Paleobiológiai módszerek és modellek 11. hét
|
|
- Barnabás Péter
- 8 évvel ezelőtt
- Látták:
Átírás
1 Paleobiológiai módszerek és modellek 11. hét A diverzitás fajtái és mérőszámai Nagy őslénytani adatbázisok: Sepkoski The Fossil Record Paleobiology Database A diverzitás fogalma Diverzitás sokféleség az élővilág sokfélesége biodiverzitás minek lehet sokfélesége? pl. fajok magasabb taxonok (pl. genus, család, törzs) morfológiai bélyegek, formák (morfológiai diverzitás) ökotípusok, életmód típusok
2 A diverzitás értelmezése, jelentősége Nem abszolút értéke, hanem az idő- és térbeli változások érdekesek Időbeli változások diverzitási görbe, bioszféra fejlődés, evolúció környezeti hatások stressz: kisebb diverzitás optimális feltételek: nagyobb diverzitás földrajzi hatás, diverzitási grádiens trópusok felé növekvő diverzitás sarkok felé csökkenő diverzitás A diverzitás skálafüggő értelmezése Alfa α diverzitás Béta β diverzitás Gamma γ diverzitás
3 A diverzitás skálafüggő értelmezése α diverzitás: egy adott minta, réteg, feltárás diverzitása. Egy adott egykori élőhely paleokommunitás észlelt diverzitása. Valamennyi további diverzitási adat származtatásának alapja. Badeni bryozoák Mátraverebély-Szentkút lelőhelyről (Dulai 2007, Moisette et al. 2007) A diverzitás skálafüggő értelmezése β diverzitás: Élőhelyek közötti diverzitás, a helyi (egyes lelőhelyeken észlelt), változó diverzitások eredője. A társulások közti változatosságot mutatja. Badeni bryozoa lelőhelyek különböző fáciesekből (Moisette et al. 2007)
4 A diverzitás skálafüggő értelmezése γ diverzitás: nagyléptékű diverzitás, paleobiogeográfiai provincia szintjén (vagy egyes értelmezésekben azok eredőjeként globális szintig) (Moisette et al. 2007) A diverzitás mérőszámai Fajgazdagság S = fajok száma a vizsgált mintában (species richness) S = 2 n = 9
5
6 A diverzitás mérőszámai A minta méretét is figyelembe vevő diverzitási indexek (ahol n = a minta példányszáma) Menhinick-index: a fajszám és a példányszám négyzetgyökének hányadosa M = S/ n A diverzitás mérőszámai Margalef-index: a nevezőben a példányszám logaritmusa MR = (S-1)/ln n
7 Dominancia és egyenletesség Melyiket gondoljuk változatosabbnak? Dominancia és egyenletesség mérőszámai Berger-Parker index: leggyakoribb taxon példányszáma / minta összpéldányszáma 5/9 8/9 Minumuma: 1/S
8 Dominancia és egyenletesség mérőszámai Simpson index: kétféle mérőszám használata terjedt el hasonló néven Simpson dominancia index: λ = S(p i2 ) Simpson diverzitási index: 1 λ = 1 S(p i2 ) ahol p i = n i /n (az i faj részaránya) A Simpson dominancia index arányos annak a valószínűségével, hogy a mintából véletlenszerűen választott két példány ugyanabba a fajba tartozik. Értéke 0 (minden faj egyenlően képviselt) és 1 (monospecifikus társulás) között változhat. Dominancia és egyenletesség mérőszámai Shannon-Weaver index (ugyanezt hívják Shannon-Wiener indexnek is): H = - Σp i ln p i vagy H = - Σp i log p i H értéke egyaránt függ a fajszámtól és az egyenletességtől (entrópia)
9 Dominancia és egyenletesség mérőszámai Egyenletességi index (evenness): E = H/H max belátható, hogy H max = ln S ebből következően 0 E 1
