FLOW-SHOP ÜTEMEZÉSI FELADATOKAT MEGOLDÓ GENETIKUS ALGORITMUS MUTÁCIÓ OPERÁTORAINAK ÉRZÉKENYSÉGVIZSGÁLATA
|
|
- Ödön Faragó
- 9 évvel ezelőtt
- Látták:
Átírás
1 Miskolci Egyetem, Multidiszciplináris tudományok, 1. kötet (2011) 1. szám, pp FLOW-SHOP ÜTEMEZÉSI FELADATOKAT MEGOLDÓ GENETIKUS ALGORITMUS MUTÁCIÓ OPERÁTORAINAK ÉRZÉKENYSÉGVIZSGÁLATA Oláh Béla főiskolai tanársegéd Szolnoki Főiskola, Műszaki és Agrárgazdálkodási Intézet, Műszaki és Gépészeti Tanszék, 5000 Szolnok, Tiszaligeti sétány, Összefoglalás Jelen tudományos munka célkitűzése egy általam már korábban elkészített és publikált permutáció flow-shop termelésütemezési feladatokat (FSSP) megoldó genetikus algoritmus (GA) mutáció operátorainak érzékenységvizsgálata. Dolgozatom az algoritmus által használt négy különböző mutáció operátor (fordított csere, 2 pontú inverzió, 1 és 2 pontú csere) összehasonlítására terjed ki a megoldások optimum-közeli hatékonyságának függvényében. Megvizsgálom, hogy az egyes mutációs eljárások adott arányánál hogyan változik a program teljesítménye, értékelem a kapott eredményeket és összefüggéseket keresek, melyek segítségével a genetikus algoritmus hatékonyabb alkalmazása lehetséges. Témaválasztásom gyakorlati jelentőségű eredménye annak kiderítése lesz, hogy milyen arányban érdemes az egyes mutáció operátorokat használni, a minél hamarabbi és minél inkább optimum-közeli megoldások szolgáltatása végett. Kulcsszavak: genetikus algoritmus, ütemezés, holtidő, mutáció, klónozás Abstract The main goal of this scientific work is the sensitivity analysis of mutation operators of my own genetic algorithm (GA) for the permutation flow-shop scheduling problems (FSSP). This paper covers the comparison of the different mutation operators such as reciprocal exchange, simple inversion, swap and displacement used by the algorithm in function of the efficiency of the near optimal solutions. I analyze how the efficiency of the algorithm changes by some values of the mutation operators, I evaluate the obtained results and I search for relations that help to apply the GA more effectively and efficiently. The practical importance of my research results is to determine in what setting the mutation operators have to be used in order to supply near optimal solutions at the fastest possible time. Keywords: genetic algorithm, scheduling, idle time, mutation, cloning 1. A Flow-shop ütemezési probléma megfogalmazása Adott n számú termék, amelyeken m számú különböző munkafolyamatot kell elvégezni. A technológiai útvonal, ami az összes termékre nézve azonos, valamint a műveleti idők előre adottak. Meg kell határozni a termékeknek azt a sorrendjét a gépeken, amely bizonyos előre megadott szempontok szerint optimális (1. ábra). 95
2 Oláh Béla A gyakorlatban is használt célfüggvények az alábbiak lehetnek: minimális átfutási idő; technológiai berendezések maximális kihasználása (holtidők minimálása); minimális gyártásközi készletek (termékek állásidejének minimálása). gép állás idők A p 1 p 2 p 3 p 4 p 5 holtidők B p 1 p 2 p 3 p 4 p 5 C p 1 p 2 p 3 p 4 p 5 D p 1 p 2 p 3 p 4 p 5 átfutási idő idő 1. ábra. Permutáció flow-shop ütemezés Gantt-diagramja 2. A Genetikus algoritmus ismertetése A genetikus algoritmusok fogalmát Holland [2] vezette be, tervezésük során az evolúciót tekinthetjük mintaképnek. Kezdetben nem optimálisan megírt, vagy paraméterezett programok a természetes kiválasztódás elve alapján fejlődnek, és közelítenek egy jó megoldáshoz. A genetikus algoritmus lényege, hogy rendelkezik a lehetséges megoldások egy populációjával, a populáción értelmezett a kiválasztási folyamat amely az egyedek alkalmasságán alapul és értelmezett néhány genetikus operátor (2. ábra). Induló populáció generálása Kiértékelő függvény További optimalizálás nem Legjobb egyed Start Új populáció generálása igen Kiválasztás Klónozás eredmény Mutáció Keresztezés 2. ábra. A genetikus algoritmus folyamatábrája [10] 96
3 Flow-shop ütemezési feladatokat megoldó genetikus algoritmus mutáció A GA is mint oly sok más a tudományban a természettől kölcsönzött ötlet alapján működik [1]. Az életben évmilliók során kialakulnak azok az egyedek, amelyek legjobban alkalmazkodtak az élőhelyükhöz, amelyek fennmaradása biztosított. Ezek az egyedek genetikus állományukat és ezzel jó tulajdonságaikat továbbadják utódaiknak, biztosítva ezzel a populáció fennmaradását. Néha mutációk véletlenszerű változások adódnak a genetikus állományban. Az új egyedekben új tulajdonságok jelennek meg, amelyek vagy jobbak az eredetinél és így az egyedek életben maradnak, tovább örökítve jó tulajdonságaikat, vagy rosszabbak, s így elpusztulnak [3]. Ezt a folyamatot írtam át számítógépre a termelésütemezési problémák megoldására. 3. A számítógépes program bemutatása A program felhasználói felületén a dialógusablakban a konstans jellegű paraméterek találhatók. Először beállítjuk a megmunkálni kívánt termékek, valamint a megmunkáló berendezések mennyiségét. Ezután a genetikus algoritmushoz szükséges alapadatokat állíthatjuk be tetszés szerint (populáció mérete, iterációk száma, a keresztezés, a mutáció és a klónozás aránya, kiválasztási stratégia). Az első fejezetben is említett optimalizáló célfüggvényt a megfelelő választógomb bekapcsolásával választhatjuk ki. A genetikus algoritmus esetében egy kromoszóma a termékek tetszőleges sorrendjét jelenti, ez lesz az adatok helyes reprezentációja. A kiválasztódást alapbeállításban egyszerű fitnesz szerinti rendezéssel oldom meg, és a magasabb fitnesszel rendelkező egyedeket választom ki, de lehetőség van véletlenszerű, illetve a rulett-kerék mechanizmusnak megfelelő kiválasztásra. A GA megírása során két keresztezést (CX és OX) alkalmaztam. A program során a reciprocal exchange (fordított csere), a simple inversion (2 pontú inverzió), a swap (1 pontú csere) és a displacement (2 pontú csere) mutációkat használtam fel. Kiértékeléskor a maximális út megkeresésére alkalmas Bellmann-Pontrjagin-féle optimalizálási elvre épülő általam kidolgozott algoritmusba [5] történik a behelyettesítés. 