrahang. Sugárzások. A hang/ultrahang mint hullám. A hang mechanikai hullám. Terjedéséhez közegre van szükség vákuumban nem terjed Sugárzások mechanikai Nem ionizáló sugárzások Ionizálo sugárzások elektromágneses elektromágneses részecske Hang és ultrahang IH hallható hang UH alfa sugárzás béta sugárzás rádió hullámok infravörös fény

Részletesebben

1.1 Emisszió, reflexió, transzmisszió

1.1 Emisszió, reflexió, transzmisszió 1.1 Emisszió, reflexió, transzmisszió A hőkamera által észlelt hosszú hullámú sugárzás - amit a hőkamera a látómezejében érzékel - a felület emissziójának, reflexiójának és transzmissziójának függvénye.

Részletesebben

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz

MRI áttekintés. Orvosi képdiagnosztika 3. ea ősz MRI áttekintés Orvosi képdiagnosztika 3. ea. 2015 ősz MRI Alapelv: hogyan lehet mágneses vizsgálattal valamilyen anyag (jelen esetben az élő emberi szervezet) belső felépítéséről információt kapni? A mágneses

Részletesebben

Ultrahangos anyagvizsgálati módszerek atomerőművekben

Ultrahangos anyagvizsgálati módszerek atomerőművekben Ultrahangos anyagvizsgálati módszerek atomerőművekben Hangfrekvencia 20 000 000 Hz 20 MHz 2 000 000 Hz 20 000 Hz 20 Hz anyagvizsgálatok esetén használt UH ultrahang hallható hang infrahang 2 MHz 20 khz

Részletesebben

Hang és ultrahang. Az ultrahangos képalkotás, A-, B- és M-képek. Doppler-echo. Echo elv - képalkotás. cδt = d+d = 2d

Hang és ultrahang. Az ultrahangos képalkotás, A-, B- és M-képek. Doppler-echo. Echo elv - képalkotás. cδt = d+d = 2d Hang és ultrahang Az ultrahangos képalkotás, A-, B- és M-képek. Doppler-echo Echo elv - képalkotás Y Z Eltérítés / szabályozás A-kép egy dimenziós B-kép két dimenziós B-kép cδt = d+d = 2d speciális transzducerből

Részletesebben

Akusztikai tervezés a geometriai akusztika módszereivel

Akusztikai tervezés a geometriai akusztika módszereivel Akusztikai tervezés a geometriai akusztika módszereivel Fürjes Andor Tamás BME Híradástechnikai Tanszék Kép- és Hangtechnikai Laborcsoport, Rezgésakusztika Laboratórium 1 Tartalom A geometriai akusztika

Részletesebben

Műszeres analitika II. (TKBE0532)

Műszeres analitika II. (TKBE0532) Műszeres analitika II. (TKBE0532) 7. előadás NMR spektroszkópia Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék NMR, Nuclear Magnetic

Részletesebben

Nyers adat - Fourier transformáció FFT

Nyers adat - Fourier transformáció FFT Nyers adat - Fourier transformáció FFT Multi-slice eljárás Inversion Recovery (IR) TR 1800 1800 900 TI TE Inverziós idő (TI) konvencionális SE vagy FSE Mágnesesség IR Víz Idõ STIR Short TI Inversion Recovery

Részletesebben

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai

Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2012. október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Atommagok saját impulzusmomentuma (spin) protonok, neutronok (elektronhoz hasonlóan) saját impulzusmomentum

Részletesebben

Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás

Medical Imaging 10 2009.04.07. 1. Mágneses rezonancia (MR, MRI, NMR) x B. Makroszkopikus tárgyalás Mágneses rezonancia (MR, MRI, NMR) Bloch, Purcell 1946, Nobel díj 1952. Mágneses momentum + - Mágneses térben a mágneses momentum az erővonalakkal csak meghatározott szöget zárhat be. Különböző irányokhoz

Részletesebben

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz

11. Egy Y alakú gumikötél egyik ága 20 cm, másik ága 50 cm. A két ág végeit azonos, f = 4 Hz Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merőleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Hullámok, hanghullámok