10 Dominancia és egyenletesség A Taxa_S 2 Individuals 9 Dominance_D 0,5062 Shannon_H 0,687 Simpson_1-D 0,4938 Evenness_e^H/S 0,9938 Menhinick 0,6667 Margalef 0,4551 Equitability_J 0,9911 B 2 9 0,8025 0,3488 0,1975 0,7087 0,6667 0,4551 0,5033 Gyakoriság-eloszlási modellek Grafikus ábrázolás: a fajonkénti gyakoriságot sorrendbe állítva ábrázoljuk (a leggyakoribbtól a legritkábbig) Whittaker-diagram (Whittaker-plot): rangsorolt gyakoriságeloszlási görbe, logaritmikus skálával Értelmezése: a gyakoriságeloszlást legjobban leíró matematikai modell megkeresésével Geometriai modell: ökológiai értelmezése a niche elfoglalási modell (niche pre-emption model) segítségével, pionír társulásokra, extrém környezetek társulásaira jellemző Lognormális eloszlási modell: stabil, erőforrásokban gazdag, tagolt élőhelyű környezetek diverz társulásaira jellemző
11 Taxonómiai diverzitás (taxic/taxonomic diversity) és taxonómiai különbözőség (taxonomic distinctness) (magasabb taxonok szintjén) Melyiket gondoljuk változatosabbnak? Taxonómiai diverzitás (taxic/taxonomic diversity) és taxonómiai különbözőség (taxonomic distinctness) (magasabb taxonok szintjén) Az élővilág sokféleségét a társulások taxonómiai összetételén keresztül is jellemezhetjük. Különbséget tehetünk aközött, ha a 10 fajt tartalmazó mintánk fajai 8 különböző törzshöz tartoznak, illetve ha mindegyik faj ugyanazt a törzset képviseli. Taxonómiai távolság (w) értelmezése: pl. w = 1 ha i és j fajok egy genusba tartoznak. Távolságuk w = 2, ha egy családon belül különböző genust képviselnek, w = 3, ha egy renden belül különböző családot képviselnek, stb. A taxonómiai diverzitás és különbözőség viszonylag kevésbé függ a mintamérettől.
Molnár Levente Farkas
Centrales kovaalgák ultrastrukturális változatosságának vizsgálata hagyományos és geometriai morfometriai módszerekkel és összefüggése a környezeti változókkal Molnár Levente Farkas I. Bevezetés A veszélyeztetett
Az ökológia alapjai. Diverzitás és stabilitás
Az ökológia alapjai Diverzitás és stabilitás Diverzitás = sokféleség, változatosság a sokféleség kvantitatív megjelenítése biodiverzitás: a biológiai változatosság matematikai (kvantitatív) megjelenítése
TÁRSULÁSOK ÉS DIVERZITÁS
TÁRSULÁSOK ÉS DIVERZITÁS Vadbiológia és ökológia h Jellemezôi g Törvényszerûen ismétlôdô, g Állandó megjelenésû, g Meghatározott környezeti igényû élôlényegyüttes h Biocönózis = fitocönózis + zoocönózis
Közösségek jellemzése
Közösségek jellemzése Egyensúlyi (determinisztikus) Nem-egyensúlyi (sztochasztikus) modellek, rendszerek: Szoros/erős biotikus kapcsolatok Kompetíció A habitatok homogének és telítettek Forráslimitáltság
Rovarökológia. Haszon: megporzás. Bevezetés: rovarok és az ember. Haszon: méhészet
Haszon: megporzás Táplálékaink 1/3-a a megporzáshoz kötődik Virágos növények evolúciója Bevezetés: rovarok és az ember Terméstöbblet (megtermelt és fogyasztott mennyiség különbsége) pollinátorokkal és
TÁRSULÁSOK SZERKEZETÉNEK JELLEMZÉSE KVANTITATÍV MÓDSZEREKKEL
TÁRSULÁSOK SZERKEZETÉNEK JELLEMZÉSE KVANTITATÍV MÓDSZEREKKEL A társulások megismerése és tanulmányozása terepi mintavétellel kezdődik. A mintavétel - célja a terület minél alaposabb és torzításmentesebb
Biodiversity is life Biodiversity is our life
Biodiversity is life Biodiversity is our life The worst thing that can happen during the 1980s is not energy depletion, economic collapse, limited nuclear war, or conquest by a totalitarian government.