3. ábra. A genetikus algoritmus futási eredménye GA segítségével megoldva egy feladatot az iteráció előre haladtával a grafikonon nagyon szépen nyomon követhető a legjobb egyed célfüggvény szerinti 97
4 Oláh Béla értéke valamint a populáció átlagértéke is (3/a. ábra). A legjobb egyed piros színnel (alsó görbe), míg az átlagérték kékkel (felső görbe) szerepel a grafikonon a jobb követhetőség érdekében. Mivel előfordulhat, hogy egy szülőt alacsonyabb fitneszértékű utód helyettesít, így a populáció átlagértéke emelkedhet is. Ezzel szemben a legjobb egyed fitnesz-értéke monoton csökkenő függvénnyel ábrázolható. Az információs ablakban (3/b. ábra) az algoritmus futása közben folyamatosan kiírásra kerül az aktuális iterációk száma, valamint a legjobb egyedhez tartozó átfutási-, holt- és állásidők egyaránt. Az iterációk befejeztével megjelenik a legjobb egyedhez tartozó sorrend is. Az iteratív működés következtében több időre van szükségünk egy optimálishoz közeli megoldás eléréséhez, mint más heurisztikus esetben, viszont így lényegesen jobb eredmény érhető el. A feladat fitnesz-értékeit ábrázoló grafikonon megfigyelhető, hogy a GA végül olyan állapotba jutott, amelyben mind a legjobb individuum alkalmasságértéke, mind pedig a populáció átlagos fitnesz-értéke a kezdeti rohamos javulás után beállt. A generációk számának növekedésével a legjobb egyed átlagos fitneszértéke egyre jobban megközelíti az optimális értéket, amely a vizsgált paramétertérben egy többé-kevésbé erős konvergenciát mutat. A programban lehetőség van a genetikus algoritmussal történő optimalizálás leállítására a leállít gomb megnyomásával. Ilyenkor a program megerősítést kér a felhasználótól az optimalizálás megszakítására. Az igen elfogadása után az információs ablakba kiíródnak az addig előállított legjobb egyed adatai. A nem gombon kattintva a közelítés tovább folytatódik a kívánt iterációig vagy egy újabb leállításig. 4. A mutáció operátorok összehasonlítása Korábbi publikációimban [4, 6, 7, 8] már megvizsgáltam a termelésütemezési feladatokat megoldó különböző módszerek hatékonyságát, elvégeztem a genetikus algoritmus paraméter-érzékenységvizsgálatát, illetve összevetettem a szoftver által is kezelt keresztező operátorok eredményességét. Ezen dolgozatban a program által is használt négy mutáció operátor összehasonlítását tűztem ki célul. Vizsgálataimat természetesen ugyanazon (esetemben 20 gépes, 25 termékes) permutáció flow-shop termelésütemezési feladatra végzem el, melyek alatt a keresztezés műveletet teljes egészében elhagyom, és csak a kiválasztott legjobb individuumok klónozásával valamint mutációjával állítom elő a soron következő populációt. Ezzel biztosítva, hogy az eredmények fejlődése csak a mutációnak legyen betudható, ami egyértelmű összehasonlítást tesz lehetővé. Első lépésben a program által használt négy mutáció operátor közül csak a simple inversion (2 pontú inverzió) mutációt alkalmazom. A 4. ábrán feltüntetett mutációs arányok (a populáció 99, 98, 96,, 2%-a) mindegyikére a genetikus algoritmus által 30 futtatás után szolgáltatott célfüggvény (jelen esetben holtidő) értékek átlagai 100 egyedszámú populációt és a legjobb kiválasztási stratégiát alkalmazva 150 iteráció után a következőképpen alakultak: 98
5 Flow-shop ütemezési feladatokat megoldó genetikus algoritmus mutáció ábra. A 2 pontú inverzió holtidő-átlagai a mutáció arányának függvényében Az ábrából jól kivehető, hogy a mutáció arányának 80%-ig történő csökkenésével folyamatosan javulnak a holtidő-értékek, majd egy viszonylag konstans szakasz után (40-20% alatt) rohamos mértékű romlás következik be (a 2%-os mutáció már több mint 11%-kal eredményez rosszabb megoldásokat az optimumhoz képest). Megállapítható, hogy a genetikus algoritmus a 2 pontú inverzió mutációs operátor 80 és 40% közötti alkalmazása esetén eredményezte a legkisebb holtidő értékeket keresztezést nem használva. A minimumot a 67%-os mutáció (és ezáltal 33%-os klónozás) jelentette. A következő vizsgálatban a program által kezelt négy mutáció operátor közül csak a fordított cserét (reciprocal exchange) használom. Az előzőhöz nagyon hasonló jellegű görbét kaptam. A vízszintes tengelyen az alkalmazott mutáció aránya, míg a függőlegesen továbbra is a holtidők szerepelnek ábra. A fordított csere holtidő-átlagai a mutáció arányának függvényében A diagramon jól látszik, hogy a mutáció arányának 75%-ig történő csökkenésével most is folyamatosan javulnak a holtidő-értékek, majd egy kezdeti lassú emelkedés után (25% alatt) rohamos mértékű hanyatlás következik be (a 2%- 99
