ANTROPOMETRIAI MÉRÉSEK
|
|
- Renáta Vass
- 8 évvel ezelőtt
- Látták:
Átírás
1 ANTROPOMETRIAI MÉRÉSEK I. A gyakorlat célja: A hallgatók elvégezzenek néhány, az orvosi gyakorlat szempontjából is fontos antropometriai mérést, ill. megismerjék az ezekhez kapcsolódó legfontosabb leszármaztatott mutatókat. Az egyszerű tömegés hosszúságmérési feladatok végrehajtása, valamint a leszármaztatott mennyiségek kiszámítása lehetőséget nyújt az orvosi mérések néhány kérdésének megvilágítására (mintavételezési gyakoriság, pontosság, reproducibilitás stb), továbbá arra, hogy a hallgatók tájékozódjanak a mérési hibák jellegéről, a hibák korrekciójának lehetőségéről, valamint elsajátítsák a jegyzőkönyvezés legfontosabb alapelveit. II. Elméleti háttér A. Az antropometria, a mérés Az antropometria az ember fizikai méreteivel foglalkozó tudományág. Az antropológia segédtudományaként fejlődött ki, de alkalmazza az orvostudomány és az ergonómia is. Az ergonómia az a tudománycsoport, amely az emberi adottságoknak megfelelő munkaeszközök, tárgyak, munkakörnyezet kialakításával kapcsolatos ismereteket tárja fel azért, hogy az ember a teljesítőképességét a legmagasabb fokon kifejthesse, továbbá hogy az ember kényelmét, biztonságát, egészségének megőrzését biztosítsa. Az antropometriát az orvostudomány számos ága (gyermekgyógyászat, endokrinológia, igazságügyi orvostan stb). használja. Jelentősége napjainkban a metabolikus zavarokkal összefüggő betegségek (elhízás, cukorbetegség stb.) kockázatának megítélésében, ill. a táplálkozási rendellenességek nyomon követésében is egyre nő. Az antropometriai módszerek folyamatosan fejlődnek:a fizikai testméretek meghatározása mellett ma már rendelkezésre állnak olyan eszközök is, amelyekkel nagy pontossággal megbecsülhetők a az emberi test legfontosabb összetevői (folyadék, zsír stb). Az orvosi tevékenység szinte minden fázisa során méréseket végzünk annak érdekében, hogy az életfolyamatok jellemző paramétereit számszerűsítve, azokkal összehasonlításokat tehessünk. Az összehasonlítás alapját leggyakrabban az egészséges populáció jellemző értékei képezik, de nagyon gyakori a saját korábbi értékekkel történő összevetés is. A mérések tehát az orvosi tevékenység mindennapos részét képezik. A mérés során a vizsgált személy a lehetőségekhez képest jól definiált környezetben van (rendelő, kórterem, speciális mérőfülke ahol fontos a neutrális hőmérséklet, a jó megvilágítás és szellőzés stb.). A mérés során mérőeszközt használunk, amikor is egy mérési eljárással meghatározzuk a vizsgált páciens (test, esemény) jellemző X fizikai mennyiségének a mérőszámát {X}, az adott mértékegységben [X] a mérési körülmények által meghatározott számú értékes jegyre. A mérési folyamat három fő eleme a mérendő objektum, a mérési eljárás és a mérési eredmény. Orvosi fizika laboratóriumi gyakorlatok 1 Antropometriai mérések
2 A mérőeszköz a mérési eljárást realizálja, a mérendő objektumból származó mennyiségeket átalakítja, tartalmazza a méréstől elválaszthatatlan skálainformációt. A mérőeszközök kategóriái: mérőműszer: olyan mérőeszköz, ahol elmarad az információfeldolgozási funkció (esetünkben szobamérleg, mérőszalag ). mérőkészülék: olyan mérőeszköz, ahol nagyjából egyforma a mérőhálózat és az információfeldolgozó bonyolultsága (pl. digitális vérnyomásmérő) mérőrendszer: jelentős túlsúlyba kerülnek az információfeldolgozási és kommunikációs funkciók A mérőműszer legfontosabb jellemzői: A mérőműszer a mérendő mennyiséget közvetlenül mérhető adattá (pl. hosszúsággá, szögelfordulássá, számokká) alakítja. Az átalakítást a műszer mutatójának a kitérése ( ) és a mérendő mennyiség (x) között a skálakarakterisztika függvény, =f(x) írja le. A műszer érzékenysége (E) a kimenő jel megváltozásának [ ] ás a bemenő jel megváltozásának [ x] a hányadosa. Az érzékenység reciproka a műszerállandó: 1 C E A mérőműszer mérési tartománya megadja a jelátalakítási képességének a mértékét, megadja a legkisebb és a legnagyobb jelnek a nagyságát, amely jelek átvitelére a műszer még képes. Megjegyzés: Egy műszer annál jobb, minél szélesebb a mérési tartománya és minél érzékenyebb. A mérőműszerek tulajdonságai és így pontosságuk a használat során változik. Időszakos ellenőrzésük és minősítésük szükséges, jó néhány esetben jogszabályok teszik ezt kötelezővé. A kalibrálás olyan műveletek összessége, amely egy műszer által mutatott számértéknek (X m ) és a mért mennyiség ezekhez tartozó helyes értékének (X p ) meghatározására szolgál. A kalibrálás során a vizsgált műszert egy jóval pontosabb műszerrel, mérési módszerrel minősítjük, lényegében összehasonlítást végzünk. B. A mérési hiba A