Hullámok, hanghullámok Hullámok, hanghullámok Hullámokra jellemző mennyiségek: Amplitúdó: a legnagyobb, maximális kitérés nagysága jele: A, mértékegysége: m (egyéb mértékegységek: dm, cm, mm, ) Hullámhossz: két azonos rezgési

Részletesebben

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak

Optika és Relativitáselmélet II. BsC fizikus hallgatóknak Optika és Relativitáselmélet II. BsC fizikus hallgatóknak 2. Fényhullámok tulajdonságai Cserti József, jegyzet, ELTE, 2007. Az elektromágneses spektrum Látható spektrum (erre állt be a szemünk) UV: ultraibolya

Részletesebben

Morfológiai képalkotó eljárások CT, MRI, PET

Morfológiai képalkotó eljárások CT, MRI, PET Morfológiai képalkotó eljárások CT, MRI, PET Kupi Tünde 2009. 12. 03. Röntgen 19. sz. vége: Röntgen abszorbciós mechanizmusok: - Fotoelektromos hatás - Compton-szórás - Párkeltés Kép: Röntgenabszorbancia

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, stb.) Rádióspektroszkópiák

Részletesebben

Az Ampère-Maxwell-féle gerjesztési törvény

Az Ampère-Maxwell-féle gerjesztési törvény Az Ampère-Maxwell-féle gerjesztési törvény Maxwell elméleti meggondolások alapján feltételezte, hogy a változó elektromos tér örvényes mágneses teret kelt (hasonlóan ahhoz ahogy a változó mágneses tér

Részletesebben

Röntgendiagnosztikai alapok

Röntgendiagnosztikai alapok Röntgendiagnosztikai alapok Dr. Voszka István A röntgensugárzás keltésének alternatív lehetőségei (röntgensugárzás keletkezik nagy sebességű, töltéssel rendelkező részecskék lefékeződésekor) Röntgencső:

Részletesebben

24/04/ Röntgenabszorpciós CT

24/04/ Röntgenabszorpciós CT CT ésmri 2012.04.10. Röntgenabszorpciós CT 1 Élettani és Orvostudományi Nobel díj- 1979 Allan M. Cormack, Godfrey N. Hounsfield Godfrey N. Hounsfield Born:28 August 1919, Newark, United Kingdom Died: 12

Részletesebben

Természettudományi Kutatóközpont, Magyar Tudományos Akadémia (MTA-TTK) Agyi Képalkotó Központ (AKK)

Természettudományi Kutatóközpont, Magyar Tudományos Akadémia (MTA-TTK) Agyi Képalkotó Központ (AKK) Szimultán multi-slice EPI szekvenciák: funkcionális MRI kompromisszumok nélkül? Kiss Máté, Kettinger Ádám, Hermann Petra, Gál Viktor MTA-TTK Agyi Képalkotó Központ Természettudományi Kutatóközpont, Magyar

Részletesebben

Rádióspektroszkópiai módszerek

Rádióspektroszkópiai módszerek Rádióspektroszkópiai módszerek NMR : Nuclear magneic resonance : magmágneses rezonancia ESR : electron spin resonance: elektronspin-rezonancia Mikrohullámú spektroszkópia Schay G. Rádióspektroszkópia elég

Részletesebben

Hangintenzitás, hangnyomás

Hangintenzitás, hangnyomás Hangintenzitás, hangnyomás Rezgés mozgás energia A hanghullámoknak van energiája (E) [J] A detektor (fül, mikrofon, stb.) kisiny felületű. A felületegységen áthaladó teljesítmény=intenzitás (I) [W/m ]

Részletesebben

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete

Hullámmozgás. Mechanikai hullámok A hang és jellemzői A fény hullámtermészete Hullámmozgás Mechanikai hullámok A hang és jellemzői A fény hullámtermészete A hullámmozgás fogalma A rezgési energia térbeli továbbterjedését hullámmozgásnak nevezzük. Hullámmozgáskor a közeg, vagy mező