6 Oláh Béla os mutáció már közel 14%-kal eredményez rosszabb megoldásokat a minimumhoz képest). Kijelenthető, hogy a genetikus algoritmus a fordított csere mutációs operátor alkalmazása esetén a 75%-os aránynál produkálta az optimumot (4000). A következő esetben a mutáció operátorok közül csak az 1 pontú csere (swap) mutációt alkalmazom. Az eredményeket a 6. ábra szemlélteti: ábra. A 1 pontú csere által szolgáltatott holtidő-átlagok a mutáció függvényében Az eddigiektől kicsit eltérő jellegű görbén lassú javulás figyelhető meg a mutáció arányának egészen 50%-ot elérő csökkenéséig, majd ezután is csak szerény emelkedés tapasztalható. Azaz, a swap mutáció használata esetén épp a kisebb mutációs arányok jelentik a jobb megoldásokat. Bár nincs akkora eltérés az eredmények között, mint amekkorát a grafikon mutat, hisz a 99%-os mutáció is csak alig 4,5%-kal eredményez rosszabb megoldásokat a legkisebb értékűhöz (50% 4461) képest. Az utolsó vizsgálatnál csak a 2 pontú csere (displacement) mutáció operátor segítségével állítja elő a következő populációt az algoritmus. A 7. ábrán feltüntetett mutációs arányok mindegyikére a GA által szolgáltatott holtidő értékek a következőképpen alakultak: ábra. A 2 pontú csere által szolgáltatott holtidő-átlagok a mutáció függvényében 100
7 Flow-shop ütemezési feladatokat megoldó genetikus algoritmus mutáció Most is szerény mértékű javulás látható a mutáció arányának egészen 67%- ot elérő csökkenéséig, majd ezután pedig még szerényebb emelkedés fedezhető fel a diagramon. A minimumot (4611) ugyan a 67%-os mutáció (és ezáltal 33%-os klónozás) jelentette, de a legrosszabb eredményhez (99%-os mutáció) képest is csak alig több mint 1%-kal ad jobb eredményt (az utóbbi két esetben csak a függőleges tengely korábbiaktól eltérő skálázása miatt tűntek meredekebbnek a görbék). Végül megvizsgáltam, hogy a program által használt négy mutáció operátor egyenlő arányban történő alkalmazásakor hogyan alakul a grafikon. Kíváncsiságom oka az volt, hogy a keresztező operátorok összehasonlításakor [9] világossá vált, hogy a legjobb eredményt a GA az operátorok együttes alkalmazása esetén szolgáltatja, még az egyébként legjobb megoldásokat adó keresztezésnél is jobbat, azaz a gyengébbek nem hogy nem rontották a jobb operátorok teljesítményét, hanem még javították is azt. A jobb láthatóság és a már említett eltérő skálázásból adódó problémák kiküszöbölése végett egy diagramban ábrázoltam az eddigi és a vegyes alkalmazással kapott eredményeket vegyes simple inversion reciprocal exchange swap displacement 8. ábra. A különböző mutáció operátorok alkalmazásával kapott eredmények Az ábrán egyértelműen kitűnik, hogy a négy mutáció operátor közül kettő sokkal jobb eredményeket szolgáltat a másik kettőnél. A legjobb megoldásokat a fordított csere mutáció alkalmazása adja, de alig marad el tőle a 2 pontú inverzió operátor, ami csak átlag 2,5%-kal generál gyengébb célfüggvény-értékeket, sőt 10% alatti mutáció arányoknál a két görbe szinte fedi egymást. Ezzel szemben az 1 pontú csere közel 9,5%-kal rosszabb, mint a legkedvezőbb operátor, míg a 2 pontú csere már több mint 12%-kal, így kijelenthető, hogy ez utóbbi mutáció használata eredményezi a legnagyobb holtidőket. Természetesen a jövőben érdemes elvégezni más az operátorokat eltérő arányban használó vegyes rendszerek esetén is ezt a vizsgálatot, hogy azok esetén hogyan alakulnának a diagramok. 101
8 Oláh Béla 5. Összefoglalás A keresztező operátorok vizsgálatával ellentétben, most nem mondhatjuk el, hogy a mutációs eljárások együttes alkalmazásakor kapnánk a legjobb eredményeket, bár az operátorokat egyenlő arányban alkalmazó vegyes megoldás grafikonja szinte teljesen egyezik a legkisebb értékeket felvonultató fordított csere mutációéval. Az azonban már most is megállapítható, hogy inkább a fordított csere és a 2 pontú inverzió mutációkat érdemes preferálni az 1 és a 2 pontú cserével szemben a minél inkább optimum-közeli megoldások hatékony megtalálása végett. 6. Irodalomjegyzék [1] Goldberg, D. E.: Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, [2] Holland, J. H.: Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology Control, and Artificial Intelligence, The University of Michigan Press, [3] Michalewich, Z.: Genetic Algorithms + Data Structures = Evolution Programs, Springer, [4] Oláh, B.: A flow shop ütemezési probléma optimalizálására szolgáló algoritmusok összehasonlítása, OGÉT 2005 XIII. Nemzetközi Gépész Találkozó, Szatmárnémeti, pp [5] Oláh, B.: Genetic algorithm vs. Reinforcement learning, Chapter 80 in DAAAM International Scientific Book 2009, Vol. 8, Published by DAAAM International, Vienna, Austria, pp [6] Oláh, B.: Genetikus algoritmus érzékenységvizsgálata, Műszaki Tudomány az Észak-Alföldi Régióban 2010, Nyíregyháza, pp [7] Oláh, B.: Flow-shop termelésütemezési feladatokat megoldó genetikus algoritmus érzékenységvizsgálata. Szolnoki Tudományos Közlemények XIV. Szolnok, [8] Oláh, B.: Sensitivity analysis of a genetic algorithm in function of the population size. XXV. microcad International Scientific Conference, University of Miskolc, Miskolc, Hungary, pp [9] Oláh, B.: Flow-shop ütemezést megoldó genetikus algoritmus keresztező operátorainak érzékenységvizsgálata. XIX. Nemzetközi Gépész Találkozó OGÉT 2011, Csíksomlyó, Románia, pp [10] Pohlheim, H.: Evolutionary Algorithms, 2009., 102
A FLOW-SHOP ÜTEMEZÉSI PROBLÉMA MEGFOGALMAZÁSA
Szolnoki Tudományos Közlemények XV. Szolnok, 2011. Oláh Béla 1 GENETIKUS OPERÁTOROK ÉRZÉKENYSÉGVIZSGÁLATA Jelen tudományos munka célkitűzése egy általam már korábban elkészített és publikált permutáció
HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL. OLÁH Béla
HÁLÓZATSZERŰEN MŰKÖDŐ LOGISZTIKÁVAL INTEGRÁLT TERMELÉSÜTEMEZÉS MEGOLDÁSA GENETIKUS ALGORITMUS ALKALMAZÁSÁVAL OLÁH Béla A TERMELÉSÜTEMEZÉS MEGFOGALMAZÁSA Flow shop: adott n számú termék, melyeken m számú
Oláh Béla 1. A cikket lektorálta: Prof. Dr. Pokorádi László, Debreceni Egyetem egyetemi tanár, műszaki tudomány kandidátusa
Szolnoki Tudományos Közlemények XIV. Szolnok, 2010. Oláh Béla 1 FLOW-SHOP TERMELÉSÜTEMEZÉSI FELADATOKAT MEGOLDÓ GENETIKUS ALGORITMUS ÉRZÉKENYSÉGVIZSGÁLATA Jelen tudományos munka célkitűzése a szerző által
ECONOMICA. A Szolnoki Fõiskola Tudományos Közleményei 2010/3. Angol nyelvi lektor: Csatlós Krisztina
ECONOMICA A Szolnoki Fõiskola Tudományos Közleményei 2010/3. A szerkesztõbizottság tagjai: Dr. Nagy Rózsa Cs.C, fõiskolai tanár, fõszerkesztõ Dr. Fülöp Tamás PhD, fõiskolai docens, felelõs szerkesztõ Madaras
Számítógépes döntéstámogatás. Genetikus algoritmusok
BLSZM-10 p. 1/18 Számítógépes döntéstámogatás Genetikus algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu BLSZM-10 p. 2/18 Bevezetés 1950-60-as
I. BEVEZETÉS II. AZ UTAZÓ ÜGYNÖK PROBLÉMA ÉS MEGOLDÁSI MÓDSZEREI
Szolnoki Tudományos Közlemények XI. Szolnok, 2007. OLÁH BÉLA 1 A KÖRUTAZÁSI PROBLÉMÁK MEGOLDÁSÁRA SZOLGÁLÓ DACEY, ÉS DACEY-VOGEL MÓDSZEREK ÖSSZEHASONLÍTÁSA I. BEVEZETÉS Dolgozatom célja, a körutazási probléma
Számítógép és programozás 2
Számítógép és programozás 2 6. Előadás Problémaosztályok http://digitus.itk.ppke.hu/~flugi/ Emlékeztető A specifikáció egy előfeltételből és utófeltételből álló leírása a feladatnak Léteznek olyan feladatok,
Dr. habil. Maróti György
infokommunikációs technológiák III.8. MÓDSZER KIDOLGOZÁSA ALGORITMUSOK ÁTÜLTETÉSÉRE KIS SZÁMÍTÁSI TELJESÍTMÉNYŰ ESZKÖZÖKBŐL ÁLLÓ NÉPES HETEROGÉN INFRASTRUKTÚRA Dr. habil. Maróti György maroti@dcs.uni-pannon.hu
értékel függvény: rátermettségi függvény (tness function)
Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket
Újrahasznosítási logisztika. 7. Gyűjtőrendszerek számítógépes tervezése
Újrahasznosítási logisztika 7. Gyűjtőrendszerek számítógépes tervezése A tervezési módszer elemei gyűjtési régiók számának, lehatárolásának a meghatározása, régiónként az 1. fokozatú gyűjtőhelyek elhelyezésének
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 5. Előadás Dr. Kulcsár Gyula egyetemi docens Tartalom 1. Párhuzamosan
Ütemezési problémák. Kis Tamás 1. ELTE Problémamegoldó Szeminárium, ősz 1 MTA SZTAKI. valamint ELTE, Operációkutatási Tanszék
Ütemezési problémák Kis Tamás 1 1 MTA SZTAKI valamint ELTE, Operációkutatási Tanszék ELTE Problémamegoldó Szeminárium, 2012. ősz Kivonat Alapfogalmak Mit is értünk ütemezésen? Gépütemezés 1 L max 1 rm
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék
Miskolci Egyetem Gépészmérnöki és Informatikai Kar Informatikai Intézet Alkalmazott Informatikai Intézeti Tanszék 2016/17 2. félév 8. Előadás Dr. Kulcsár Gyula egyetemi docens Kereső algoritmusok alkalmazása
ÜTEMEZÉSI FELADATOKRA ALKALMAZOTT GENETIKUS ALGORITMUS KERESZTEZŐ OPERÁTORAINAK VIZSGÁLATA
Műszaki tudományos közlemények 1. XIV. Műszaki tudományos ülésszak, 2013. Kolozsvár, 165 171. http://hdl.handle.net/10598/28089 ÜTEMEZÉSI FELADATOKRA ALKALMAZOTT GENETIKUS ALGORITMUS KERESZTEZŐ OPERÁTORAINAK
Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal
Intelligens Rendszerek Elmélete Dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE0 IRE / A természet általános kereső algoritmusa:
Algoritmusok Tervezése. 9. Előadás Genetikus Algoritmusok Dr. Bécsi Tamás
Algoritmusok Tervezése 9. Előadás Genetikus Algoritmusok Dr. Bécsi Tamás Biológiai háttér (nagyvonalúan) A sejt genetikai információit hordozó DNS általában kromoszómának nevezett makromolekulákba van
értékel függvény: rátermettségi függvény (tness function)
Genetikus algoritmusok globális optimalizálás sok lehetséges megoldás közül keressük a legjobbat értékel függvény: rátermettségi függvény (tness function) populáció kiválasztjuk a legrátermettebb egyedeket
Szimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László)
Szimuláció RICHARD M. KARP és AVI WIGDERSON A Fast Parallel Algorithm for the Maximal Independent Set Problem című cikke alapján (Készítette: Domoszlai László) 1. Bevezetés A következőkben megadott algoritmus
MÉLYFÚRÁSI GEOFIZIKAI ADATOK ÉRTELMEZÉSÉNEK MODERN INVERZIÓS MÓDSZEREI
MIKOVINY SÁMUEL FÖLDTUDOMÁNYI DOKTORI ISKOLA Doktori értekezés tézisei MÉLYFÚRÁSI GEOFIZIKAI ADATOK ÉRTELMEZÉSÉNEK MODERN INVERZIÓS MÓDSZEREI Írta: SZABÓ NORBERT PÉTER Tudományos vezető: DR. DOBRÓKA MIHÁLY
MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN
infokommunikációs technológiák MŰSZAKKIOSZTÁSI PROBLÉMÁK A KÖZÖSSÉGI KÖZLEKEDÉSBEN Készítette: Árgilán Viktor, Dr. Balogh János, Dr. Békési József, Dávid Balázs, Hajdu László, Dr. Galambos Gábor, Dr. Krész
A megerosítéses tanulás és a szimulált hutés kombinált használata: algoritmusok és alkalmazások
MISKOLCI EGYETEM DOKTORI (PH.D.) TÉZISFÜZETEI HATVANY JÓZSEF INFORMATIKAI TUDOMÁNYOK DOKTORI ISKOLA A megerosítéses tanulás és a szimulált hutés kombinált használata: algoritmusok és alkalmazások Készítette:
Az optimális megoldást adó algoritmusok
Az optimális megoldást adó algoritmusok shop ütemezés esetén Ebben a fejezetben olyan modellekkel foglalkozunk, amelyekben a munkák több műveletből állnak. Speciálisan shop ütemezési problémákat vizsgálunk.