hibaszámítás részletes tárgyalása meghaladja mostani lehetőségeinket és szükségleteinket, de az alábbiakban elemi gyakorlati ismereteket közlünk. A legfontosabb megállapítás, hogy minden mérés rendelkezik valamilyen hibával. Hiba: a mért adat (X) és a valódi érték (M) különbségének abszolút értéke. Lehetséges hibaforrások: Elvi hiba. A méréskor nem veszünk minden hatást figyelembe, így mindenképp követünk el hibát. Szisztematikus (rendszeres) műszerhiba. A mérőberendezés szerkezetéből adódó hiba. Pl. nem pontosan készítették el a vonalzót, pontatlanok a műszer áramköri elemeinek értékei, vagy a mérőrúd 0 és a padlóburkolat nincs azonos szinten, stb. Megjegyzés: A rendszeres hibák okai elvileg felismerhetők, velük megfelelően korrigálható a mérési eredmény, vagy megszűntethető a hibaforrás. Leolvasási hiba. Skálás eszközön a beosztás, számszerű kijelzés esetén a számábrázolási pontosság miatt nem is lehet akármilyen pontosan ábrázolni az adatokat. Pl. egy vonalzóval legfeljebb 1 mm pontosan mérhetünk, mert ilyen finom a skála. Véletlen hiba / zaj. A berendezések működését külső, előre nem látható események befolyásolhatják, mint pl. az épület remegése, a hálózati feszültség ingadozása, stb. A hibák mindegyikét nem lehet kiküszöbölni, mértéküket számon kell tartani, hogy megtudjuk, mennyire pontos a mérési eredmény. A véletlen hibák nagysága és előjele is változik, emiatt a nyers mérési eredményeink nem korrigálhatók. A véletlen hibák hatása úgy mérsékelhető, hogy sorozatmérést végzünk, vagyis ugyanazt a mérendő mennyiséget, ugyanazokkal a műszerekkel, változatlan külső körülmények között többször egymás után meghatározzuk. A mérési sorozat alapján Orvosi fizika laboratóriumi gyakorlatok 2 Antropometriai mérések
3 megállapítható a mért mennyiség helyes értékének becslése (többnyire a mért értékek átlagát tekinthetjük a helyes értéknek). Mérési eredményeink csak akkor válhatnak felhasználhatóvá a gyakorlati életben, ha tudjuk, hogy az adott eredmény mekkora pontossággal teljesül, illetve milyen határok között vehető figyelembe. Ez az oka annak, hogy a mérési eredményhez meg kell adni a hibakorlátot is. A mérési hiba mértéke kifejezhető: -abszolút hiba, -relatív hiba formájában. A mérés abszolút hibájának az X mért értékeknek a valós (vagy gyarkan a többször ismételt mérések átlagaként kapott) M értéktől mért legnagyobb eltérését nevezzük, azaz =M X Előfordulhat, hogy a mérőeszköz pontatlansága miatt hiába végzünk több mérést, mindig ugyanazt az eredményt kapjuk. Ebben az esetben az abszolút hibát a mérőeszköz pontossága, pontosabban szólva a mérőeszköz legkisebb egysége adja. Pl. egy 2 m-es szakaszt mérőszalaggal többször megmérve mindig 2 m az eredmény, itt az abszolút hibát a mérőeszköz legkisebb egysége - ha mm-es beosztású, akkor 1 mm határozza meg. Persze az abszolút hiba nem jellemzi jól a mérés pontosságát, hisz pl. a m ± mm ugyanakkora abszolút hibát jelent, mint a cm ± mm, holott m-t mm-es pontossággal megmérni nyilván nagyobb pontosságot jelent, mint cm-t mm-es pontossággal megmérni. Ezért aztán a mérési pontosságot az abszolút hiba helyett a relatív hibával szokás jellemezni. A relatív hiba azt adja meg, hogy a mérés abszolút hibája hányad része a pontos értéknek, azaz M X 100% X Külön probléma, hogy ha hibával rendelkező adatból számolunk valamit, mi lesz a kiszámolt érték hibája. (Pl. ha egy kocka élhosszúságát adott hibával mérjük, akkor mekkora bizonytalansággal tudjuk meghatározni a kocka térfogatát?) A hibaterjedés szabályait a két legegyszerűbb esetre, a relatív hibára ismertetjük: Összeg relatív hibája: Ha adott két mennyiség, A és B, és azok relatív hibái : A és B, akkor az összeg (A+B) relatív hibája max ( A, B), azaz az összeg relatív hibája megegyezik a nagyobb relatív hibájú tag relatív hibájával. Szorzat illetve hányados relatív hibája: szorzat (AB) illetve hányados (A/B) relatív hibája a tényezők relatív hibáinak összege: A + B. III. Elvégzendő alapmérések: A csoport minden tagja mérje meg a csoport minden tagjának: 1. testmagasságát 2. csípőkörfogatát (kerület). derékkörfogatát (a köldök felett kb. 2 haránt ujjnyira mért kerület) Orvosi fizika laboratóriumi gyakorlatok Antropometriai mérések
