Filogenetikai analízis. Törzsfák szerkesztése
|
|
- Sarolta Borbélyné
- 10 évvel ezelőtt
- Látták:
Átírás
1 Filogenetikai analízis Törzsfák szerkesztése
2 Neighbor joining (szomszéd összevonó) módszer A fában egymás mellé kerülı objektumok kiválasztása a távolságmátrix értékei és az objektumoknak az összes többivel alkotott távolságai alapján. A módosított távolság annál kisebb lesz az eredetinél minél nagyobb a két objektum átlagos távolsága a többitıl, hiszen a nagy átlag (= nagy evolúciós sebesség ) megnöveli a kettejük relatív közelségét. A fa teljes felépítése során a távolságmátrix fokozatosan redukálódik. Az eljárás megfelel a minimális evolúció módszerének, végeredményben a fa éleinek összhosszúságát optimalizáljuk.
3 Távolság mátrix spenót rizs szúnyog majom ember spenót rizs szúnyog majom ember
4 Az elsı lépés 3.3 (embermajom) a legkisebb távolság. Így összekapcsoljuk az embert és a majmot embmajként, és új távolságot számítunk. embmaj szúnyog spenót rizs ember majom
5 Új távolság számítása Miután összekapcsoltunk két fajt egy alfába, ki kell számolnunk minden egyes pontnak és az új subtree nek a távolságát. Ezt egy egyszerő átlag számítással kapjuk meg: Dist[spenót,embmaj] =(Dist[spenót, majom] Dist[spenót,ember])/2 =( )/2= embmaj spenót ember majom
6 Következı ciklus spenót rizs szúnyog embmaj spenót rizs szúnyog embmaj szúny(embmaj) embmaj rizs spenót szúnyog ember majom
7 Utolsó elıtti ciklus spenót rizs szúnyembmaj spenót rizs szúnyembmaj szúny(embmaj) spenrizs embmaj rizs spenót szúnyog ember majom
8 Utolsó ciklus spenrizs szúnyembmaj spenrizs szúnyembmaj (spenrisz)(szúny(embmaj)) szúny(embmaj) spenrizs embmaj rizs spenót szúnyog ember majom
9 Parszimónia elv Egy jelenség magyarázatában az egyszerőbb hipotéziseket kell elfogadnunk a komplikáltabbakkal szemben. Minimális evolúciós utak elve (távolság alapú kladisztika, karakter alapon mőködı módszerek) Parsimony takarékossági elv
10 A B D E F karakterek E B A D F 4 7, ,9 6 2 Leszármaztatott állapotok száma Apomorfiák összesített száma az egyes taxonokra OTU
11 Parszimónia a gyakorlatban Frog Bird amnion hair HARATERS lactation placenta antorbital fenestra wings Frog Tree Bird 6 ocodile 5 Kangeroo Bat Human T A X A rocodile Kangeroo Frog ocodile Kangeroo Bat Bird Human Bat Human TREE LENGTH FIT Tree Tree Tree A két fa közül kisebb hosszúságú a Tree, így a parszimónia elv szerint ez lesz a megfelelı. Mindkét fa igényel néhány homopláziát (extra lépés).
12 Parszimónia módszerek Általánosságban a parszimónia módszerek az evolúciós fa ágainak összhosszúságát minimalizálják. Olyan fát keresünk, amely a lehetı legkisebb számú karakterállapot változást (evolúciós lépést) teszi szükségessé a leszármazási viszonyok magyarázásához. A feladat: az adott topológiához legmegfelelıbb (legkisebb hosszúságot eredményezı) állapotokat kell rendelni a belsı szögpontokhoz a fa topológiájának optimalizálása
13 Bootstrap Modern számitógégintenzív újramintavételezési módszer, amelyben kiindulásként feltételezzük, hogy a mintában lévı m egységre kapható gyakoriságeloszlás a lehetı legjobban képviseli az eredeti populációban levı gyakoriságot.