Részletesebben

Zaj- és rezgés. Törvényszerűségek

Zaj- és rezgés. Törvényszerűségek Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,

Részletesebben

CT- és UH-vezérelt biopsiák technikája a radiológus aspektusa

CT- és UH-vezérelt biopsiák technikája a radiológus aspektusa CT- és UH-vezérelt biopsiák technikája a radiológus aspektusa dr. Magyar Péter Semmelweis Egyetem ÁOK Radiológiai és s Onkoterápiás s Klinika Budapest XI. Cytologus Kongresszus 2012. október 11-13. 13.

Részletesebben

Osztályozó vizsga anyagok. Fizika

Osztályozó vizsga anyagok. Fizika Osztályozó vizsga anyagok Fizika 9. osztály Kinematika Mozgás és kölcsönhatás Az egyenes vonalú egyenletes mozgás leírása A sebesség fogalma, egységei A sebesség iránya Vektormennyiség fogalma Az egyenes

Részletesebben

A röntgendiagnosztika alapjai

A röntgendiagnosztika alapjai A röngtgendiagnosztika alapja: a sugárzás elnyelődése A röntgendiagnosztika alapjai A foton kölcsönhatásának lehetőségei: Compton-szórás Comptonszórás elnyelődés fotoeffektusban fotoeffektus nincs kölcsönhatás

Részletesebben

Biomolekuláris szerkezeti dinamika

Biomolekuláris szerkezeti dinamika Kísérletek, mérések célja Biomolekuláris szerkezeti dinamika Kellermayer Miklós Biomolekuláris szerkezet és működés pontosabb megismerése (folyamatok, állapotok, átmenetek, kölcsönhatások, mozgások, stb.)

Részletesebben

Abszorpció, emlékeztetõ

Abszorpció, emlékeztetõ Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése

Részletesebben

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez

Név... intenzitás abszorbancia moláris extinkciós. A Wien-féle eltolódási törvény szerint az abszolút fekete test maximális emisszióképességéhez A Név... Válassza ki a helyes mértékegységeket! állandó intenzitás abszorbancia moláris extinkciós A) J s -1 - l mol -1 cm B) W g/cm 3 - C) J s -1 m -2 - l mol -1 cm -1 D) J m -2 cm - A Wien-féle eltolódási

Részletesebben

A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.)

A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.) A GYULLADÁSOS BÉLBETEGEK EURÓPAI NAPJA 2009. május 23. szombat Petıfi Sándor Mővelıdési Ház (1103 Budapest, Kada u. 38-40.) Képalkotó diagnosztika Szerkesztette: Dió Mihály 06 30 2302398 Témák 1. Röntgen

Részletesebben

Biofizika szeminárium. Diffúzió, ozmózis

Biofizika szeminárium. Diffúzió, ozmózis Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:

Részletesebben

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében?

Hullámok tesztek. 3. Melyik állítás nem igaz a mechanikai hullámok körében? Hullámok tesztek 1. Melyik állítás nem igaz a mechanikai hullámok körében? a) Transzverzális hullám esetén a részecskék rezgésének iránya merıleges a hullámterjedés irányára. b) Csak a transzverzális hullám

Részletesebben

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.

Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18. Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:

Részletesebben

Optika Gröller BMF Kandó MTI

Optika Gröller BMF Kandó MTI Optika Gröller BMF Kandó MTI Optikai alapfogalmak Fény: transzverzális elektromágneses hullám n = c vákuum /c közeg Optika Gröller BMF Kandó MTI Az elektromágneses spektrum Az anyag és a fény kölcsönhatása

Részletesebben

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)

Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT) Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken

Részletesebben

Az ultrahang, mint fizikai jelenség; előállítása, tulajdonságai, diagnosztikai alkalmazásának fizikai alapjai