4 4. testtömegét IV. Számítási feladatok: A. Metabolikus mutatók 1. Testtömegindex más néven Quetelet-index (angolul: body mass index, rövidítve BMI) Egy mérőszám, mely az egyén testmagasságát és tömegét veti össze. Kiszámítása során a kilogrammban megadott testtömeget osztják a méterben mért testmagasság négyzetével. Számítsa ki saját testtömegindexét! Hány tizedesjegyig értelmes megadni az eredményt? Mekkora a kapott eredmény hibája? Mivel könnyű kiszámolni, a BMI-t széles körben alkalmazzák a túlsúlyosság felmérésére a lakosság körében, ugyanakkor például sportolóknál akik az átlagosnál nagyobb zsírmentes izomtömeggel rendelkeznek a szám torzíthat és indokolatlan esetben is túlsúlyt jelezhet. Ugyan a BMI széles körben használt, de más mutatókat is használnak a metabolikus zavarok jellemzésére. Testtömegindex (kg/m²) Testsúlyosztályozás < 16 súlyos soványság 16 16,99 mérsékelt soványság 17 18,49 enyhe soványság 18,5 24,99 normális testsúly 25 29,99 túlsúlyos 0 4,99 I. fokú elhízás 5 9,99 II. fokú elhízás 40 III. fokú (súlyos) elhízás 2. Derékbőség Az IDF (International Diabetes Federation) ajánlása szerint európai népességen a centrális elhízással járó rizikók már jelentkeznek, ha a derékbőség férfi esetén > 94 cm, nő esetén > 80 cm. Nem Fokozott kockázat Magas kockázat Férfiak > 94 cm derék-körfogat > 102 cm derék-körfogat Nők > 80 cm derék-körfogat > 88 cm derék-körfogat. Derék-csípő hányados meghatározása A derékkörfogat és a csípőkörfogat elosztásával kapott érték. Egyes megalapozott vélemények szerint a derék-csípő arány sokkal jobban tükrözi szívünk egészségi állapotát, mint a BMI, vagy a önmagában a derékbőség. Amennyiben meghaladja Orvosi fizika laboratóriumi gyakorlatok 4 Antropometriai mérések
5 nők esetében a 0,85-öt, férfiak esetében a 0,90-et, akkor centrális, alma típusú alkatról, míg az ez alatti értékek körte típusú alkatról beszélünk. Nem Alma típusú Körte típusú Férfiak > 0,95 cm derék-csípő arány < 0,95 derék-csípő arány Nők > 0,8 derék-csípő arány < 0,8 derék-csípő arány B. Testfelszín meghatározása Számos gyógyszer metabolizmusa erős korrelációt mutat a test felületével. A legtöbb kemoterápiás készítménynél az alkalmazott mennyiséget a testfelület függvényében számítják ki. Ezért tisztában kell lennünk a testfelület (BSA: body surface area) kiszámításának módjaival. 1. Legalapvetőbb közelítés: Tegyük fel hogy az emberi test gömb alakú! Mekkora lenne az ön testfelszíne, a mért testtömeg alapján? Mekkora a felszín, ha a testet egy kockával közelítjük? Az alábbi képletek segíthetnek: m V 4 2 2, Ag 4 R, Vg R, Ak 6 a, Vk a Az ember sűrűsége nőknél átlag 100 kg/m, férfiaknál 1040 kg/m. Mekkora térfogatú levegőt kellene Önnek belélegeznie, hogy vízben ne merüljön el? Végezze el a fenti számításokat! Empirikus formulák A múlt század első évtizedeitől kezdve számos erőfeszítés történt annak érdekében, hogy a testmagasság és a testtömeg ismerete alapján nagy pontossággal meg lehessen becsülni a testfelszín nagyságát. DuBois és munkatársa 1916-ban tette közzé számításai eredményét. Ma is a legelfogadottabb a testfelszín ezen formula szerinti becslése. A következő évtizedekben egyre több mérés alapján tovább finomodtak a becslés formulái. Gehan és George 1970-ben, míg Haycock és munkatársai 1978-ban közöltek egyre nagyobb esetszám alapján számítási képleteket. Mosetter 1987-ben úgy módosította a kiszámítás módját, hogy az egy zsebszámológéppel is könnyedén elvégezhető legyen. Számítsa ki a saját testének felszínét az alábbi formulák alapján: 2. Mosteller-formula: BSA (m²) = ([magasság(cm) testtömeg(kg)]/600) ½. DuBois -formula: BSA (m²) = 0, magasság(cm) 0,725 testtömeg(kg) 0, Haycock-formula: BSA (m²) = 0, magasság(cm) 0,964 testtömeg(kg) 0, Gehan George-formula BSA (m²) = 0,025 magasság(cm) 0,42246 testtömeg(kg) 0,51456 Hasonlítsa össze a különböző formulák által kapott értékeket! Mekkora az egyes módszerek relatív hibája a Mosteller-féle eredményhez képest? Orvosi fizika laboratóriumi gyakorlatok 5 Antropometriai mérések
Antropometriai mérések
Antropometriai mérések I. A gyakorlat célja A gyakorlat célja, hogy a hallgatók elvégezzenek néhány, az orvosi gyakorlat szempontjából is fontos antropometriai mérést, ill. megismerjék az ezekhez kapcsolódó
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ)
Méréselmélet és mérőrendszerek 2. ELŐADÁS (1. RÉSZ) KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési hibák súlya és szerepe a mérési eredményben A mérési hibák csoportosítása A hiba rendűsége Mérési bizonytalanság Standard és kiterjesztett
MÉRÉSI EREDMÉNYEK PONTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI
MÉRÉSI EREDMÉYEK POTOSSÁGA, A HIBASZÁMÍTÁS ELEMEI. A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk
Mérési hibák 2006.10.04. 1
Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség
Méréselmélet és mérőrendszerek
Méréselmélet és mérőrendszerek 6. ELŐADÁS KÉSZÍTETTE: DR. FÜVESI VIKTOR 2016. 10. Mai témáink o A hiba fogalma o Méréshatár és mérési tartomány M é r é s i h i b a o A hiba megadása o A hiba eredete o
Hogyan mentsd meg a szíved?