14 A mintákból melemő visszatevéses mintavételezést sokszor végrehajtva kapjuk a bootstrap mintákat. Minden egyes bootstrap mintát használhatunk valamilyen paraméter becslésére (parszimónia, ML, megismételt többváltozós analízis). Bootstrap konszenzus fát eredményez a változók bootstrap újramintavételezésével elıállított alternatív fák egyesítése. %ban fejezi ki, hogy hányszor helyezi a fában azonos helyre a mintákat. Kiküszöböli a változók kiválasztásában jelentkezı szubjektív elemeket, s alkalmas a leginkább stabil osztályok kimutatásásra.
15 Bootstrap egy példa SSUrDNA Ochromonas () Symbiodinium (2) Prorocentrum (3) Euplotes (8) 84 Tetrahymena (9) 96 Loxodes (4) Tracheloraphis (5) Spirostomum (6) Gruberia (7) Bootstrap konszenzus fa Freq.** ** **......****......****** ** ****.*.83...***** *******. 2.5.**...*...**...*.
16 Karakterállapotok közötti lehetséges átmenetek A G Rendezetlen: egy tulajdonság állapotai az evolúció során bármelyik másikba át ill. visszaalakulhatnak. T rendezetlen A B D rendezett és reverzibilis A B D irreverzibilis Rendezett és reverzibilis: A karakterek állapotai sorba rendezettek, az átalakulás mindkét irányban végbemehet. A állapotból csak a szomszédos állapotba juthatunk el közvetlenül. Irreverzibilis: A rendezett karakter állapotai csak egy irányban alakulhatnak át egymásba.
17 transzverzió Py Pu A stepmatrix meghatározza a különbözı karakterek közötti változás súlyát. PURINES (Pu) A T G PYRIMIDINES (Py) A G T A G 5 5 T 5 5 tranzíció Py Py Pu Pu
18 DNS szubsztitúciós modellek
19 J/ Jukes & antor A G T FEL/ Felsenstein A G T K2P/ Kimura 2 paraméter A G T A G T A G T A G T
20 HKY/ Hasegawa, Kishino, Yano A G T A G T
21 Maximum likelihood módszer Konkrét evolúciós modell alkalmazását igényli. Meg kell adni, hogy miképp alakulhat át az egyik szekvencia a másikba (morfológiai karakterekre ilyen célra alkalmazható modellrıl még nem tudunk). A modell ismeretében megadja, hogy a sok lehetıség közül melyik fa kialakulása a leginkább valószínő. A számítások során a teljes szekvenciát figyelembe kell venni, nemcsak az eltéréseket okozó pozíciókat (ahogy a parszimónia esetében tesszük). Legegyszerőbb modell a J. K2P modell már bevezeti k tranzíció/tranzverzió hányadost.
22 Maximum likelihood módszer Kból és a gyakoriságból meghatározhatók a nukleotidcserék evolúciós idıegységre vonatkoztatott rátái. A mutációs ráták segítségével kiszámítható annak az eseménynek a valószínősége, hogy t idı elteltével A bázis helyére G bázis kerül. P AG (t) Annak az esélye (L=likelihood!), hogy adott szekvencia valamely pozíciójában az A nukleotid van, és ezt t idı elteltével G váltja fel: L AG (t)=ƒ A P AG (t) ƒ A az A nukleotid relatív gyakorisága a kezdeti szekvenciában
Az evolúció az adatok mögött
Filogenetika Az evolúció az adatok mögött Ortutay Csaba, PhD 2013 április 9 Miről lesz ma szó? Nukleotid szubsztitúciós modellek Távolság alapú módszerek UPGMA Neighbor joining Modell alapú filogenetika
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
Problémák és megoldások a bioinformatikában. Válogatott fejezetek a bioinformatikából. Gyimesi Gergely, 2008. február 25.