Bevásárlóközpontok energiafogyasztási szokásai
Bevásárlóközpontok energiafogyasztási szokásai Bessenyei Tamás Power Consult Kft. tamas.bessenyei@powerconsult.hu Bevezetés Az elmúlt években a nagyobb városokban, valamint azok külső részein igen sok
Előrenéző és paraméter tanuló algoritmusok on-line klaszterezési problémákra
Szegedi Tudományegyetem Számítógépes Algoritmusok és Mesterséges Intelligencia Tanszék Dr. Németh Tamás Előrenéző és paraméter tanuló algoritmusok on-line klaszterezési problémákra SZTE TTIK, Móra Kollégium,
TAPADÓ VÍZ TELÍTETTSÉGÉNEK MEGHATÁROZÁSA GÁZKISZORÍTÁSOS MÓDSZER ALKALMAZÁSÁVAL
Műszaki Földtudományi Közlemények, 85. kötet, 1. szám (2015), pp. 41 47. TAPADÓ VÍZ TELÍTETTSÉGÉNEK MEGHATÁROZÁSA GÁZKISZORÍTÁSOS MÓDSZER ALKALMAZÁSÁVAL DÓCS ROLAN BÓDI TIBOR JOBBIK ANITA ME AFKI, MTA-ME
Mesterséges Intelligencia I. (I602, IB602)
Dr. Jelasity Márk Mesterséges Intelligencia I. (I602, IB602) harmadik (2008. szeptember 15-i) előadásának jegyzete Készítette: Papp Tamás PATLACT.SZE KPM V. HEURISZTIKUS FÜGGVÉNYEK ELŐÁLLÍTÁSA Nagyon fontos
Osztott jáva programok automatikus tesztelése. Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január
Osztott jáva programok automatikus tesztelése Matkó Imre BBTE, Kolozsvár Informatika szak, IV. Év 2007 január Osztott alkalmazások Automatikus tesztelés Tesztelés heurisztikus zaj keltés Tesztelés genetikus
Al-Mg-Si háromalkotós egyensúlyi fázisdiagram közelítő számítása
l--si háromalkotós egyensúlyi fázisdiagram közelítő számítása evezetés Farkas János 1, Dr. Roósz ndrás 1 doktorandusz, tanszékvezető egyetemi tanár Miskolci Egyetem nyag- és Kohómérnöki Kar Fémtani Tanszék
A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere
A genetikus algoritmus, mint a részletes modell többszempontú és többérdekű "optimálásának" általános és robosztus módszere Kaposvári Egyetem, Informatika Tanszék I. Kaposvári Gazdaságtudományi Konferencia
Kontrollcsoport-generálási lehetőségek retrospektív egészségügyi vizsgálatokhoz
Kontrollcsoport-generálási lehetőségek retrospektív egészségügyi vizsgálatokhoz Szekér Szabolcs 1, Dr. Fogarassyné dr. Vathy Ágnes 2 1 Pannon Egyetem Rendszer- és Számítástudományi Tanszék, szekersz@gmail.com
Excel 2010 függvények
Molnár Mátyás Excel 2010 függvények Csak a lényeg érthetően! Tartalomjegyzék FÜGGVÉNYHASZNÁLAT ALAPJAI 1 FÜGGVÉNYEK BEVITELE 1 HIBAÉRTÉKEK KEZELÉSE 4 A VARÁZSLATOS AUTOSZUM GOMB 6 SZÁMÍTÁSOK A REJTETT
HÁZI DOLGOZAT. Érmefeldobások eredményei és statisztikája. ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai)
ELTE-TTK Kémia BSc Tantárgy: Kémia felzárkóztató (A kémia alapjai) HÁZI DOLGOZAT Érmefeldobások eredményei és statisztikája Készítette: Babinszki Bence EHA-kód: BABSAET.ELTE E-mail cím: Törölve A jelentés
Kétszemélyes játékok Gregorics Tibor Mesterséges intelligencia
Kétszemélyes játékok Kétszemélyes, teljes információjú, véges, determinisztikus,zéró összegű játékok Két játékos lép felváltva adott szabályok szerint, amíg a játszma véget nem ér. Mindkét játékos ismeri
Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés
Országos kompetenciamérés eredményei Kiskulcsosi Általános Iskola 035857 Telephelyi jelentés 6. 8. évfolyam szövegértés Karcag, 2011. április 4. Horváthné Pandur Tünde munkaközösség vezető Kiskulcsosi
V. Kétszemélyes játékok
Teljes információjú, véges, zéró összegű kétszemélyes játékok V. Kétszemélyes játékok Két játékos lép felváltva adott szabályok szerint. Mindkét játékos ismeri a maga és az ellenfele összes választási
Irányítási struktúrák összehasonlító vizsgálata. Tóth László Richárd. Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola
Doktori (PhD) értekezés tézisei Irányítási struktúrák összehasonlító vizsgálata Tóth László Richárd Pannon Egyetem Vegyészmérnöki és Anyagtudományok Doktori Iskola Témavezetők: Dr. Szeifert Ferenc Dr.
Hidraulikus hálózatok robusztusságának növelése
Dr. Dulovics Dezső Junior Szimpózium 2018. Hidraulikus hálózatok robusztusságának növelése Előadó: Huzsvár Tamás MSc. Képzés, II. évfolyam Témavezető: Wéber Richárd, Dr. Hős Csaba www.hds.bme.hu Az előadás
FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA
FIATAL ŰSZAKIAK TUDOÁNYOS ÜLÉSSZAKA Kolozsvár, 1999. március 19-20. Zsákolt áruk palettázását végző rendszer szimulációs kapacitásvizsgálata Kádár Tamás Abstract This essay is based on a research work
SZAKIN program használati útmutató: A megjelenő képernyő baloldalán találjuk a választó mezőt, a jobboldali részen a
SZAKIN program használati útmutató: A SZAKIN program indításakor az alábbi képernyő jelenik meg: A megjelenő képernyő baloldalán találjuk a választó mezőt, a jobboldali részen a megjelenítő mezőt. Választó
Adatszerkezetek. Nevezetes algoritmusok (Keresések, rendezések)
Adatszerkezetek Nevezetes algoritmusok (Keresések, rendezések) Keresések A probléma általános megfogalmazása: Adott egy N elemű sorozat, keressük meg azt az elemet (határozzuk meg a helyét a sorozatban),
KUTATÁS-FEJLESZTÉSI TEVÉKENYSÉG
Központi Statisztikai Hivatal Miskolci Igazgatósága KUTATÁS-FEJLESZTÉSI TEVÉKENYSÉG Miskolc, 2006. május 23. Központi Statisztikai Hivatal Miskolci Igazgatóság, 2006 ISBN 963 215 973 X Igazgató: Dr. Kapros
Genetikus algoritmusok
Genetikus algoritmusok Zsolnai Károly - BME CS zsolnai@cs.bme.hu Keresőalgoritmusok osztályai Véletlent használó algoritmusok Keresőalgoritmusok Kimerítő algoritmusok Dinamikus programozás BFS DFS Tabu
Képrekonstrukció 9. előadás
Képrekonstrukció 9. előadás Balázs Péter Képfeldolgozás és Számítógépes Grafika Tanszék Szegedi Tudományegyetem hv-konvex összefüggő halmazok Mag-burok-szerű rekonstrukció: S. Brunetti, A. Del Lungo, F.
MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012
MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 0 KONFERENCIA ELŐADÁSAI Szolnok 0. május 0. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága
FATERMÉSI FOK MEGHATÁROZÁSA AZ EGÉSZÁLLOMÁNY ÁTLAGNÖVEDÉKE ALAPJÁN
4. évfolyam 2. szám 2 0 1 4 101 107. oldal FATERMÉSI FOK MEGHATÁROZÁSA AZ EGÉSZÁLLOMÁNY ÁTLAGNÖVEDÉKE ALAPJÁN Veperdi Gábor Nyugat-magyarországi Egyetem, Erdômérnöki Kar Kivonat A fatermési fok meghatározása
AZ ELSŐÉVES HALLGATÓK INFORMATIKA TANULÁSI SZOKÁSAINAK VIZSGÁLATA ADATBÁNYÁSZATI ESZKÖZÖKKEL A BUDAPESTI MŰSZAKI FŐISKOLÁN
Informatika a felsőoktatásban Debrecen,. augusztus 7-9. AZ ELSŐÉVES HALLGATÓK INFORMATIKA TANULÁSI SZOKÁSAINAK VIZSGÁLATA ADATBÁNYÁSZATI ESZKÖZÖKKEL A BUDAPESTI MŰSZAKI FŐISKOLÁN THE ANALYSING OF THE COMPUTER
Intelligens Rendszerek Elmélete. Párhuzamos keresés genetikus algoritmusokkal. A genetikus algoritmus működése. Az élet információ tárolói
Intelligens Rendszerek Elmélete dr. Kutor László Párhuzamos keresés genetikus algoritmusokkal http://mobil.nik.bmf.hu/tantargyak/ire.html login: ire jelszó: IRE07 IRE 5/ Természetes és mesterséges genetikus
A Novitax ügyviteli programrendszer első telepítése
Telepítő fájl letöltése honlapunkról A Novitax ügyviteli programrendszer első telepítése A honlapunkon (www.novitax.hu) található telepítő fájlt (novitax2007-setup.exe) le kell tölteni a számítógép egy
Különböző szűrési eljárásokkal meghatározott érdességi paraméterek változása a választott szűrési eljárás figyelembevételével
Különböző szűrési eljárásokkal meghatározott érdességi paraméterek változása a választott szűrési eljárás figyelembevételével Varga Péter 1, Barányi István 2, Kalácska Gábor 3 1 Óbudai Egyetem Bánki Donát
Szebényi Anita Magyarország nagyvárosi térségeinek társadalmi-gazdasági
Szebényi Anita Magyarország nagyvárosi térségeinek társadalmi-gazdasági összehasonlítása Bevezetés A rendszerváltás óta eltelt másfél évtized társadalmi-gazdasági változásai jelentősen átrendezték hazánk
Autópálya forgalomszabályozás felhajtókorlátozás és változtatható sebességkorlátozás összehangolásával és fejlesztési lehetőségei
Autópálya forgalomszabályozás felhajtókorlátozás és változtatható sebességkorlátozás összehangolásával és fejlesztési lehetőségei Tettamanti Tamás, Varga István, Bokor József BME Közlekedésautomatikai
1/8. Iskolai jelentés. 10.évfolyam matematika
1/8 2009 Iskolai jelentés 10.évfolyam matematika 2/8 Matematikai kompetenciaterület A fejlesztés célja A kidolgozásra kerülő programcsomagok az alább felsorolt készségek, képességek közül a számlálás,
Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA
SZDT-03 p. 1/24 Számítógépes döntéstámogatás OPTIMALIZÁLÁSI FELADATOK A SOLVER HASZNÁLATA Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Előadás
Keresések Gregorics Tibor Mesterséges intelligencia
Keresések ADAT := kezdeti érték while terminálási feltétel(adat) loop SELECT SZ FROM alkalmazható szabályok ADAT := SZ(ADAT) endloop KR vezérlési szintjei vezérlési stratégia általános modellfüggő heurisztikus
angolul: greedy algorithms, románul: algoritmi greedy
Mohó algoritmusok angolul: greedy algorithms, románul: algoritmi greedy 1. feladat. Gazdaságos telefonhálózat építése Bizonyos városok között lehet direkt telefonkapcsolatot kiépíteni, pl. x és y város
1.1.1 Dátum és idő függvények
1.1.1 Dátum és idő függvények Azt már tudjuk, hogy két dátum különbsége az eltelt napok számát adja meg, köszönhetően a dátum tárolási módjának az Excel-ben. Azt is tudjuk a korábbiakból, hogy a MA() függvény
Kecskeméti Belvárosi Zrínyi Ilona Általános Iskola Városföldi Általános Iskolája 2014-es évi kompetenciamérésének értékelése Készítette: Knódel Éva
Kecskeméti Belvárosi Zrínyi Ilona Általános Iskola Városföldi Általános Iskolája 2014-es évi kompetenciamérésének értékelése Készítette: Knódel Éva 2015. június 17. I. A telephely épületének állapota és
Paragon Decision Technology BV
1 Előadó: Dr. Lelkes Zoltán Költségcsökkentés optimalizálással 2 Optasoft Kft. Egyetemi háttér ( spin-off cég ): Budapesti Műszaki és Gazdaságtudományi Egyetem Alapítók: Dr. Rév Endre, docens Dr. Lelkes
Programozási módszertan. Mohó algoritmusok
PM-08 p. 1/17 Programozási módszertan Mohó algoritmusok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu PM-08 p. 2/17 Bevezetés Dinamikus programozás
EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA
infokommunikációs technológiák EGYÜTTMŰKÖDŐ ÉS VERSENGŐ ERŐFORRÁSOK SZERVEZÉSÉT TÁMOGATÓ ÁGENS RENDSZER KIDOLGOZÁSA Témavezető: Tarczali Tünde Témavezetői beszámoló 2015. január 7. TÉMAKÖR Felhő technológián
Mesterséges Intelligencia MI
Mesterséges Intelligencia MI Problémamegoldás kereséssel - csak lokális információra alapozva Pataki Béla BME I.E. 414, 463-26-79 pataki@mit.bme.hu, http://www.mit.bme.hu/general/staff/pataki Lokálisan
AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA
AKTUÁTOR MODELLEK KIVÁLASZTÁSA ÉS OBJEKTÍV ÖSSZEHASONLÍTÁSA Kovács Ernő 1, Füvesi Viktor 2 1 Egyetemi docens, PhD; 2 tudományos segédmunkatárs 1 Eletrotechnikai és Elektronikai Tanszék, Miskolci Egyetem
Zenegenerálás, majdnem természetes zene. Bernád Kinga és Roth Róbert
Zenegenerálás, majdnem természetes zene Bernád Kinga és Roth Róbert Tartalom 1. Bevezető 2. Eddigi próbálkozások 3. Módszerek 4. Algoritmus bemutatása 5. Összefoglaló (C) Bernád Kinga, Roth Róbert 2 1.