Hogyan mentsd meg a szíved? Mivel minden második haláleset oka szív- és érrendszeri betegségbõl adódik, a statisztikán sokat javíthatunk, ha tudjuk, hogyan is küzdjünk e probléma ellen. Pl. már minimális
A mérési eredmény megadása
A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű
A mérések általános és alapvető metrológiai fogalmai és definíciói. Mérések, mérési eredmények, mérési bizonytalanság. mérés. mérési elv
Mérések, mérési eredmények, mérési bizonytalanság A mérések általános és alapvető metrológiai fogalmai és definíciói mérés Műveletek összessége, amelyek célja egy mennyiség értékének meghatározása. mérési
A mérés. A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell
A mérés A mérés célja a mérendő mennyiség valódi értékének meghatározása. Ez a valóságban azt jelenti, hogy erre kell törekedni, minél közelebb kerülni a mérés során a valós mennyiség megismeréséhez. Mérési
Elso elemzés Example Anorexia
50 KHz R 739 Xc 62 [Víz és BCM zsír nélkül] A mérés 11.07.2005 Ido 15:11 dátuma: Név: Example Anorexia Születési dátum: 05.02.1981 Keresztnév: Kor:: 24 Év Neme: no Magasság: 1,65 m Mérés sz.: 1 Számított
A mérés problémája a pedagógiában. Dr. Nyéki Lajos 2015
A mérés problémája a pedagógiában Dr. Nyéki Lajos 2015 A mérés fogalma Mérésen olyan tevékenységet értünk, amelynek eredményeként a vizsgált jelenség számszerűen jellemezhetővé, más hasonló jelenségekkel
Az elhízás, a bulimia, az anorexia. Az elhízás
Az elhízás, a bulimia, az anorexia Az elhízás Elhízás vagy túlsúlyosság elhízás a testsúly a kívánatosnál 20%-kal nagyobb túlsúlyosság a magasabb testsúly megoszlik az izmok, csontok, zsír és víz tömege
Elso elemzés Example Athletic
50 KHz R 520 Xc 69 [Víz és BCM zsír nélkül] A mérés 11.07.2005 Ido 15:20 dátuma: Név: Example Athletic Születési dátum: 22.07.1978 Keresztnév: Kor:: 26 Év Neme: férfi Magasság: 1,70 m Mérés sz.: 1 Számított
A legtökéletesebb és legkényelmesebb rendszer az egészséggondozás rendelkezésére áll. A BIA technológia forradalma új szabványt teremtett.
A legtökéletesebb és legkényelmesebb rendszer az egészséggondozás rendelkezésére áll A BIA technológia forradalma új szabványt teremtett. Az új, vezetô technológia megbízható, pontos eredményt ad Testösszetétel
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011.
BAGME11NNF Munkavédelmi mérnökasszisztens Galla Jánosné, 2011. 1 Mérési adatok feldolgozása A mérési eredmény megadása A mérés dokumentálása A vállalati mérőeszközök nyilvántartása 2 A mérés célja: egy
6. Előadás. Vereb György, DE OEC BSI, október 12.
6. Előadás Visszatekintés: a normális eloszlás Becslés, mintavételezés Reprezentatív minta A statisztika, mint változó Paraméter és Statisztika Torzítatlan becslés A mintaközép eloszlása - centrális határeloszlás
Milyen elvi mérési és számítási módszerrel lehet a Thevenin helyettesítő kép elemeit meghatározni?
1. mérés Definiálja a korrekciót! Definiálja a mérés eredményét metrológiailag helyes formában! Definiálja a relatív formában megadott mérési hibát! Definiálja a rendszeres hibát! Definiálja a véletlen
BIOMATEMATIKA ELŐADÁS
BIOMATEMATIKA ELŐADÁS 3. Hibaszámítás, lineáris regresszió Debreceni Egyetem, 2015 Dr. Bérczes Attila, Bertók Csanád A diasor tartalma 1 Hibaszámítás Hibák fajtái, definíciók Abszolút, relatív, öröklött
Méréstechnikai alapfogalmak
Méréstechnikai alapfogalmak 1 Áttekintés Tulajdonság, mennyiség Mérés célja, feladata Metrológia fogalma Mérıeszközök Mérési hibák Mérımőszerek metrológiai jellemzıi Nemzetközi mértékegységrendszer Munka
Áramköri elemek mérése ipari módszerekkel
3. aboratóriumi gyakorlat Áramköri elemek mérése ipari módszerekkel. dolgozat célja oltmérők, ampermérők használata áramköri elemek mérésénél, mérési hibák megállapítása és azok függősége a használt mérőműszerek
Az elhízás hatása az emberi szervezetre. Dr. Polyák József Pharmamedcor Kardiológiai Szakambulancia 1137. Budapest, Katona J. u. 27.
Az elhízás hatása az emberi szervezetre Dr. Polyák József Pharmamedcor Kardiológiai Szakambulancia 1137. Budapest, Katona J. u. 27. Melyek az élő szervezet elemi életjelenségei közül minőségében testtömeg
Előadások (1.) ÓE BGK Galla Jánosné, 2011.
Előadások (1.) 2011. 1 Metrológiai alapfogalmak Mérési módszerek Mérési folyamat Mértékegységek Etalonok 2 Metrológiai alapfogalmak 3 A mérendő (mérhető) mennyiség előírt hibahatárokon belüli meghatározása
TANULÓI KÍSÉRLET (2 * 30 perc) Mérések alapjai SNI tananyag. m = 5 kg
TANULÓI KÍSÉRLET (2 * 30 perc) A kísérlet, mérés megnevezése, célkitűzései : A mérés: A mérés során tervszerűen a természet jelenségiről szerzünk ismereteket. amelyek valamely fizikai, kémiai, csillagászati,
MÉRÉSTECHNIKA. BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) márc. 1
MÉRÉSTECHNIKA BME Energetikai Gépek és Rendszerek Tanszék Fazekas Miklós (1) 463 26 14 16 márc. 1 Méréstechnikai alapfogalmak CÉL Mennyiségek mérése Fizikai mennyiség Hosszúság L = 2 m Mennyiségi minőségi
Az antropometria alkalmazásának célja a hatékony, biztonságos és kényelmes tevékenység biztosítása a méretek és elrendezés helyes megválasztásával
Az antropometria helye TERMÉKFEJLESZTÉS / TERV ERGONÓMIAI FELADATOK ÉS TEVÉKENYSÉGEK ANTROPOMETRIAI ADATOK Az antropometria alkalmazásának célja a hatékony, biztonságos és kényelmes tevékenység biztosítása
4. A mérések pontosságának megítélése
4 A mérések pontosságának megítélése 41 A hibaterjedési törvény Ha egy F változót az x 1,x,x 3,,x r közvetlenül mért adatokból számítunk ki ( ) F = F x1, x, x3,, x r (41) bizonytalanságát a hibaterjedési
Gyártástechnológia alapjai Méréstechnika rész. Előadások (2.) 2011.