Az életközösségek jellemzői
Az életközösségek jellemzői 1. Fajkészlet Ökológia előadás 2013 Kalapos Tibor Hány faj él a Földön? Fajok száma (milliókban) rovarok gombák pókok algák férgek növények puhatestűek tüskésbőrűek gerincesek
e (t µ) 2 f (t) = 1 F (t) = 1 Normális eloszlás negyedik centrális momentuma:
Normális eloszlás ξ valószínűségi változó normális eloszlású. ξ N ( µ, σ 2) Paraméterei: µ: várható érték, σ 2 : szórásnégyzet (µ tetszőleges, σ 2 tetszőleges pozitív valós szám) Normális eloszlás sűrűségfüggvénye:
Adatok statisztikai értékelésének főbb lehetőségei
Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció
A kurzussal kapcsolatos információk elérhetősége http://zeus.nyf.hu/~szept/kurzusok.htm Irodalom: Standovár T., Primack, R.B. 2001. A Természetvédelmi biológia alapjai. 35-57 oldal, 265-281 oldal Pásztor
Megoldások. ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4; 2, 3) normális eloszlású P (ξ
Megoldások Harmadik fejezet gyakorlatai 3.. gyakorlat megoldása ξ jelölje az első meghibásodásig eltelt időt. Akkor ξ N(6, 4;, 3 normális eloszlású P (ξ 8 ξ 5 feltételes valószínűségét (.3. alapján számoljuk.
Statisztika - bevezetés Méréselmélet PE MIK MI_BSc VI_BSc 1
Statisztika - bevezetés 00.04.05. Méréselmélet PE MIK MI_BSc VI_BSc Bevezetés Véletlen jelenség fogalma jelenséget okok bizonyos rendszere hozza létre ha mindegyik figyelembe vehető egyértelmű leírás általában
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Az ökoszisztéma vizsgálata. Készítette: Fekete-Kertész Ildikó
Az ökoszisztéma vizsgálata Készítette: Fekete-Kertész Ildikó Az ökoszisztéma vizsgálata Az ökológia sohasem egyes kiragadott élőlényegyedekkel, hanem azok populációival, azaz halmazszintű attribútumokkal
MATEMATIKA HETI 5 ÓRA
EURÓPAI ÉRETTSÉGI 2008 MATEMATIKA HETI 5 ÓRA IDŐPONT : 2008. június 5 (reggel) A VIZSGA IDŐTARTAMA: 4 óra (240 perc) MEGENGEDETT ESZKÖZÖK: Európai képletgyűjtemény Nem programozható, nem grafikus számológép
Miért van egyes közösségekben több faj és másokban kevesebb? Vannak-e mintázatok és gradiensek a fajgazdagságban? Ha igen, ezeket mi okozza?
Fajgazdagság Miért van egyes közösségekben több faj és másokban kevesebb? Vannak-e mintázatok és gradiensek a fajgazdagságban? Ha igen, ezeket mi okozza? biodiverzitás a természet változatosságának leírására
Természetvédelmi biológia
Természetvédelmi biológia 1. A természetvédelmi biológia meghatározása, a biológiai sokféleség értelmezése A természetvédelmi biológia (konzervációbiológia) fı céljai 1. Az emberi tevékenység fajok populációra,
Diverzitás és stabilitás. Mi a biodiverzitás?