Az ultrahang, mint fizikai jelenség; előállítása, tulajdonságai, diagnosztikai alkalmazásának fizikai alapjai Az ultrahang, mint fizikai jelenség; előállítása, tulajdonságai, diagnosztikai alkalmazásának fizikai alapjai 03 Február Prof. Fidy Judit Dr. Leopold Augenbrugger (grazi kosmáros orvos fia) 76: perkusszió

Részletesebben

Hangterjedés szabad térben

Hangterjedés szabad térben Hangterjeés szaba térben Bevezetés Hangszint általában csökken a terjeés során. Okai: geometriai, elnyelőés, fölfelület hatása, növényzet és épületek. Ha a hangterjeés több mint 100 méteren történik, a

Részletesebben

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ)

Optika gyakorlat 6. Interferencia. I = u 2 = u 1 + u I 2 cos( Φ) Optika gyakorlat 6. Interferencia Interferencia Az interferencia az a jelenség, amikor kett vagy több hullám fázishelyes szuperpozíciója révén a térben állóhullám kép alakul ki. Ez elektromágneses hullámok

Részletesebben

A röntgendiagnosztika alapjai

A röntgendiagnosztika alapjai A fotonenergia növelésével csökken az elnyelődés. A röntgendiagnosztika alapjai A csökkenés markánsabb a fotoeffektusra nézve. Kis fotonenergiáknál τ m dominál. τ m markánsan változik az abszorbens rendszámával.

Részletesebben

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer

Spektrográf elvi felépítése. B: maszk. A: távcső. Ø maszk. Rés Itt lencse, de általában komplex tükörrendszer Spektrográf elvi felépítése A: távcső Itt lencse, de általában komplex tükörrendszer Kis kromatikus aberráció fontos Leképezés a fókuszsíkban: sugarak itt metszik egymást B: maszk Fókuszsíkba kerül (kamera

Részletesebben

MSK szekvenciák, protokolok MSK MR műtermékek

MSK szekvenciák, protokolok MSK MR műtermékek MSK szekvenciák, protokolok MSK MR műtermékek Mozgásszervi Radiológia Tanfolyam Debrecen, 2017 szeptember 21. Hetényi Szabolcs Telemedicine Clinic, Barcelona Protokolok (MRI szekvenciák) Műtermékek MRI

Részletesebben

Rezgések és hullámok

Rezgések és hullámok Rezgések és hullámok A rezgőmozgás és jellemzői Tapasztalatok: Felfüggesztett rugóra nehezéket akasztunk és kitérítjük egyensúlyi helyzetéből. Satuba fogott vaslemezt megpendítjük. Ingaóra ingáján lévő

Részletesebben

Sugárzások kölcsönhatása az anyaggal

Sugárzások kölcsönhatása az anyaggal Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy

Részletesebben

Sugárzások és anyag kölcsönhatása

Sugárzások és anyag kölcsönhatása Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció

Részletesebben

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás

Pásztázó elektronmikroszkóp. Alapelv. Szinkron pásztázás Pásztázó elektronmikroszkóp Scanning Electron Microscope (SEM) Rasterelektronenmikroskope (REM) Alapelv Egy elektronágyúval vékony elektronnyalábot állítunk elő. Ezzel pásztázzuk (eltérítő tekercsek segítségével)

Részletesebben

Az elektromágneses hullámok

Az elektromágneses hullámok 203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert

Részletesebben

Képrekonstrukció 3. előadás

Képrekonstrukció 3. előadás Képrekonstrukció 3. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem Computed Tomography (CT) Elv: Röntgen-sugarak áthatolása 3D objektum 3D térfogati kép Mérések

Részletesebben

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás

Csillapított rezgés. a fékező erő miatt a mozgás energiája (mechanikai energia) disszipálódik. kváziperiódikus mozgás Csillapított rezgés Csillapított rezgés: A valóságban a rezgések lassan vagy gyorsan, de csillapodnak. A rugalmas erőn kívül, még egy sebességgel arányos fékező erőt figyelembe véve: a fékező erő miatt