Problémák és megoldások a bioinformatikában Válogatott fejezetek a bioinformatikából Gyimesi Gergely, 2008. február 25. Mik a fontos, megoldatlan biológiai problémák? Milyen módszereket, megoldási lehetıségeket
openbve járműkészítés Leírás az openbve-hez kapcsolódó extensions.cfg fájl elkészítéséhez
Leírás az openbve-hez kapcsolódó extensions.cfg fájl elkészítéséhez 1. oldal openbve járműkészítés Leírás az openbve-hez kapcsolódó extensions.cfg fájl elkészítéséhez A leírás az openbve-hez készített
Willi Hennig ( )
Objektív módszerek kladisztika Willi Hennig (1913-1976) Grundzüge einer Theorie der Phylogenetischen Systematik (Hennig, 1950). Phylogenetic Systematics (Hennig, 1966) Alapelvei: 1. A fajok közötti kapcsolatok
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
MOLEKULÁRIS FILOGENETIKAI ELEMZÉSEK EGY DISZKRÉT MATEMATIKAI
Doktori értekezés tézisei MOLEKULÁRIS FILOGENETIKAI ELEMZÉSEK EGY DISZKRÉT MATEMATIKAI MÓDSZER, A BOOLE ANALÍZIS SEGÍTSÉGÉVEL Ari Eszter Dr. Jakó Éena, tudományos főmunkatárs témavezető Dr. Szathmáry Eörs,
MOLEKULÁRIS FILOGENETIKAI ELEMZÉSEK EGY DISZKRÉT MATEMATIKAI
Doktori értekezés MOLEKULÁRIS FILOGENETIKAI ELEMZÉSEK EGY DISZKRÉT MATEMATIKAI MÓDSZER, A BOOLE ANALÍZIS SEGÍTSÉGÉVEL Ari Eszter Dr. Jakó Éena, tudományos főmunkatárs témavezető Dr. Szathmáry Eörs, egyetemi
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 8 VIII. REGREssZIÓ 1. A REGREssZIÓs EGYENEs Két valószínűségi változó kapcsolatának leírására az eddigiek alapján vagy egy numerikus
A jelen megértése a múlt ismerete nélkül lehetetlen
4 A jelen megértése a múlt ismerete nélkül lehetetlen Megismerhető-e a múlt? Diakrón fa - megismerhetetlen Madarak Emlősök Akrón fa fokozatokra, nagy léptékben Aszinkrón fa ős-leszármazott viszonyok összemosódnak
Kladisztika. (A veszekedõsek tudománya)
6 Kladisztika (A veszekedõsek tudománya) Az elõzõ két fejezettel korántsem zárhatjuk le a biológiai osztályozás tematikáját. Az eddig ismertetett módszerek a biológia objektumain kívül akár cserépedények,
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat
Statisztikai alapismeretek (folytatás) 4. elıadás (7-8. lecke) Becslések, Hipotézis vizsgálat 7. lecke Paraméter becslés Konfidencia intervallum Hipotézis vizsgálat feladata Paraméter becslés és konfidencia
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,
Gyakorlati bioinformatika
Gyakorlati bioinformatika Szekvenciaillesztés PhD kurzus 2. Szekvenciaillesztés Bagossi Péter Fajtái: - egyszer ill. többszörös illesztés - globális ill. lokális illesztés Alkalmazása: - adatbázisokban
Matematikai alapok és valószínőségszámítás. Statisztikai változók Adatok megtekintése
Matematikai alapok és valószínőségszámítás Statisztikai változók Adatok megtekintése Statisztikai változók A statisztikai elemzések során a vizsgálati, vagy megfigyelési egységeket különbözı jellemzık
Radioaktív bomlási sor szimulációja
Radioaktív bomlási sor szimulációja A radioaktív bomlásra képes atomok nem öregszenek, azaz nem lehet sem azt megmondani, hogy egy kiszemelt atom mennyi idıs (azaz mikor keletkezett), sem azt, hogy pontosan
Elemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
Matematikai alapok és valószínőségszámítás. Valószínőségi eloszlások Binomiális eloszlás
Matematikai alapok és valószínőségszámítás Valószínőségi eloszlások Binomiális eloszlás Bevezetés A tudományos életben megfigyeléseket teszünk, kísérleteket végzünk. Ezek többféle különbözı eredményre
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Az értékelés során következtetést fogalmazhatunk meg a
Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre
Gépi tanulás. Féligellenőrzött tanulás. Pataki Béla (Bolgár Bence)
Gépi tanulás Féligellenőrzött tanulás Pataki Béla (Bolgár Bence) BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Féligellenőrzött tanulás Mindig kevés az adat, de
Magassági kitőzések elve és végrehajtása
4-6. gyakorlat: Magassági kitőzések elve és végrehajtása Magassági kitőzések elve és végrehajtása Magassági kitőzéskor ismert ú alappontból kiindulva, valamely megadott szintet a követelményeknek megfelelıen
STATISZTIKA I. Centrális mutatók. Helyzeti középértékek. Középértékek. Bimodális eloszlás, U. Módusz, Mo. 4. Előadás.