Gyártástechnológia alapjai Méréstechnika rész Előadások (2.) 2011. 1 Méréstechnika előadás 2. 1. Mérési hibák 2. A hiba rendszáma 3. A mérési bizonytalanság 2 Mérési folyamat A mérési folyamat négy fő
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Mérési struktúrák
Mérési struktúrák 2007.02.19. 1 Mérési struktúrák A mérés művelete: a mérendő jellemző és a szimbólum halmaz közötti leképezés megvalósítása jel- és rendszerelméleti aspektus mérési folyamat: a leképezést
GYERMEKEK FIZIKAI FEJLŐDÉSE. Százalékos adatok és görbék. Fiúk Lányok Fiúk Lányok 1 72 76 81 69 74 79 8,8 10,5 12,6 8,1 9,7 11,6
MAGASSÁG (cm) SÚLY (kg) Fiúk Lányok Fiúk Lányok min átlag max min átlag max min átlag max min átlag max 0 46 50 54 46 49 54 2,5 3,5 4,3 2,5 3,4 4,2 0,5 64 68 73 62 66 70 6,7 8,2 9,9 6,1 7,5 9,0 1 72 76
Minden mérésre vonatkozó minimumkérdések
Minden mérésre vonatkozó minimumkérdések 1) Definiálja a rendszeres hibát 2) Definiálja a véletlen hibát 3) Definiálja az abszolút hibát 4) Definiálja a relatív hibát 5) Hogyan lehet az abszolút-, és a
Nagy számok törvényei Statisztikai mintavétel Várható érték becslése. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
agy számok törvényei Statisztikai mintavétel Várható érték becslése Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem A mérés mint statisztikai mintavétel A méréssel az eloszlásfüggvénnyel
1. oldal TÁMOP-6.1.2/LHH/11-B Életmódprogramok megvalósítása Abaúj-Hegyköz lakosainak egészségéért. Hírlevél. Testmozgással az egészségért
1. oldal TÁMOP-6.1.2/LHH/11-B-2012-0037 Életmódprogramok megvalósítása Abaúj-Hegyköz lakosainak egészségéért. Hírlevél Testmozgással az egészségért Rendszeres mozgás az egészséges szervezetért Kiadó: Gönc
Testméretek, mozgástartományok. Szabó Gyula
Testméretek, mozgástartományok Szabó Gyula Az antropometria helye TERMÉKFEJLESZTÉS / TERV ERGONÓMIAI FELADATOK ÉS TEVÉKENYSÉGEK ANTROPOMETRIAI ADATOK Az antropometria alkalmazásának célja a hatékony, biztonságos
KÍSÉRLET, MÉRÉS, MŰSZERES MÉRÉS
KÍSÉRLET, MÉRÉS, MŰSZERES MÉRÉS Kísérlet, mérés, modellalkotás Modell: olyan fizikai vagy szellemi (tudati) alkotás, amely egy adott jelenség lefolyását vagy egy rendszer viselkedését részben vagy egészen
2. Rugalmas állandók mérése jegyzőkönyv javított. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Rugalmas állandók mérése jegyzőkönyv javított Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 17. Leadás dátuma: 2008. 10. 08. 1 1. Mérések ismertetése Az első részben egy téglalap keresztmetszetű
Kontrol kártyák használata a laboratóriumi gyakorlatban
Kontrol kártyák használata a laboratóriumi gyakorlatban Rikker Tamás tudományos igazgató WESSLING Közhasznú Nonprofit Kft. 2013. január 17. Kis történelem 1920-as években, a Bell Laboratórium telefonjainak
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus
Statisztika 2. Dr Gősi Zsuzsanna Egyetemi adjunktus Gyakorisági sorok Mennyiségi ismérv jellemző rangsor készítünk. (pl. napi jegyeladások száma) A gyakorisági sor képzése igazából tömörítést jelent Nagyszámú
Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel
Folyadékok és szilárd anyagok sűrűségének meghatározása különböző módszerekkel Név: Neptun kód: _ mérőhely: _ Labor előzetes feladatok 20 C-on különböző töménységű ecetsav-oldatok sűrűségét megmérve az
Modern Fizika Labor. 2. Az elemi töltés meghatározása. Fizika BSc. A mérés dátuma: nov. 29. A mérés száma és címe: Értékelés:
Modern Fizika Labor Fizika BSc A mérés dátuma: 2011. nov. 29. A mérés száma és címe: 2. Az elemi töltés meghatározása Értékelés: A beadás dátuma: 2011. dec. 11. A mérést végezte: Szőke Kálmán Benjamin
Elso elemzés Example Metabolic Syndrome
50 KHz R 382 Xc 41 [Víz és BCM zsír nélkül] A mérés 11.07.2005 Ido 15:13 dátuma: Név: Example Metabolic S... Születési dátum: 25.03.1951 Keresztnév: Kor:: 54 Év Neme: férfi Magasság: 1,85 m Mérés sz.:
1. előadás. Lineáris algebra numerikus módszerei. Hibaszámítás Számábrázolás Kerekítés, levágás Klasszikus hibaanalízis Abszolút hiba Relatív hiba
Hibaforrások Hiba A feladatok megoldása során különféle hibaforrásokkal találkozunk: Modellhiba, amikor a valóságnak egy közelítését használjuk a feladat matematikai alakjának felírásához. (Pl. egy fizikai
V. Jubileumi Népegészségügyi Konferencia évi eredmények, összefüggések. Dr.habil Barna István MAESZ Programbizottság
V. Jubileumi Népegészségügyi Konferencia 2010-2011-2012-2013.évi eredmények, összefüggések Dr.habil Barna István MAESZ Programbizottság 2014.02.20. Magyarország Átfogó Egészségvédelmi Szűrőprogramja (MÁESZ)
Test-elemzés. Ezzel 100%-os lefedettséget ér el. TANITA digitális mérleg. Rendkívül gyors elemzést tesz lehetővé.