Diverzitás és stabilitás Szemethy László, Phd egyetemi docens SZIE VMI Szemethy.Laszlo@MKK.SZIE.hu Mi a biodiverzitás? a sokféleség sokfélesége (JNP) tudományos paradigma (tudományterület is) a diverzitás
A FÖLD egyetlen ökológiai rendszer
A FÖLD egyetlen ökológiai rendszer Az ökológia fogalma, korszerű értelmezése (tudomány, életmódot meghatározó szemlélet, politikum). Az ökológia és a környezettudomány viszonya, kapcsolata. Szupraindividuális
Konzervációbiológia 4. előadás. A biológiai sokféleség
Konzervációbiológia 4. előadás A biológiai sokféleség A biodiverzitás irodalma www. scopus.com A biológiai sokféleség ENSZ Egyezmény a biológiai sokféleségről: Bármilyen eredetű élőlények közötti változatosság,
Biológia egészségtan Általános iskola 7. osztály
Általános iskola 7. osztály A tanuló értse az éghajlati övezetek kialakulásának okait és a biomok összetételének összefüggéseit az adott térségre jellemző környezeti tényezőkkel. Ismerje a globális környezetkárosítás
Diszkrét idejű felújítási paradoxon
Magda Gábor Szaller Dávid Tóvári Endre 2009. 11. 18. X 1, X 2,... független és X-szel azonos eloszlású, pozitív egész értékeket felvevő valószínűségi változó (felújítási idők) P(X M) = 1 valamilyen M N
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
A fitoplankton diverzitásának vizsgálata
A fitoplankton diverzitásának vizsgálata A projekt célkitűzéseinek megfelelően Intézetünk algológiai kutatócsoportja a fitoplankton biodiverzitását, illetve különböző vízkémiai és fizikai paraméterek diverzitásra
Folyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
Teljesítménymodellezés
Teljesítménymodellezés Budapest University of Technology and Economics Fault Tolerant Systems Research Group Budapest University of Technology and Economics Department of Measurement and Information Systems
Természetvédelem. 2. gyakorlat: A természetvédelem alapfogalma: a biodiverzitás
Természetvédelem 2. gyakorlat: A természetvédelem alapfogalma: a biodiverzitás Amiről a mai gyakorlaton szó lesz: A biodiverzitás fogalma és szintjei Kulcsfajok és kulcsforrások A biodiverzitás megoszlása
STATISZTIKA. Egymintás u-próba. H 0 : Kefir zsírtartalma 3% Próbafüggvény, alfa=0,05. Egymintás u-próba vagy z-próba
Egymintás u-próba STATISZTIKA 2. Előadás Középérték-összehasonlító tesztek Tesztelhetjük, hogy a valószínűségi változónk értéke megegyezik-e egy konkrét értékkel. Megválaszthatjuk a konfidencia intervallum
STATISZTIKA. A Föld pályája a Nap körül. Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
STATISZTIKA 10. Előadás Megbízhatósági tartományok (Konfidencia intervallumok) Sir Isaac Newton, 1643-1727 Philosophiae Naturalis Principia Mathematica (A természetfilozófia matematikai alapelvei, 1687)
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
Niche. Tárgya a fajok koegzisztenciájának problémája A fogalom fejlődése: Toleranciahatárok! A hutchinsoni niche fogalom definíciója:
Niche Tárgya a fajok koegzisztenciájának problémája A fogalom fejlődése: Grinnell térbeli Elton funkcionális Hutchinson hipertérfogat modell Juhász-Nagy niche értelmezése A hutchinsoni niche fogalom definíciója:
Biomatematika 12. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 12. Regresszió- és korrelációanaĺızis Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision
Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal
Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa:
6. Függvények. Legyen függvény és nem üreshalmaz. A függvényt az f K-ra való kiterjesztésének
6. Függvények I. Elméleti összefoglaló A függvény fogalma, értelmezési tartomány, képhalmaz, értékkészlet Legyen az A és B halmaz egyike sem üreshalmaz. Ha az A halmaz minden egyes eleméhez hozzárendeljük
Konzervációbiológia 2. előadás. A biológiai sokféleség
Konzervációbiológia 2. előadás A biológiai sokféleség A biodiverzitás irodalma www. scopus.com A biológiai sokféleség ENSZ Egyezmény a biológiai sokféleségről: Bármilyen eredetű élőlények közötti változatosság,
Matematikai geodéziai számítások 10.