Centrális mutatók STATISZTIKA I. 4. Előadás Centrális mutatók 1/51 2/51 Középértékek Helyzeti középértékek A meghatározása gyakoriság vagy sorszám alapján Számítás nélkül Az elemek nagyság szerint rendezett
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. április 20. A mérés száma és címe: 20. Folyadékáramlások 2D-ban Értékelés: A beadás dátuma: 2009. április 28. A mérést végezte: Márton Krisztina Zsigmond
STATISZTIKA I. A változók mérési szintjei. Nominális változók. Alacsony és magas mérési szint. Nominális változó ábrázolása
A változók mérési szintjei STATISZTIKA I. 3. Előadás Az adatok mérési szintjei, Viszonyszámok A változók az alábbi típusba tartozhatnak: Nominális (kategorikus és diszkrét) Ordinális Intervallum skála
MIKROFYN GÉPVEZÉRLÉSEK. 2D megoldások:
MIKROFYN GÉPVEZÉRLÉSEK Néhány szó a gyártóról: Az 1987-es kezdés óta a Mikrofyn A/S a világ öt legnagyobb precíziós lézer és gépvezérlés gyártója közé lépett. A profitot visszaforgatta az új termékek fejlesztésébe
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI
FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén
ESR-spektrumok különbözı kísérleti körülmények között A számítógépes értékelés alapjai anizotróp kölcsönhatási tenzorok esetén A paraméterek anizotrópiája egykristályok rögzített tengely körüli forgatásakor
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
Paleobiológiai módszerek és modellek 11. hét
Paleobiológiai módszerek és modellek 11. hét A diverzitás fajtái és mérőszámai Nagy őslénytani adatbázisok: Sepkoski The Fossil Record Paleobiology Database A diverzitás fogalma Diverzitás sokféleség az
A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában
A Markovi forgalomanalízis legújabb eredményei és ezek alkalmazása a távközlő hálózatok teljesítményvizsgálatában Horváth Gábor ghorvath@hit.bme.hu (Horváth András, Telek Miklós) - p. 1 Motiváció, problémafelvetés
Eloszlás-független módszerek (folytatás) 14. elıadás ( lecke) 27. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok
Eloszlás-független módszerek (folytatás) 14. elıadás (7-8. lecke) Illeszkedés-vizsgálat 7. lecke khí-négyzet eloszlású statisztikák esetszámtáblázatok elemzésére Illeszkedés-vizsgálat Gyakorisági sorok
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
A társadalomtudományi kutatás teljes íve és alapstratégiái. áttekintés
A társadalomtudományi kutatás teljes íve és alapstratégiái áttekintés A folyamat alapvetı felépítését tekintve kétféle sémát írhatunk le: az egyik a kvantitatív kutatás sémája a másik a kvalitatív kutatás
Alapfogalmak áttekintése. Pszichológiai statisztika, 1. alkalom
Alapfogalmak áttekintése Pszichológiai statisztika, 1. alkalom Hipotézisek Milyen a jó null hipotézis?? H0: Léteznek kitőnı tanuló diszlexiások.? H1: Nem léteznek. Sokkal inkább: H0: Nincs diszlexiás kitőnı
A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1
A gyakorló feladatok számozása a bevezetı órát követı órán, azaz a második órán indul. Gyakorló feladatok megoldásai 1 1. A populációt a számunkra érdekes egységek (személyek, csalások, iskolák stb.) alkotják,