Részletesebben

A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás

A légköri sugárzás. Sugárzási törvények, légköri veszteségek, energiaháztartás A légköri sugárzás Sugárzási törvények, légköri veszteségek, energiaháztartás Sugárzási törvények I. 0. Minden T>0 K hőmérsékletű test sugároz 1. Planck törvény: minden testre megadható egy hőmérséklettől

Részletesebben

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés:

Modern Fizika Labor. 5. ESR (Elektronspin rezonancia) Fizika BSc. A mérés dátuma: okt. 25. A mérés száma és címe: Értékelés: Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. okt. 25. A mérés száma és címe: 5. ESR (Elektronspin rezonancia) Értékelés: A beadás dátuma: 2011. nov. 16. A mérést végezte: Szőke Kálmán Benjamin

Részletesebben

Tömegspektrometria. Tömeganalizátorok

Tömegspektrometria. Tömeganalizátorok Tömegspektrometria Tömeganalizátorok Mintabeviteli rendszer Működési elv Vákuumrendszer Ionforrás Tömeganalizátor Detektor Electron impact (EI) Chemical ionization (CI) Atmospheric pressure (API) Electrospray

Részletesebben

Alkalmazott spektroszkópia Serra Bendegúz és Bányai István

Alkalmazott spektroszkópia Serra Bendegúz és Bányai István Alkalmazott spektroszkópia 2014 Serra Bendegúz és Bányai István A mágnesség A mágneses erő: F p1 p2 r p1 p2 C ( F C ) C áll 2 2 r r r A mágneses (dipólus) momentum: m p l ( m p l ) Ahol p a póluserősség

Részletesebben

Hang ultrahang. Hang: mechanikai hullám (modell)

Hang ultrahang. Hang: mechanikai hullám (modell) Hang ultrahang kosmai kérdés: mennyi bor van a hordóban? orvosi kérdés: mennyi levegő van a tüdőben? Augenbrugger (grazi kosmáros orvos ia, 76): perkusszió üreges szervek légtartalmának a vizsgálatára

Részletesebben

Orvosi biofizika. 1 Az orvostudomány és a biofizika kapcsolata. Sugárzások a medicinában. gyakorlatok. 1. félév előadásai

Orvosi biofizika. 1 Az orvostudomány és a biofizika kapcsolata. Sugárzások a medicinában. gyakorlatok. 1. félév előadásai Orvosi biofizika 1. félév: 1,5 óra előadás + óra gyakorlat. félév: óra előadás + óra gyakorlat Fizika az orvostudományban SE Biofizikai és Sugárbiológiai Intézet igazgató: Prof. Kellermayer Miklós tanulmányi

Részletesebben

Abszorpciós fotometria

Abszorpciós fotometria A fény Abszorpciós fotometria Ujfalusi Zoltán PTE ÁOK Biofizikai ntézet 2011. szeptember 15. E B x x Transzverzális hullám A fény elektromos térerősségvektor hullámhossz Az elektromos a mágneses térerősség

Részletesebben

Röntgensugárzás. Röntgensugárzás

Röntgensugárzás. Röntgensugárzás Röntgensugárzás 2012.11.21. Röntgensugárzás Elektromágneses sugárzás (f=10 16 10 19 Hz, E=120eV 120keV (1.9*10-17 10-14 J), λ

Részletesebben

Az elektromágneses tér energiája

Az elektromágneses tér energiája Az elektromágneses tér energiája Az elektromos tér energiasűrűsége korábbról: Hasonlóképpen, a mágneses tér energiája: A tér egy adott pontjában az elektromos és mágneses terek együttes energiasűrűsége

Részletesebben

Mikroszerkezeti vizsgálatok

Mikroszerkezeti vizsgálatok Mikroszerkezeti vizsgálatok Dr. Szabó Péter BME Anyagtudomány és Technológia Tanszék 463-2954 szpj@eik.bme.hu www.att.bme.hu Tematika Optikai mikroszkópos vizsgálatok, klasszikus metallográfia. Kristálytan,