Matematikai geodéziai számítások 10. Hibaellipszis, talpponti görbe és közepes ponthiba Dr. Bácsatyai, László Matematikai geodéziai számítások 10.: Hibaellipszis, talpponti görbe és Dr. Bácsatyai, László
REGIONÁLIS GAZDASÁGTAN B
REGIONÁLIS GAZDASÁGTAN B Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA
Hálózatok fejlődése A hatványtörvény A preferential attachment A uniform attachment Vertex copy. SZTE Informatikai Intézet
Hálózattudomány SZTE Informatikai Intézet Számítógépes Optimalizálás Tanszék Előadó: London András 4. Előadás Hogyan nőnek a hálózatok? Statikus hálózatos modellek: a pontok száma (n) fix, az éleket valamilyen
STATISZTIKA. A maradék független a kezelés és blokk hatástól. Maradékok leíró statisztikája. 4. A modell érvényességének ellenőrzése
4. A modell érvényességének ellenőrzése STATISZTIKA 4. Előadás Variancia-analízis Lineáris modellek 1. Függetlenség 2. Normális eloszlás 3. Azonos varianciák A maradék független a kezelés és blokk hatástól
Módszertani hozzájárulás a Szegénység
Módszertani hozzájárulás a Szegénység Többváltozós Statisztikai Méréséhez MTA doktori értekezés főbb eredményei Hajdu ottó BCE KTK Statisztika Tanszék BME GTK Pénzügyek Tanszék Hajdu Ottó 1 Egyváltozós
Predáció szerepe a közösségszerkezet alakításában
Predáció szerepe a közösségszerkezet alakításában Def.: A populáció méretet és/vagy a fajgazdagságot befolyásoló hatást zavarásnak (diszturbancia) nevezzük A zavarás lehet: predáció/herbivoria/parazitizmus
Populáció A populációk szerkezete
Populáció A populációk szerkezete Az azonos fajhoz tartozó élőlények egyedei, amelyek adott helyen és időben együtt élnek és egymás között szaporodnak, a faj folytonosságát fenntartó szaporodásközösséget,
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2012
2012 2. Számhalmazok (a valós számok halmaza és részhalmazai), oszthatósággal kapcsolatos problémák, számrendszerek. 4. Hatványozás, hatványfogalom kiterjesztése, azonosságok. Gyökvonás és azonosságai,
A talajok összenyomódásának vizsgálata
A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 10.B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/7 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
TANMENET. Matematika
Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 5.A természettudományos képzés
Szemmegoszlás tervezés, javítás
Szemmegoszlás tervezés, javítás Németül: Angolul: Bestimmung, Verbesserung der Korngrößenverteilung Mix desing, correcting of grading Franciául: Planification, correction de granularité Azt a műveletet,
Az információelmélet alapjai, biológiai alkalmazások. 1. A logaritmusfüggvény és azonosságai
Az információelmélet alapjai, biológiai alkalmazások 1. A logaritmusfüggvény és azonosságai 2 k = N log 2 N = k Például 2 3 = 8 log 2 8 = 3 10 4 = 10000 log 10 10000 = 4 log 2 2 = 1 log 2 1 = 0 log 2 0
Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes
Véletlenszám generátorok és tesztelésük. Tossenberger Tamás
Véletlenszám generátorok és tesztelésük Tossenberger Tamás Érdekességek Pénzérme feldobó gép: $0,25-os érme 1/6000 valószínűséggel esik az élére 51% eséllyel érkezik a felfelé mutató oldalára Pörgetésnél
Least Squares becslés
Least Squares becslés A négyzetes hibafüggvény: i d i ( ) φx i A négyzetes hibafüggvény mellett a minimumot biztosító megoldás W=( d LS becslés A gradiens számítása és nullává tétele eredményeképp A megoldás
egyenletesen, és c olyan színű golyót teszünk az urnába, amilyen színűt húztunk. Bizonyítsuk
Valószínűségszámítás 8. feladatsor 2015. november 26. 1. Bizonyítsuk be, hogy az alábbi folyamatok mindegyike martingál. a S n, Sn 2 n, Y n = t n 1+ 1 t 2 Sn, t Fn = σ S 1,..., S n, 0 < t < 1 rögzített,