Test-elemzés Bioelektromos impedancia mérés 5 különböző pályán kerül mérésre (lábtól-lábig, kéztől-kézig, bal kéztől a jobb lábig, jobb kéztől a bal lábig, bal kéztől a bal lábig). Ezzel 100%-os lefedettséget
Nemzetközi Mértékegységrendszer
Nemzetközi Mértékegységrendszer 1.óra A fizika tárgya, mérés, mértékegységek. Fűzisz Természet Fizika Mérés, mennyiség A testek, anyagok bizonyos tulajdonságait számszerűen megadó adatokat mennyiségnek
Mérési hibák. 2008.03.03. Méréstechnika VM, GM, MM 1
Mérési hibák 2008.03.03. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség általánosított
Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió
SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás
Elektronikus fekete doboz vizsgálata
Elektronikus fekete doboz vizsgálata 1. Feladatok a) Munkahelyén egy elektronikus fekete dobozt talál, amely egy nem szabványos egyenáramú áramforrást, egy kondenzátort és egy ellenállást tartalmaz. Méréssel
Elemi statisztika fizikusoknak
1. oldal Elemi statisztika fizikusoknak Pollner Péter Biológiai Fizika Tanszék pollner@elte.hu Az adatok leírása, megismerése és összehasonlítása 2-1 Áttekintés 2-2 Gyakoriság eloszlások 2-3 Az adatok
Nehézségi gyorsulás mérése megfordítható ingával
Nehézségi gyorsulás mérése megfordítható ingával (Mérési jegyzőkönyv) Hagymási Imre 2007. április 21. (hétfő délelőtti csoport) 1. A mérés elmélete A nehézségi gyorsulás mérésének egy klasszikus módja
FÖL(D)PÖRGETŐK HÁZI VERSENY 2. FORDULÓ 5-6. évfolyam Téma: Lelkünk temploma, avagy nagyító alatt az emberi test
A Földpörgetők versenyen, minden tantárgy feladataira összesen 20 pontot lehet kapni, így egy forduló összpontszáma 100 pont a feladatok számától függetlenül. Csak a kiosztott fejléces üres papírokra lehet
1. Metrológiai alapfogalmak. 2. Egységrendszerek. 2.0 verzió
Mérés és adatgyűjtés - Kérdések 2.0 verzió Megjegyzés: ezek a kérdések a felkészülést szolgálják, nem ezek lesznek a vizsgán. Ha valaki a felkészülése alapján önállóan válaszolni tud ezekre a kérdésekre,
Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre
Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek
Matematikai alapok és valószínőségszámítás. Statisztikai becslés Statisztikák eloszlása
Matematikai alapok és valószínőségszámítás Statisztikai becslés Statisztikák eloszlása Mintavétel A statisztikában a cél, hogy az érdeklõdés tárgyát képezõ populáció bizonyos paramétereit a populációból
} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Alapinformációk a tantárgyról a tárgy oktatója: Dr. Berta Miklós Fizika és
Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg
LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott
Az antropometria alapjai
Az antropometria szükségessége Az antropometria alapjai TERMÉKFEJLESZTÉS/TERVEZÉS ERGONÓMIAI FELADATOK ÉS TEVÉKENYSÉGEK ANTROPOMETRIAI ADATOK Célja: Hatékony, biztonságos és kényelmes termékhasználat Információszerzés
Szezonális ingadozás. (Stacionárius idősoroknál, ahol nem beszélhetünk trendről, csak a véletlen hatást kell kiszűrni. Ezzel nem foglalkozunk)
Szezonalitás Szezonális ingadozás Rendszeresen ismétlődő, azonos hullámhosszú és szabályos amplitúdóú, többnyire rövid távú ingadozásokat tekintük. Vizsgálatukkor a dekompozíciós modellekből a trend és
A 0 64 éves férfiak és nők cerebrovascularis betegségek okozta halálozásának relatív kockázata Magyarországon az EU 15
A hipertónia, mint kiemelt kardiovaszkuláris rizikófaktor befolyásoló tényezőinek és ellátásának vizsgálata az alapellátásban Dr. Sándor János, Szabó Edit, Vincze Ferenc Debreceni Egyetem OEC Megelőző
DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/
DEBRECENI EGYETEM MŰSZAKI KAR GÉPÉSZMÉRNÖKI TANSZÉK SPM BEARINGCHECKER KÉZI CSAPÁGYMÉRŐ HASZNÁLATA /OKTATÁSI SEGÉDLET DIAGNOSZTIKA TANTÁRGYHOZ/ ÖSSZEÁLLÍTOTTA: DEÁK KRISZTIÁN 2013 Az SPM BearingChecker
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK
06. OKTÓBER VEGYIPAR ISMERETEK EMELT SZINTŰ GYAKORLATI VIZSGA MINTAFELADATOK ÉS ÉRTÉKELÉSÜK 06. OKTÓBER. tétel Anyagvizsgálatok gyakorlat I. Viszkozitás mérése Höppler-féle viszkoziméterrel A mérés megkezdése
A leíró statisztikák
A leíró statisztikák A leíró statisztikák fogalma, haszna Gyakori igény az, hogy egy adathalmazt elemei egyenkénti felsorolása helyett néhány jellemző tulajdonságának megadásával jellemezzünk. Ezeket az
Székesfehérvár Megyei Jogú Város Önkormányzatának Egészségfejlesztési Terve. 5. sz. melléklete
Székesfehérvár Megyei Jogú Város Önkormányzatának Egészségfejlesztési Terve. sz. melléklete . diagram Leggyakrabban említett probléma: rossz minőségű utak és járdák,% 9,% 8,% 7,% 6,%,%,%,%,%,%,% 9,% 6,%
Géprajz - gépelemek. Előadó: Németh Szabolcs mérnöktanár. Belső használatú jegyzet 2
Géprajz - gépelemek FELÜLETI ÉRDESSÉG Előadó: Németh Szabolcs mérnöktanár Belső használatú jegyzet http://gepesz-learning.shp.hu 1 Felületi érdesség Az alkatrészek elkészítéséhez a rajznak tartalmaznia
3. Hangfrekvenciás mechanikai rezgések vizsgálata
3. Hangfrekvenciás mechanikai rezgések vizsgálata Tóth Bence fizikus,. évfolyam 005.03.04. péntek délelőtt beadva: 005.03.. . A mérés első részében a megvastagított végű rúd (a D jelű) felharmonikusait
SZÁMÍTÁSI FELADATOK I.