Részletesebben

NMR, MRI. Magnetic Resonance Imaging. Times, 2003. október 9 MRI

NMR, MRI. Magnetic Resonance Imaging. Times, 2003. október 9 MRI Times, 2003. október 9 NMR, MRI Magnetic Resonance Imaging This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel Prize for Physiology

Részletesebben

Járműipari környezetérzékelés

Járműipari környezetérzékelés Járműipari környezetérzékelés 2. előadás Dr. Aradi Szilárd Az ultrahangos érzékelés története Ultrasound_range_diagram.png: Original uploader was LightYear at en.wikipediaultrasound_range_diagram_png_(sk).svg:,

Részletesebben

Sugárzásos hőtranszport

Sugárzásos hőtranszport Sugárzásos hőtranszport Minden test bocsát ki sugárzást. Ennek hullámhossz szerinti megoszlása a felület hőmérsékletétől függ (spektrum, spektrális eloszlás). Jelen esetben kérdés a Nap és a földi felszínek

Részletesebben

1. A hang, mint akusztikus jel

1. A hang, mint akusztikus jel 1. A hang, mint akusztikus jel Mechanikai rezgés - csak anyagi közegben terjed. A levegő molekuláinak a hangforrástól kiinduló, egyre csillapodva tovaterjedő mechanikai rezgése. Nemcsak levegőben, hanem

Részletesebben

CT/MRI képalkotás alapjai. Prof. Bogner Péter

CT/MRI képalkotás alapjai. Prof. Bogner Péter CT/MRI képalkotás alapjai Prof. Bogner Péter CT - computed tomography Godfrey N. Hounsfield Allan M. Cormack The Nobel Prize in Physiology or Medicine 1979 MRI - magnetic resonance imaging Sir Peter Mansfield

Részletesebben

Abszorpciós spektroszkópia

Abszorpciós spektroszkópia Tartalomjegyzék Abszorpciós spektroszkópia (Nyitrai Miklós; 2011 február 1.) Dolgozat: május 3. 18:00-20:00. Egész éves anyag. Korábbi dolgozatok nem számítanak bele. Felmentés 80% felett. A fény; Elektromágneses

Részletesebben

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?

Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok

Részletesebben

Times, 2003. október 9 MRI

Times, 2003. október 9 MRI Times, 2003. október 9 MRI: orvosi diagnosztikát forradalmasító képalkotó módszer This Year s Nobel Prize in Medicine The Shameful Wrong That Must Be Righted This year the committee that awards The Nobel

Részletesebben

A fény tulajdonságai

A fény tulajdonságai Spektrofotometria A fény tulajdonságai A fény, mint hullámjelenség (lambda) (nm) hullámhossz (nű) (f) (Hz, 1/s) frekvencia, = c/ c (m/s) fénysebesség (2,998 10 8 m/s) (σ) (cm -1 ) hullámszám, = 1/ A amplitúdó

Részletesebben

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.

Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása. Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití

Részletesebben

Hang ultrahang. Hang: mechanikai hullám (modell)

Hang ultrahang. Hang: mechanikai hullám (modell) Hang ultrahang kosmai kérdés: mennyi bor van a hordóban? orvosi kérdés: mennyi levegő van a tüdőben? Augenbrugger (grazi kosmáros orvos ia, 76): perkusszió üreges szervek légtartalmának a vizsgálatára

Részletesebben

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek

ELEKTROMÁGNESES REZGÉSEK. a 11. B-nek ELEKTROMÁGNESES REZGÉSEK a 11. B-nek Elektromos Kondenzátor: töltés tárolására szolgáló eszköz (szó szerint összesűrít) Kapacitás (C): hány töltés fér el rajta 1 V-on A homogén elektromos mező energiát

Részletesebben

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához?