Optimalizálás alapfeladata Legmeredekebb lejtő Lagrange függvény Log-barrier módszer Büntetőfüggvény módszer 2017/
Operációkutatás I. 2017/2018-2. Szegedi Tudományegyetem Informatikai Intézet Számítógépes Optimalizálás Tanszék 9. Előadás Az optimalizálás alapfeladata Keressük f függvény maximumát ahol f : R n R és
A Markowitz modell: kvadratikus programozás
A Markowitz modell: kvadratikus programozás Harry Markowitz 1990-ben kapott Közgazdasági Nobel díjat a portfolió optimalizálási modelljéért. Ld. http://en.wikipedia.org/wiki/harry_markowitz Ennek a legegyszer
A 2011-es év kompetencia-méréseinek elemzése
A 2011-es év kompetencia-méréseinek elemzése SIOK Dr. Faust Miklós Általános Iskola Nagyberény Készítette: Kristáné Soós Melinda Nagyberény, 2012. április 2. 6. osztály Matematika 3. oldal Az első grafikonon
Megkülönböztetett kiszolgáló routerek az
Megkülönböztetett kiszolgáló routerek az Interneten Megkülönböztetett kiszolgálás A kiszolgáló architektúrák minősége az Interneten: Integrált kiszolgálás (IntServ) Megkülönböztetett kiszolgálás (DiffServ)
Teljesítményprognosztizáló program FELHASZNÁLÓI KÉZIKÖNYV
Teljesítményprognosztizáló FELHASZNÁLÓI KÉZIKÖNYV Tartalomjegyzék 1. A szoftver feladata...3 2. Rendszerigény...3 3. A szoftver telepítése...3 4. A szoftver használata...3 4.1. Beállítások...3 4.1.1. Elszámolási
SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.
SZOFTVERES SZEMLÉLTETÉS A MESTERSÉGES INTELLIGENCIA OKTATÁSÁBAN _ Jeszenszky Péter Debreceni Egyetem, Informatikai Kar jeszenszky.peter@inf.unideb.hu Mesterséges intelligencia oktatás a DE Informatikai
X. FIATAL MŰSZAKIAK TUDOMÁNYOS ÜLÉSSZAKA
X. FIATAL ŰSZAKIAK TUDOÁNYOS ÜLÉSSZAKA Kolozsvár, 005. március 8-9. GRINC OZGÁSFUNKCIÓINAK VIZSGÁLATA ÉS CHANIKAI VONATKOZÁSAI Dr. Orbán Ferenc Abstract Aim of the examinations is to use of Zebris apparatus
Pécsvárad Kft Pécsvárad, Pécsi út 49. Tel/Fax: 72/ Szerzők:
BAUSFT Pécsvárad Kft. 7720 Pécsvárad, Pécsi út 49. Tel/Fax: 72/465-266 http://www.bausoft.hu WinWatt HidroPlan hidraulikai optimalizáló modul Szerzők: dr. Baumann József okl. villamosmérnök 2211 Vasad,
SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE
SZÁLLÍTÁSI FELADAT KÖRUTAZÁSI MODELL WINDOWS QUANTITATIVE SUPPORT BUSINESS PROGRAMMAL (QSB) JEGYZET Ábragyűjtemény Dr. Réger Béla LÉPÉSRŐL - LÉPÉSRE KÖRUTAZÁSI MODELL AVAGY AZ UTAZÓÜGYNÖK PROBLÉMÁJA Induló
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció Gráfkeresési stratégiák Szemantikus hálók
Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel p. 1/29. Ábele-Nagy Kristóf BCE, ELTE
Nem teljesen kitöltött páros összehasonlítás mátrixok sajátérték optimalizálása Newton-módszerrel Ábele-Nagy Kristóf BCE, ELTE Bozóki Sándor BCE, MTA SZTAKI 2010. november 4. Nem teljesen kitöltött páros
19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI
19. AZ ÖSSZEHASONLÍTÁSOS RENDEZÉSEK MŰVELETIGÉNYÉNEK ALSÓ KORLÁTJAI Ebben a fejezetben aszimptotikus (nagyságrendi) alsó korlátot adunk az összehasonlításokat használó rendező eljárások lépésszámára. Pontosabban,
Tartalomjegyzék. Tartalomjegyzék... 3 Előszó... 9
... 3 Előszó... 9 I. Rész: Evolúciós számítások technikái, módszerei...11 1. Bevezetés... 13 1.1 Evolúciós számítások... 13 1.2 Evolúciós algoritmus alapfogalmak... 14 1.3 EC alkalmazásokról általában...
Regresszió. Csorba János. Nagyméretű adathalmazok kezelése március 31.
Regresszió Csorba János Nagyméretű adathalmazok kezelése 2010. március 31. A feladat X magyarázó attribútumok halmaza Y magyarázandó attribútumok) Kérdés: f : X -> Y a kapcsolat pár tanítópontban ismert
Branch-and-Bound. 1. Az egészértéketű programozás. a korlátozás és szétválasztás módszere Bevezető Definíció. 11.
11. gyakorlat Branch-and-Bound a korlátozás és szétválasztás módszere 1. Az egészértéketű programozás 1.1. Bevezető Bizonyos feladatok modellezése kapcsán előfordulhat olyan eset, hogy a megoldás során
Területi elemzések. Budapest, 2015. április
TeIR Területi elemzések Felhasználói útmutató Budapest, 2015. április Tartalomjegyzék 1. BEVEZETŐ... 3 2. AZ ELEMZÉSBEN SZEREPLŐ MUTATÓ KIVÁLASZTÁSA... 4 3. AZ ELEMZÉSI FELTÉTELEK DEFINIÁLÁSA... 5 3.1.
E-Freight beállítási segédlet
E-Freight beállítási segédlet Az E-Freight rendszer működéséhez szükséges programok és beállítások v08 A legújabb verzióért kérjük, olvassa be az alábbi kódot: 1. Támogatott böngészők Az E-Freight az Internet
Megyei tervezést támogató alkalmazás
TeIR (Területfejlesztési és Területrendezési Információs Rendszer) Megyei tervezést támogató alkalmazás Felhasználói útmutató 2015. május Tartalomjegyzék 1. BEVEZETŐ... 3 2. AZ ALKALMAZÁS BEMUTATÁSA...
A 2014-es kompetenciamérés eredményei. Országosan a 10. évfolyamon 78815 tanuló írta meg a felmérést.