Többváltozós lineáris regressziós modell feltételeinek
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p
biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás
Kísérlettervezés - biometria II. foglalkozás előadó: Prof. Dr. Rajkó Róbert Matematikai-statisztikai adatfeldolgozás A matematikai-statisztika feladata tapasztalati adatok feldolgozásával segítséget nyújtani
HÁZI FELADATOK. 1. félév. 1. konferencia A lineáris algebra alapjai
HÁZI FELADATOK. félév. konferencia A lineáris algebra alapjai Értékelés:. egység: önálló feladatmegoldás.8. Döntse el, párhuzamosak-e a következő vektorpárok: a) a( ; ; 7) b(; 5; ) b) c(; 9; 5) d(8; 6;
KUTATÁSMÓDSZERTAN 4. ELŐADÁS. A minta és mintavétel
KUTATÁSMÓDSZERTAN 4. ELŐADÁS A minta és mintavétel 1 1. A MINTA ÉS A POPULÁCIÓ VISZONYA Populáció: tágabb halmaz, alapsokaság a vizsgálandó csoport egésze Minta: részhalmaz, az alapsokaság azon része,
Szigetbiogeográfia. A tapasztalat szerint:
Szigetbiogeográfia A tapasztalat szerint: Aritmetikus tengelyen Logaritmikus tengelyen Általános összefüggése:, ahol C taxonra, abundanciára és lokalitásra jellemző állandó, A a terület mérete és z (linearizált
A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása
azdaság- és Társadalomtudományi Kar Ipari Menedzsment és Vállakozásgazdaságtan Tanszék A Termelésmenedzsment alapjai tárgy gyakorló feladatainak megoldása Készítette: dr. Koltai Tamás egyetemi tanár Budapest,.
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.
Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,
[Biomatematika 2] Orvosi biometria
[Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Matematikai statisztika c. tárgy oktatásának célja és tematikája
Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:
Összetett hálózat számítása_1
Összetett hálózat számítása_1 Határozzuk meg a hálózat alkatrészeinek feszültségeit, valamint a körben folyó áramot! A megoldás lépései: - számítsuk ki a kör eredő ellenállását, - az eredő ellenállás felhasználásával
"Szikes tavaink, mint különleges vizes élőhelyek jelentősége a biodiverzitás megőrzésében"
"Szikes tavaink, mint különleges vizes élőhelyek jelentősége a biodiverzitás megőrzésében" Dr. Boros Emil vizes élőhelyeinken 2016. május 20. 1 A vizes élőhelyek kritériumai (Dévai, 2000) középvízállás
1. ábra: Magyarországi cégek megoszlása és kockázatossága 10-es Rating kategóriák szerint. Cégek megoszlása. Fizetésképtelenné válás valószínűsége
Bisnode Minősítés A Bisnode Minősítést a lehető legkorszerűbb, szofisztikált matematikai-statisztikai módszertannal, hazai és nemzetközi szakértők bevonásával fejlesztettük. A Minősítés a múltra vonatkozó
Szarvasmarha- és juh legelés szerepe a Pannon szikes gyepek Natura 2000-es élőhelyek fenntartásában március Gödöllő
Tóth Edina, Valkó Orsolya, Deák Balázs, Kelemen András, Miglécz Tamás, Tóthmérész Béla, Török Péter Szarvasmarha- és juh legelés szerepe a Pannon szikes gyepek Natura 2000-es élőhelyek fenntartásában 2016.
Hipotézis, sejtés STATISZTIKA. Kétmintás hipotézisek. Tudományos hipotézis. Munkahipotézis (H a ) Nullhipotézis (H 0 ) 11. Előadás
STATISZTIKA Hipotézis, sejtés 11. Előadás Hipotézisvizsgálatok, nem paraméteres próbák Tudományos hipotézis Nullhipotézis felállítása (H 0 ): Kétmintás hipotézisek Munkahipotézis (H a ) Nullhipotézis (H
Abszolútértékes és gyökös kifejezések Megoldások
Abszolútértékes és gyökös kifejezések Megoldások ) Igazolja, hogy az alábbi négy egyenlet közül az a) és b) jelű egyenletnek pontosan egy megoldása van, a c) és d) jelű egyenletnek viszont nincs megoldása
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
Pontműveletek. Sergyán Szabolcs Óbudai Egyetem Neumann János Informatikai Kar február 20.