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Látványos oktatás egyszerő multimédiás elemek programozásával Delphiben
Látványos oktatás egyszerő multimédiás elemek programozásával Delphiben Menyhárt László Gábor menyhart@elte.hu ELTE IK Absztrakt. A cikkben bemutatok egy ötletes megoldást arra, hogy hogyan lehet egyszerően
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
Páros összehasonlítás mátrixok empirikus vizsgálata. Bozóki Sándor
Páros összehasonlítás mátrixok empirikus vizsgálata Bozóki Sándor MTA SZTAKI Operációkutatás és Döntési Rendszerek Kutatócsoport Budapesti Corvinus Egyetem Operációkutatás és Aktuáriustudományok Tanszék
Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó
Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Elméleti bevezetés PANNONPALATINUS regisztrációs code PR/B10PI0221T0010NF101 A radon a 238 U bomlási sorának tagja, a periódusos rendszer
Az Európai Parlament és a Tanács 2004/49/EK irányelve (2004. április 29.) a közösségi vasutak biztonságáról, valamint a vasúttársaságok
Az Európai Parlament és a Tanács 2004/49/EK irányelve (2004. április 29.) a közösségi vasutak biztonságáról, valamint a vasúttársaságok engedélyezésérıl szóló 95/18/EK tanácsi irányelv és a vasúti infrastruktúrakapacitás
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem
Biometria, haladó biostatisztika EA+GY biometub17vm Szerda 8:00-9:00, 9:00-11:00 Déli Tömb 0-804, Lóczy Lajos terem Előadások-gyakorlatok 2018-ban (13 alkalom) IX.12, 19, 26, X. 3, 10, 17, 24, XI. 7, 14,
4. A méréses ellenırzı kártyák szerkesztése
4. A méréses ellenırzı kártyák szerkesztése A kártyákat háromféle módon alkalmazhatjuk. Az elızetes adatfelvétel során a fı feladat az eloszlás paramétereinek (µ és σ ) becslése a további ellenırzésekhez.
SPC egyszerően, olcsón, eredményesen
SPC egyszerően, olcsón, eredményesen Rába Tivadar Six Sigma Black Belt BorgWarner Turbo System April 7, 2007 1 Mi az SPC? Miért pont SPC? Tán Show Program for Costumer? Szakértık Statisztikai folyamat
A populáció meghatározása
A mintavétel Mi a minta? Minden kutatásban alapvetı lépés annak eldöntése, hogy hány személyt vonjunk be a vizsgálatba, és hogyan válasszuk ki ıket ezek a mintavétellel kapcsolatos alapvetı problémák.
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát
Jegyzıkönyv. Mutató: Határozat tárgya: Határozat száma: Old.
Jegyzıkönyv Készült: Besenyszög Községi Önkormányzat Képviselı-testületének 2011. április 14.-én megtartott ülésérıl Mutató: Határozat tárgya: Határozat száma: Old. Elıterjesztés Besenyszög Községi Önkormányzat
Adat mentés. A program segítség file-ok, mappák mentésében. Mentési csomagokat állíthatunk össze.
Adat mentés A program segítség file-ok, mappák mentésében. Mentési csomagokat állíthatunk össze. A program telepítése: A program nem igényel telepítést. Másoljuk a számítógépünkre tetszıleges helyre. Készítsünk
Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158.