SZÁMÍTÁSI FELADATOK I. A feladatokat figyelmesen olvassa el! A válaszokat a feladatban előírt módon adja meg! A számítást igénylő feladatoknál minden esetben először írja fel a megfelelő összefüggést (képletet),
NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS. Mérési feladatok
Hidrodinamikai Rendszerek Tanszék Készítette:... kurzus Elfogadva: Dátum:...év...hó...nap NYOMÁS ÉS NYOMÁSKÜLÖNBSÉG MÉRÉS Mérési feladatok 1. Csővezetékben áramló levegő nyomásveszteségének mérése U-csöves
Tíz éve vagyok tagja a Premium csapatának. Dr.Simon Attila belgyógyász-obezitológus Nagykanizsa
Tíz éve vagyok tagja a Premium csapatának Dr.Simon Attila belgyógyász-obezitológus Nagykanizsa Mottó: A fájdalmat mindenki nagyszerűen el tudja viselni, kivéve azt aki érzi avagy A diétás kezelés magyarországi
MUNKAANYAG. Juhász Róbert. Méréstechnika alapjai. A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása
Juhász Róbert Méréstechnika alapjai A követelménymodul megnevezése: Elektronikai áramkörök tervezése, dokumentálása A követelménymodul száma: 0917-06 A tartalomelem azonosító száma és célcsoportja: SzT-021-50
Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN
Orvosi szociológia (1. szeminárium) KUTATÁSMÓDSZERTAN (Babbie) 1. Konceptualizáció 2. Operacionalizálás 3. Mérés 4. Adatfeldolgozás 5. Elemzés 6. Felhasználás KUTATÁS LÉPÉSEI 1. Konceptualizáció 2. Operacionalizálás
Mérések hibája pontosság, reprodukálhatóság és torzítás
Mérések hibája pontosság, reprodukálhatóság és torzítás A kémiai mérések és számítások során számos adat felhasználásával jutunk a végeredményhez. Gyakori eset, hogy egyszerű mérési eredményekből a köztük
Matematikai geodéziai számítások 6.
Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre
etalon etalon (folytatás) Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói
Etalonok, kalibrálás, rekalibrálás, visszavezethetőség, referencia eljárások Az etalonok és a kalibrálás általános és alapvető metrológiai fogalmai és definíciói etalon Mérték, mérőeszköz, anyagminta vagy
Peltier-elemek vizsgálata
Peltier-elemek vizsgálata Mérés helyszíne: Vegyész labor Mérés időpontja: 2012.02.20. 17:00-20:00 Mérés végrehatói: Budai Csaba Sánta Botond I. Seebeck együttható közvetlen kimérése Az adott P-N átmenetre
Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók
Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz
Cardiovascularis (szív- és érrendszeri) kockázat
Cardiovascularis (szív- és érrendszeri) kockázat Varga Gábor dr. www.gvmd.hu 1/7 Cardiovascularis kockázatbecslő tábla Fatális szív- és érrendszeri események előfordulásának kockázata 10 éven belül Nő
Elektromos egyenáramú alapmérések
Elektromos egyenáramú alapmérések A mérés időpontja: 8.. 5. hétf ő,.-4. Készítették: 5.mérőpár - Lele István (CYZH7) - Nagy Péter (HQLOXW) A mérések során elektromos egyenáramú köröket vizsgálunk feszültség-
STATISZTIKA I. Változékonyság (szóródás) A szóródás mutatószámai. Terjedelem. Forgalom terjedelem. Excel függvények. Függvénykategória: Statisztikai
Változékonyság (szóródás) STATISZTIKA I. 5. Előadás Szóródási mutatók A középértékek a sokaság elemeinek értéknagyságbeli különbségeit eltakarhatják. A változékonyság az azonos tulajdonságú, de eltérő
Matematika. 1. osztály. 2. osztály
Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,
Testméretek, mozgástartományok. Szabó Gyula
Testméretek, mozgástartományok Szabó Gyula Az antropometria helye TERMÉKFEJLESZTÉS / TERV ERGONÓMIAI FELADATOK ÉS TEVÉKENYSÉGEK ANTROPOMETRIAI ADATOK Az antropometria alkalmazásának célja a hatékony, biztonságos
A fejlesztés várt eredményei a 1. évfolyam végén
A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti
Matematikai geodéziai számítások 6.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 6. MGS6 modul Lineáris regresszió számítás elektronikus távmérőkre SZÉKESFEHÉRVÁR 2010 Jelen szellemi
Calibrare necesse est