Pontműveletek Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar 2012. február 20. Sergyán (OE NIK) Pontműveletek 2012. február 20. 1 / 40 Felhasznált irodalom
A települési szegregáció mérőszámai
A települési szegregáció mérőszámai Dusek Tamás egyetemi tanár Széchenyi István Egyetem Nagyvárad, 2016. szeptember 16. A szegregáció, mint területi jelenség Elsősorban, de nem kizárólag települési szinten
MATEMATIKA TANMENET SZAKKÖZÉPISKOLA 11B OSZTÁLY HETI 4 ÓRA 37 HÉT/ ÖSSZ 148 ÓRA
MINŐSÉGIRÁNYÍTÁSI ELJÁRÁS MELLÉKLET Tanmenetborító Azonosító: ME-III.1./1 Változatszám: 2 Érvényesség 2013. 09. 01. kezdete: Oldal/összes: 1/5 Fájlnév: ME- III.1.1.Tanmenetborító SZK- DC-2013 MATEMATIKA
Filogenetikai analízis. Törzsfák szerkesztése
Filogenetikai analízis Törzsfák szerkesztése Neighbor joining (szomszéd összevonó) módszer A fában egymás mellé kerülı objektumok kiválasztása a távolságmátrix értékei és az objektumoknak az összes többivel
TERMÉSZETVÉDELMI MÉRNÖK MSc. ZÁRÓVIZSGA TÉMAKÖRÖK június 12. NAPPALI, LEVELEZŐ
TERMÉSZETVÉDELMI MÉRNÖK MSc ZÁRÓVIZSGA TÉMAKÖRÖK 2017. június 12. NAPPALI, LEVELEZŐ Természetvédelmi mérnök MSc szak Záróvizsga A tételsor: Az ökoszisztémák csoportosítása. Az ökológiai rendszerek változása
2013 ŐSZ. 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét!
GAZDASÁGSTATISZTIKA KIDOLGOZOTT ELMÉLETI KÉRDÉSEK A 3. ZH-HOZ 2013 ŐSZ Elméleti kérdések összegzése 1. Mutassa be az egymintás z-próba célját, alkalmazásának feltételeit és módszerét! 2. Mutassa be az
Turizmuson túl: az élővilág meghatározó szerepe az életminőségben. Török Katalin MTA Ökológiai Kutatóközpont
Turizmuson túl: az élővilág meghatározó szerepe az életminőségben Török Katalin MTA Ökológiai Kutatóközpont Csak rekreáció, nyaralás, tanulás? Közbeszédben: Élővilág: mint érdekesség, kiállítási tárgy
Biomatematika 2 Orvosi biometria
Biomatematika 2 Orvosi biometria 2017.02.05. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)
Magyarországi állóvizek sugaras szimmetriájú kovaalgái. Elterjedés, diverzitás Ács Éva és Kiss Keve Tihamér
Magyarországi állóvizek sugaras szimmetriájú kovaalgái. Elterjedés, diverzitás Ács Éva és Kiss Keve Tihamér MTA Ökológiai Kutatóközpont Duna-kutató Intézet Bevezetés A sugaras szimmetriájú algák fontos
Gyakorlat 8 1xANOVA. Dr. Nyéki Lajos 2016
Gyakorlat 8 1xANOVA Dr. Nyéki Lajos 2016 A probléma leírása Azt vizsgáljuk, hogy milyen hatása van a család jövedelmének a tanulók szövegértés teszten elért tanulmányi eredményeire. A minta 59 iskola adatait
Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár. Hegyi Géza. Filozofia és Történelem Kar, Kolozsvár. M.A. Santos, R. Coelho és J.J.
Vagyoneloszlás a társadalmakban - egy fizikus megközelítése Néda Zoltán Babeş-Bolyai Tudományegyetem Fizika Kar, Kolozsvár Hegyi Géza Babeş-Bolyai Tudományegyetem Filozofia és Történelem Kar, Kolozsvár
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Általános ökológia előadás II. félév Szabó D. Zoltán
Általános ökológia előadás II. félév Szabó D. Zoltán http://okologia.wordpress.com Felhasznált és javasolt irodalom: Begon, M., Harper, J.L., Townsend, C.R. 2006. Ecology Individuals, populations and communities.