Radon a környezetünkben Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158. Természetes eredetőnek, a természetben eredetileg elıforduló formában lévı sugárzástól
Normális eloszlás tesztje
Valószínűség, pontbecslés, konfidenciaintervallum Normális eloszlás tesztje Kolmogorov-Szmirnov vagy Wilk-Shapiro próba. R-funkció: shapiro.test(vektor) balra ferde eloszlás jobbra ferde eloszlás balra
Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet
Evolúció Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Mi az evolúció? Egy folyamat: az élőlények tulajdonságainak változása a környezethez való alkalmazkodásra Egy
6. A szervezet. Az egyik legfontosabb vezetıi feladat. A szervezetek kialakítása, irányítása, mőködésük ellenırzése, hatékonyságuk növelése,
6. A szervezet Az egyik legfontosabb vezetıi feladat A szervezetek kialakítása, irányítása, mőködésük ellenırzése, hatékonyságuk növelése, 1 Formális és informális szervezetek A formális szervezet formákban
Evolúció. Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet
Evolúció Dr. Szemethy László egyetemi docens Szent István Egyetem VadVilág Megőrzési Intézet Mi az evolúció? Egy folyamat: az élőlények tulajdonságainak változása a környezethez való alkalmazkodásra Egy
Kérdıívek, tesztek I. Kérdıívek
Kérdıívek, tesztek I. Kérdıívek Kérdıíves vizsgálat céljára alkalmas témák A kérdıíves vizsgálatok alkalmasak leíró, magyarázó és felderítı célokra. Leginkább olyan kutatásban használják, amelyekben az
Másodfokú egyenletek Gyakorló feladatok. Készítette: Porkoláb Tamás. Milyen p valós paraméter esetén lesz az alábbi másodfokú egyenlet egyik gyöke 5?
Másodfokú egyenletek Gyakorló feladatok Készítette: Porkoláb Tamás Gyökök Milyen p valós paraméter esetén lesz az alábbi másodfokú egyenlet egyik gyöke? 3 ( p ) = Milyen p paraméter esetén lesz a következı
Matematikai alapok és valószínőségszámítás. Normál eloszlás
Matematikai alapok és valószínőségszámítás Normál eloszlás A normál eloszlás Folytonos változók esetén az eloszlás meghatározása nehezebb, mint diszkrét változók esetén. A változó értékei nem sorolhatóak
CAD-CAM-CAE Példatár
CAD-CAM-CAE Példatár A példa megnevezése: A példa száma: A példa szintje: CAx rendszer: Kapcsolódó TÁMOP tananyag: A feladat rövid leírása: Mőanyag alkatrész fröccsöntésének szimulációja ÓE-B09 alap közepes
BBTE Matek-Infó verseny mintatételsor Informatika írásbeli vizsga
BABEȘ BOLYAI TUDOMÁNYEGYETEM MATEMATIKA ÉS INFORMATIKA KAR A. tételsor (30 pont) 1. (5p) Tekintsük a következő alprogramot: Alprogram f(a): Ha a!= 0, akkor visszatérít: a + f(a - 1) különben visszatérít
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria Bódis Emőke 2016. 04. 25. J J 9 Korrelációanalízis Regresszióanalízis: hogyan változik egy vizsgált változó értéke egy másik változó változásának függvényében. Korrelációs
Tisztán kivehetı tendencia: kommunikációs hálózatok egyre bonyolultabbakká válnak Hálózat bonyolultsága
@ Budapest University of Technology and Economics Nagy hálózatok evolúciója Gulyás András, Heszberger Zalán High Speed Networks Laboratory Internet trendek Tisztán kivehetı tendencia: kommunikációs hálózatok
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
FOLYAMATLEÍRÁST SEGÍTİ GYAKORLATI ÚTMUTATÓ
FOLYAMATLEÍRÁST SEGÍTİ GYAKORLATI ÚTMUTATÓ 1/ 50 A dokumentum az Új Magyarország Fejlesztési Terv keretében, az Államreform Operatív Program támogatásával, az Elektronikus közigazgatási keretrendszer tárgyú
Egyszempontos variancia analízis. Statisztika I., 5. alkalom
Statisztika I., 5. alkalom Számos t-próba versus variancia analízis Kreativitás vizsgálata -nık -férfiak ->kétmintás t-próba I. Fajú hiba=α Kreativitás vizsgálata -informatikusok -építészek -színészek
Sämling Kft. LEAN menedzsment. A veszteségek folyamatos és szisztematikus kiküszöbölése Több mint eszköztár. 18 év 5 fı terület:
Sämling Kft. 18 év 5 fı terület: 1.Oktatásszervezés (>100 képzés), 2.Projektmenedzsment, 3.Soft-skills, 4.LEAN és SixSigma 5.Szervezetfejlesztés LEAN menedzsment A veszteségek folyamatos és szisztematikus
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
Mesterséges Intelligencia I.