11.3. Az Achilles- ín egy olyan rugónak tekinthető, amelynek rugóállandója 3 10 5 N/m. Mekkora erő szükséges az ín 2 mm- rel történő megnyújtásához? Fényemisszió 2.45. Az elektromágneses spektrum látható tartománya a 400 és 800 nm- es hullámhosszak között található. Mely energiatartomány (ev- ban) felel meg ennek a hullámhossztartománynak? 2.56. A

Részletesebben

Funkcionális konnektivitás vizsgálata fmri adatok alapján

Funkcionális konnektivitás vizsgálata fmri adatok alapján Funkcionális konnektivitás vizsgálata fmri adatok alapján Képalkotási technikák 4 Log Resolution (mm) 3 Brain EEG & MEG fmri TMS PET Lesions 2 Column 1 0 Lamina -1 Neuron -2 Dendrite -3 Synapse -4 Mikrolesions

Részletesebben

ORVOSI BIOFIZIKA. Damjanovich Sándor Mátyus László QT Szerkesztette

ORVOSI BIOFIZIKA. Damjanovich Sándor Mátyus László QT Szerkesztette ORVOSI BIOFIZIKA Szerkesztette Damjanovich Sándor Mátyus László QT34 078 Medicina Könyvkiadó Rt. Budapest, 2000 Készült az Oktatási Minisztérium támogatásával írta Damjanovich Sándor Gáspár Rezső Krasznai

Részletesebben

SZTE ÁOK Radiológiai Klinika, Szeged

SZTE ÁOK Radiológiai Klinika, Szeged Computer tomographia SZTE ÁOK Radiológiai Klinika, Szeged voxel +1-4 +2 +5 +3 +1 0-2 pixel -2 0 +1-4 -6 +5 +2 +1 SZTE ÁOK Radiológiai Klinika, Szeged CT generációk SZTE ÁOK Radiológiai Klinika,

Részletesebben

Dankházi Z., Kalácska Sz., Baris A., Varga G., Ratter K., Radi Zs.*, Havancsák K.

Dankházi Z., Kalácska Sz., Baris A., Varga G., Ratter K., Radi Zs.*, Havancsák K. Dankházi Z., Kalácska Sz., Baris A., Varga G., Ratter K., Radi Zs.*, Havancsák K. ELTE, TTK KKMC, 1117 Budapest, Pázmány Péter sétány 1/A. * Technoorg Linda Kft., 1044 Budapest, Ipari Park utca 10. Műszer:

Részletesebben

Ultrahang alapok. Infrahang < 20 Hz Hallható hang 20 Hz 20.000 Hz Ultrahang > 20 khz

Ultrahang alapok. Infrahang < 20 Hz Hallható hang 20 Hz 20.000 Hz Ultrahang > 20 khz Ultrahang történelem Publikáció: The Theory of Sound (Lord Rayleigh, 1877) A piezo-elektromos effektus (Pierre Curie, 1880) - ultrahang generálás és detektálás gyakorlati megvalósítása Első gyakorlati

Részletesebben

Anyagvizsgálati módszerek

Anyagvizsgálati módszerek Anyagvizsgáló és Állapotellenőrző Laboratórium Atomerőművi anyagvizsgálatok Az akusztikus emisszió vizsgálata a műszaki diagnosztikában Anyagvizsgálati módszerek Roncsolásos metallográfia, kémia, szakító,

Részletesebben

Hang: mechanikai hullám (modell) Ultrahangos képalkotó módszerek. síp. térbeli és időbeli periodicitás. rugó. függvény

Hang: mechanikai hullám (modell) Ultrahangos képalkotó módszerek. síp. térbeli és időbeli periodicitás. rugó. függvény Ultrahangos képalkotó módszerek Hang: mehanikai hullám (modell) síp rugó térbeli és időbeli periodiitás üggvény KAD.9.5 longitudinális hullám (gázokban és olyadékok belsejében sak ilyen) hidrosztatikai

Részletesebben

Teremakusztikai méréstechnika

Teremakusztikai méréstechnika Teremakusztikai méréstechnika Tantermek akusztikája Fürjes Andor Tamás 1 Tartalomjegyzék 1. A teremakusztikai mérések célja 2. Teremakusztikai paraméterek 3. Mérési módszerek 4. ISO 3382 szabvány 5. Méréstechnika

Részletesebben