A 2014-es kompetenciamérés eredményei Országosan a 10. évfolyamon 78815 tanuló írta meg a felmérést. Az országos átlag 2014-ben matematikából 1631 pont, szövegértésből 1597 pont. Az alábbi grafikon azt
AZ A PRIORI ISMERETEK ALKALMAZÁSA
Doktori (PhD) értekezés tézisei AZ A PRIORI ISMERETEK ALKALMAZÁSA A VEGYIPARI FOLYAMATMÉRNÖKSÉGBEN MADÁR JÁNOS Veszprémi Egyetem Vegyészmérnöki Tudományok Doktori Iskolája Témavezető: dr. Abonyi János
Evolúciós algoritmusok
Evolúciós algoritmusok Evolúció, mint kereső rendszer A problémára adható néhány lehetséges választ, azaz a problématér több egyedét tároljuk egyszerre. Ez a populáció. Kezdetben egy többnyire véletlen
Példa. Job shop ütemezés
Példa Job shop ütemezés Egy üzemben négy gép működik, és ezeken 3 feladatot kell elvégezni. Az egyes feladatok sorra a következő gépeken haladnak végig (F jelöli a feladatokat, G a gépeket): Az ütemezési
1/12. 3. gyakorlat. Lineáris Programozási feladatok megoldása szimplex módszerrel. Pécsi Tudományegyetem PTI
/ Operációkutatás. gyakorlat Lineáris Programozási feladatok megoldása szimplex módszerrel Pécsi Tudományegyetem PTI Normál feladatok megoldása szimplex módszerrel / / Normál feladatok megoldása szimplex
Pletykaalapú gépi tanulás teljesen elosztott környezetben
Pletykaalapú gépi tanulás teljesen elosztott környezetben Hegedűs István Jelasity Márk témavezető Szegedi Tudományegyetem MTA-SZTE Mesterséges Intelligencia Kutatócsopot Motiváció Az adat adatközpontokban
Számítógép és programozás 2
Számítógép és programozás 2 11. Előadás Halmazkeresések, dinamikus programozás http://digitus.itk.ppke.hu/~flugi/ A keresési feladat megoldása Legyen a lehetséges megoldások halmaza M ciklus { X legyen
Gyalogos elütések szimulációs vizsgálata
Gyalogos elütések szimulációs vizsgálata A Virtual Crash program validációja Dr. Melegh Gábor BME Gépjárművek tanszék Budapest, Magyarország Vida Gábor BME Gépjárművek tanszék Budapest, Magyarország Ing.
Mesterséges Intelligencia. Csató Lehel. Csató Lehel. Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 2007/2008
Matematika-Informatika Tanszék Babeş Bolyai Tudományegyetem, Kolozsvár 007/008 Az Előadások Témái Bevezető: mi a mesterséges intelligencia... Tudás reprezentáció i stratégiák Szemantikus hálók / Keretrendszerek
LabVIEW példák és bemutatók KÉSZÍTETTE: DR. FÜVESI VIKTOR
LabVIEW példák és bemutatók KÉSZÍTETTE: DR. FÜVESI VIKTOR LabVIEW-ról National Instruments (NI) által fejlesztett Grafikus programfejlesztő környezet, méréstechnikai, vezérlési, jelfeldolgozási feladatok
GYÁRTÓRENDSZEREKBEN NAPJAINKBAN ALKALMAZOTT TERMELÉSÜTEMEZÉSI MÓDSZEREK BEMUTATÁSA 3
Simon Pál 1 Varga Zoltán 2 GYÁRTÓRENDSZEREKBEN NAPJAINKBAN ALKALMAZOTT TERMELÉSÜTEMEZÉSI MÓDSZEREK BEMUTATÁSA 3 Napjaink termelő és szolgáltató vállalatai egyre nagyobb figyelmet fordítanak a logisztikai
NYOMÁSOS ÖNTÉS KÖZBEN ÉBREDŐ NYOMÁSVISZONYOK MÉRÉTECHNOLÓGIAI TERVEZÉSE DEVELOPMENT OF CAVITY PRESSURE MEASUREMENT FOR HIGH PRESURE DIE CASTING
Anyagmérnöki Tudományok, 39/1 (2016) pp. 82 86. NYOMÁSOS ÖNTÉS KÖZBEN ÉBREDŐ NYOMÁSVISZONYOK MÉRÉTECHNOLÓGIAI TERVEZÉSE DEVELOPMENT OF CAVITY PRESSURE MEASUREMENT FOR HIGH PRESURE DIE CASTING LEDNICZKY
Nemzeti Társadalmi Felzárkóztatási Stratégia indikátor rendszer
Szociális ÁIR (Szociális Ágazati Információs Rendszer) Nemzeti Társadalmi Felzárkóztatási Stratégia indikátor rendszer Felhasználói útmutató Budapest, 2012. december 1 Tartalomjegyzék 1. Előzmények, célok...
A TANTÁRGY ADATLAPJA
A TANTÁRGY ADATLAPJA 1. A képzési program adatai 1.1 Felsőoktatási intézmény Babeș-Bolyai Tudományegyetem 1.2 Kar Matematika és Informatika 1.3 Intézet Magyar Matematika és Informatika 1.4 Szakterület
Optimumkeresés számítógépen
C Optimumkeresés számítógépen Az optimumok megtalálása mind a gazdasági életben, mind az élet sok más területén nagy jelentőségű. A matematikában számos módszert dolgoztak ki erre a célra, például a függvények
DISZKRÉT FIREFLY ALGORITMUS ALKALMAZÁSI LEHETŐSÉGÉNEK VIZSGÁLATA A BESZÁLLÍTÓK KIVÁLASZTÁSÁNÁL
Multidiszciplináris tudományok, 3. kötet. (2013) 1. sz. pp. 153-162. DISZKRÉT FIREFLY ALGORITMUS ALKALMAZÁSI LEHETŐSÉGÉNEK VIZSGÁLATA A BESZÁLLÍTÓK KIVÁLASZTÁSÁNÁL Kota László 1, Jármai Károly 2 1 tudományos
Egy gazdasa gmatematikai modell An economical mathematics model
Egy gazdasa gmatematikai modell An economical mathematics model KÉZI CS. University of Debrecen, kezicsaba@science.unideb.hu Absztrakt. Az NTP-NFTÖ-17-C-159 azonosítószámú pályázat keretében az egyik fő
Populáció A populációk szerkezete
Populáció A populációk szerkezete Az azonos fajhoz tartozó élőlények egyedei, amelyek adott helyen és időben együtt élnek és egymás között szaporodnak, a faj folytonosságát fenntartó szaporodásközösséget,
A forrás pontos megnevezésének elmulasztása valamennyi hivatkozásban szerzői jogsértés (plágium).
A szakirodalmi idézések és hivatkozások rendszere és megadásuk szabályai A bibliográfia legfontosabb szabályai Fogalma: Bibliográfiai hivatkozáson azoknak a pontos és kellően részletezett adatoknak az