Mesterséges Intelligencia I. 10. elıadás (2008. november 10.) Készítette: Romhányi Anita (ROANAAT.SZE) - 1 - Statisztikai tanulás (Megfigyelések alapján történı bizonytalan következetésnek tekintjük a
Szépmővészeti Múzeum térszint alatti bıvítése: A projekt idıt befolyásoló kockázatok értékelése. Készítette: Kassai Eszter Rónafalvi György
Szépmővészeti Múzeum térszint alatti bıvítése: A projekt idıt befolyásoló kockázatok értékelése Készítette: Kassai Eszter Rónafalvi György Tartalom A kockázatról általában A kockázatelemzés folyamata Az
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Mérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
Ismétlı áttekintés. Statisztika II., 1. alkalom
Ismétlı áttekintés Statisztika II., 1. alkalom Hipotézisek Milyen a jó null hipotézis?? H0: Léteznek kitőnı tanuló diszlexiások. Sokkal inkább: H0: Nincs diszlexiás kitőnı tanuló általános iskolában Mo-on.
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
Kiegészítő előadás. Vizsgabemutató VBA. Dr. Kallós Gábor, Fehérvári Arnold, Pusztai Pál Krankovits Melinda. Széchenyi István Egyetem
Kiegészítő előadás Vizsgabemutató VBA Dr. Kallós Gábor, Fehérvári Arnold, Pusztai Pál Krankovits Melinda 2016 2017 1 VBA A Szamokat_General szubrutin segítségével generáljunk 1000 db egész számot a [0,
Az MSZ EN 62305 villámvédelmi szabványsorozat. 2. rész: Kockázatelemzés (IEC 62305-2:2006)
Az MSZ EN 62305 villámvédelmi szabványsorozat 2. rész: Kockázatelemzés (IEC 62305-2:2006) MSZ EN 62305-2 1. Alkalmazási terület 2. Rendelkezı hivatkozások 3. Szakkifejezések, fogalom-meghatározások, jelölések
Közösség detektálás gráfokban
Közösség detektálás gráfokban Önszervező rendszerek Hegedűs István Célkitűzés: valamilyen objektumok halmaza felett minták, csoportok detektálása csakis az egyedek közötti kapcsolatok struktúrájának a
Arató Miklós. A nem-életbiztosítók belsı modellezésének lehetséges problémái
Arató Miklós A nem-életbiztosítók belsı modellezésének lehetséges problémái Célok Szolvencia 2 Piaci alapú eredménykimutatás és mérleg (MVIS és MVBS) Nem-élet termékek valós értékének meghatározása (MCEV
Intelligens Rendszerek Elmélete. Versengéses és önszervező tanulás neurális hálózatokban
Intelligens Rendszerek Elmélete : dr. Kutor László Versengéses és önszervező tanulás neurális hálózatokban http://mobil.nik.bmf.hu/tantargyak/ire.html Login név: ire jelszó: IRE07 IRE 9/1 Processzor Versengéses
Bánsághi Anna 2014 Bánsághi Anna 1 of 68
IMPERATÍV PROGRAMOZÁS Bánsághi Anna anna.bansaghi@mamikon.net 3. ELŐADÁS - PROGRAMOZÁSI TÉTELEK 2014 Bánsághi Anna 1 of 68 TEMATIKA I. ALAPFOGALMAK, TUDOMÁNYTÖRTÉNET II. IMPERATÍV PROGRAMOZÁS Imperatív
BIOMETRIA (H 0 ) 5. Előad. zisvizsgálatok. Hipotézisvizsg. Nullhipotézis