Bevezetés a hipotézisvizsgálatokba
Bevezetés a hipotézisvizsgálatokba Nullhipotézis: pl. az átlag egy adott µ becslése : M ( x -µ ) = 0 Alternatív hipotézis: : M ( x -µ ) 0 Szignifikancia: - teljes bizonyosság csak teljes enumerációra -
2. előadás. Viszonyszámok típusai
2. előadás Viszonyszámok típusai Mérési skálák Nominális /névleges skála: kötetlen hozzárendelése a számoknak Sorrendi / Ordinális skála: sokaság egyedeinek egy közös tulajdonság szerinti sorbarendezése
a) A logaritmus értelmezése alapján: x 8 0 ( x 2 2 vagy x 2 2) (1 pont) Egy szorzat értéke pontosan akkor 0, ha valamelyik szorzótényező 0.
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
Microsoft Excel 2010. Gyakoriság
Microsoft Excel 2010 Gyakoriság Osztályközös gyakorisági tábla Nagy számú mérési adatokat csoportokba (osztályokba) rendezése -> könnyebb áttekintés Osztályokban szereplő adatok száma: osztályokhoz tartozó
Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI
Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció
Hipotézis STATISZTIKA. Kétmintás hipotézisek. Munkahipotézis (H a ) Tematika. Tudományos hipotézis. 1. Előadás. Hipotézisvizsgálatok
STATISZTIKA 1. Előadás Hipotézisvizsgálatok Tematika 1. Hipotézis vizsgálatok 2. t-próbák 3. Variancia-analízis 4. A variancia-analízis validálása, erőfüggvény 5. Korreláció számítás 6. Kétváltozós lineáris
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév
Leíró és matematikai statisztika el adásnapló Matematika alapszak, matematikai elemz szakirány 2016/2017. tavaszi félév A pirossal írt anyagrészeket nem fogom közvetlenül számon kérni a vizsgán, azok háttérismeretként,
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Abszolútértékes és Gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
14 A Black-Scholes-Merton modell. Options, Futures, and Other Derivatives, 8th Edition, Copyright John C. Hull
14 A Black-choles-Merton modell Copyright John C. Hull 01 1 Részvényárak viselkedése (feltevés!) Részvényár: μ: elvárt hozam : volatilitás Egy rövid Δt idő alatt a hozam normális eloszlású véletlen változó:
Biomatematika 13. Varianciaanaĺızis (ANOVA)
Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 13. Varianciaanaĺızis (ANOVA) Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date:
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 9. Együttes eloszlás, kovarianca, nevezetes eloszlások Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Bevezetés, definíciók Együttes eloszlás Függetlenség
Többváltozós lineáris regressziós modell feltételeinek tesztelése I.
Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Kvantitatív statisztikai módszerek Petrovics Petra Többváltozós lineáris regressziós
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára. Analízis R d -ben
Optimalizálási eljárások GYAKORLAT, MSc hallgatók számára Analízis R d -ben Gyakorlatvezetõ: Hajnal Péter 2012. február 8 1. Konvex függvények Definíció. f : D R konvex, ha dom(f) := D R n konvex és tetszőleges
Hosszú távú vizsgálat jobban kimutatja a társulási szabályok változásait a másodlagos szukcesszió során, mint a tér-idő helyettesítés módszere
Hosszú távú vizsgálat jobban kimutatja a társulási szabályok változásait a másodlagos szukcesszió során, mint a tér-idő helyettesítés módszere Anikó Csecserits, Melinda Halassy, Barbara Lhotsky, Tamás
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
Online migrációs ütemezési modellek
Online migrációs ütemezési modellek Az online migrációs modellekben a régebben ütemezett munkák is átütemezhetőek valamilyen korlátozott mértékben az új munka ütemezése mellett. Ez csökkentheti a versenyképességi