Calibrare necesse est VIRÁG Gábor KGO 40 konferencia Földmérési és Távérzékelési Intézet Kozmikus Geodéziai Obszervatórium Kalibrálás: azoknak a műveleteknek az összessége, amelyekkel - meghatározott feltételek
FUSION VITAL ÉLETMÓD ELEMZÉS
FUSION VITAL ÉLETMÓD ELEMZÉS STRESSZ ÉS FELTÖLTŐDÉS - ÁTTEKINTÉS 1 (2) Mérési információk: Életkor (év) 41 Nyugalmi pulzusszám 66 Testmagasság (cm) 170 Maximális pulzusszám 183 Testsúly (kg) 82 Body Mass
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv. Zsigmond Anna Fizika Bsc II. Mérés dátuma: Leadás dátuma:
2. Hangfrekvenciás mechanikai rezgések vizsgálata jegyzőkönyv Zsigmond Anna Fizika Bsc II. Mérés dátuma: 2008. 09. 24. Leadás dátuma: 2008. 10. 01. 1 1. Mérések ismertetése Az 1. ábrán látható összeállításban
Analóg-digitál átalakítók (A/D konverterek)
9. Laboratóriumi gyakorlat Analóg-digitál átalakítók (A/D konverterek) 1. A gyakorlat célja: Bemutatjuk egy sorozatos közelítés elvén működő A/D átalakító tömbvázlatát és elvi kapcsolási rajzát. Tanulmányozzuk
2011. ÓE BGK Galla Jánosné,
2011. 1 A mérési folyamatok irányítása Mérésirányítási rendszer (a mérés szabályozási rendszere) A mérési folyamat megvalósítása, metrológiai megerősítés (konfirmálás) Igazolás (verifikálás) 2 A mérési
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév
Matematika A3 Valószínűségszámítás, 6. gyakorlat 2013/14. tavaszi félév 1. A várható érték és a szórás transzformációja 1. Ha egy valószínűségi változóhoz hozzáadunk ötöt, mínusz ötöt, egy b konstanst,
1. Gauss-eloszlás, természetes szórás
1. Gauss-eloszlás, természetes szórás A Gauss-eloszlásnak megfelelő függvény: amely egy σ szélességű, µ középpontú, 1-re normált (azaz a teljes görbe alatti terület 1) görbét ír le. A természetben a centrális
JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ ÍRÁSBELI VIZSGAFELADATHOZ. Általános asszisztens szakképesítés. 2374-06 Betegmegfigyelés-tünetfelismerés modul
Emberi Erőforrások Minisztériuma Korlátozott terjesztésű! Érvényességi idő: az írásbeli vizsgatevékenység befejezésének időpontjáig A minősítő neve: Rauh Edit A minősítő beosztása: mb. főigazgató-helyettes
Feladatok: pontdiagram és dobozdiagram. Hogyan csináltuk?
Feladatok: pontdiagram és dobozdiagram Hogyan csináltuk? Alakmutatók: ferdeség, csúcsosság Alakmutatók a ferdeség és csúcsosság mérésére Ez eloszlás centrumát (középérték) és az adatok centrum körüli terpeszkedését
A valószínűségszámítás elemei
A valószínűségszámítás elemei Kísérletsorozatban az esemény relatív gyakorisága: k/n, ahol k az esemény bekövetkezésének abszolút gyakorisága, n a kísérletek száma. Pl. Jelenség: kockadobás Megfigyelés:
Analóg elektronika - laboratóriumi gyakorlatok
Analóg elektronika - laboratóriumi gyakorlatok. Mûveleti erõsítõk váltakozó-áramú alkalmazásai. Elmélet Az integrált mûveleti erõsítõk váltakozó áramú viselkedését a. fejezetben (jegyzet és prezentáció)
Laktózérzékenyek táplálkozási szokásainak hatása a testösszetételre
Laktózérzékenyek táplálkozási szokásainak hatása a testösszetételre DR. PÁLFI ERZSÉBET 1, DAKÓ SAROLTA 2, MOLNÁR RÉKA 3, DR. MIHELLER PÁL 2 1 SEMMELWEIS EGYETEM EGÉSZSÉGTUDOMÁNYI KAR DIETETIKAI ÉS TÁPLÁLKOZÁSTUDOMÁNYI
STATISZTIKA ELŐADÁS ÁTTEKINTÉSE. Matematikai statisztika. Mi a modell? Binomiális eloszlás sűrűségfüggvény. Binomiális eloszlás
ELŐADÁS ÁTTEKINTÉSE STATISZTIKA 9. Előadás Binomiális eloszlás Egyenletes eloszlás Háromszög eloszlás Normális eloszlás Standard normális eloszlás Normális eloszlás mint modell 2/62 Matematikai statisztika
Az értékelés során következtetést fogalmazhatunk meg a
Az értékelés során következtetést fogalmazhatunk meg a a tanuló teljesítményére, a tanulási folyamatra, a célokra és követelményekre a szülők teljesítményére, a tanulási folyamatra, a célokra és követelményekre
2. Rugalmas állandók mérése
2. Rugalmas állandók mérése Klasszikus fizika laboratórium Mérési jegyzőkönyv Mérést végezte: Vitkóczi Fanni Jegyzőkönyv leadásának időpontja: 2012. 12. 15. I. A mérés célja: Két anyag Young-modulusának