Hipotézis BIOMETRIA 5. Előad adás Hipotézisvizsg zisvizsgálatok Tudományos hipotézis Nullhipotézis feláll llítása (H ): Kétmintás s hipotézisek Munkahipotézis (H a ) Nullhipotézis (H ) > = 1 Statisztikai
A Munkaügyi Közvetítıi és Döntıbírói Szolgálat Szervezeti, Mőködési és Eljárási Szabályzata
A Munkaügyi Közvetítıi és Döntıbírói Szolgálat Szervezeti, Mőködési és Eljárási Szabályzata (az Országos Érdekegyeztetı Tanács 2008. július 04. jóváhagyta) 1. / A szervezet megnevezése: Munkaügyi Közvetítıi
4/24/12. Regresszióanalízis. Legkisebb négyzetek elve. Regresszióanalízis
1. feladat Regresszióanalízis. Legkisebb négyzetek elve 2. feladat Az iskola egy évfolyamába tartozó diákok átlagéletkora 15,8 év, standard deviációja 0,6 év. A 625 fős évfolyamból hány diák fiatalabb
Más szektorok (múltik, hazai nagyvállalatok és KKV-ék) HR trendjei és a közszolgálati emberi erıforrás menedzsment 2010
Humán Szakemberek Országos Szövetsége Budapest, 2010. március 24. Más szektorok (múltik, hazai nagyvállalatok és KKV-ék) HR trendjei és a közszolgálati emberi erıforrás menedzsment 2010 Dr. Poór József
Készletgazdálkodás. TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor
Készletgazdálkodás TÉMAKÖR TARTALMA - Készlet - Átlagkészlet - Készletgazdálkodási mutatók - Készletváltozások - Áruforgalmi mérlegsor KÉSZLET A készlet az üzletben lévı áruk értékének összessége. A vállalkozás
Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai
Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)
A BELSİ ELLENİRZÉS KIALAKÍTÁSA ÉS MŐKÖDTETÉSE A GYİR-MOSON-SOPRON MEGYEI ÖNKORMÁNYZATNÁL
A BELSİ ELLENİRZÉS KIALAKÍTÁSA ÉS MŐKÖDTETÉSE A GYİR-MOSON-SOPRON MEGYEI ÖNKORMÁNYZATNÁL Az Áht. 120. szerint a belsı ellenırzés a belsı kontrollrendszer része, független, tárgyilagos, bizonyosságot adó
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
A humán mitokondriális genom: Evolúció, mutációk, polimorfizmusok, populációs vonatkozások. Egyed Balázs ELTE Genetikai Tanszék
A humán mitokondriális genom: Evolúció, mutációk, polimorfizmusok, populációs vonatkozások Egyed Balázs ELTE Genetikai Tanszék Endoszimbiotikus gén-transzfer (Timmis et al., 2004, Nat Rev Gen) Endoszimbiotikus
KISTELEPÜLÉSEK ÖNFENNTARTÓ, HATÉKONY ÉS ÉRTÉKTEREMTİ KÖZFOGLALKOZTATÁSA
KISTELEPÜLÉSEK ÖNFENNTARTÓ, HATÉKONY ÉS ÉRTÉKTEREMTİ KÖZFOGLALKOZTATÁSA ADITUS Tanácsadó Zrt. 1054 Budapest, Báthori u. 3. 2011. november 21. 1/362 oldal Tartalomjegyzék 1 Elızmények...8 1.1 A kutatás
A flexicurity EU-s modelljeinek gyakorlati szempontú bemutatása, és a hazai megvalósítás lehetıségei
A flexicurity EU-s modelljeinek gyakorlati szempontú bemutatása, és a hazai megvalósítás lehetıségei Vojtek Éva, szociálpolitikus, PTE BTK Szociális Munka és Szociálpolitika Tanszék 2011. február 24. A
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,