Az atommag szerkezete
|
|
- Ida Tamásné
- 8 évvel ezelőtt
- Látták:
Átírás
1 Filozófusok / udósok Törénelem z ommg szerkezee risoeles Dlon J.J.Thomson Bohr Schrödinger Puli Biofizik elődások 4 okóber Orbán József PTE ÁOK Biofiziki Inéze Curie házspár Teller Fermi Einsein és Szilárd Yukw Frnk-Herz kísérle fooelekromos jelenség Compon szórás eemn-effekus Sern-Gerlch kísérle hp:// ne/omictimeline.hm hp://librry.hinkques.org/794/exs/imeline/imeline.hml z om szó eredee: omos (omos) görög szó jelenése oszhln. ommg nincs! ommodellek z ommg szemponjából Démokriosz z elekron felfedezése. mzsolás puding modell. ommg nincs poziív ölés egyenleesen oszlik el z nygbn. Ruherford modell (9) R =.4-5 m -részecskék poziívn ölö mgok körül lálhók z elekronok. euron nincs! Thomson om modellje (9) elekron mérési elrendezés 4 Miből áll z om? Bohr-Sommerfeld modellnek (95) megfelelően: egív ölésű elekron(ok) elekronfelhőben; z elekronok csk egy meghározo érrészben lehenek (mximum ~ - m ávolságr) Poziívn ölö ommg proonról neuronról szó sincs! mg ovább nem bonhó! ommg szerkezeének megismerése. z ommg vlóbn oszhln?. Milyen részecske(k) vn z ommgbn?. Mi feld/uk? 5
2 Chdwick érelmezése (9) Be és z α-részecske üközésekor proonnl megegyező ömegű elekromos ölés nélküli részecske lépe ki. Be He C z új részecské neuronnk neveze el. neuros: görög semleges Heisenberg és Tmm (9) Kidolgozzák z ommg neuron IS rlmzó mgmodelljé. Új érelme nyer rendszám! C ömegszám () n proonszám () vgy rendszám (ölés) = -; neuronszám Jmes Chdwick (fiziki obel-díj 95.) legegyszerűbből kiindulv: Hidrogén om omervezés Mire jó ez részecske? 7 8 p Mére? proon semmi más! H R H om - m; R H ommg -5 m Bonyolulbb om: He (rendszám = ) z zonosn ölö részecskék szíják egymás Coulomb erő mi. Kell legyen egy rgszó hás! Erősebb min z elekromos szíás! vlós He om: rendszám = ömegszám = 4 p és n 4 He neuronok jelenlée elekromos szemponból még mindig nem mgyrázz z ommg sbiliásá! Mégis kimuhó z ommg sbilizációj. Ez z jeleni hogy neuronok (is) olyn erő lérejöében vesznek rész hol nem z elekromos ölés számí! Mi ez z erő? 9 Tömegdefekus köési energi z ommgok ömege kisebb min z összeevő proonok és neuronok ömegeinek összege. z összee mgból lászólg hiányzó ömeg mg köési energiájávl rányos. Energi szbdul fel h mg szbd nukleonokból épül fel. m ( m m ) m E mc pr n mg Einsein-féle ömeg-energi ekvivlenci (nukleon) köési energi: megdj egy nukleonnk z ommgból vló elávolíásához szükséges energiá (MeV). Mgerő - Erős kölcsönhás nukleon köési energiáj Kölcsönhások és uljdonságik z elekromos szíás kompenzálj. ngy inenziású (erős) rövid hóávolságú ( -5 m) mindig (!) vonzó erőhás elekromos ölésől függelen neuronokr is h ső! p-p p-n n-n közö egyenlő ngyságú erő lkul ki erős kölcsönhás elekromágneses m ölés Mire h? színölés (rgb) elekromos ölés Relív erősség hó áv (m) proon neuron 8-5 elekromosn ölö részecskékre 5 grviáció ömeg mindenre (nyg) Mgyr név ngol név jelölés nyuglmi ömeg (GeV/c²) Fel* Up u 5-5 / Le* Down d 7-5 -/ Bájos Chrm c -4 / Furcs Srnge s -7 -/ Felső / Teő* Top / True 5-8 / lsó / Szépség* Boom / Beuy b / elekromos ölés (e)
3 ukleonszám növekedés hási M g m o d e l l e k övekszik: nukleonszám ömeg (-szám: ) om sugár om érfog r ~ ; V ~ r ~ om felszíne felüle ~ r ~ folydékcseppeknél pszl jelenségekkel zonos hások! E B em lineáris! 4. Folydékcsepp modell Liquid drop model (LDM) Összenyomhln folyékony ommg Bohr: z ommg sok uljdonság különösen nehéz ommgoknál egy folydékcsepp uljdonságir emlékeze.. mgbn minden nukleon ngyjából zonos energiávl köö. (E neuron B = E proon B!). mg eljes köési energiáj rányos nukleonok számávl ().. z ommg érfog rányos nukleonszámml. Hofseder 4. Ebből kövekezik hogy z ommg sűrűsége minden ommgr mindig ugynkkor. 5. mérefüggelen sűrűség összenyomhln. gömb lk 7. nukleon csk szomszédos részecskékkel h kölcsön. 5 Folydékcsepp modell (LDM) Mkroszkópikus uljdonságokon lpul (kísérleek). Megmgyrázz: köési energiá ömege ommg sbiliásá. Modell (95): Crl von Weizsäcker készíee Hns Behe számíási lpján. E K E ez meg mi jelen??? K Eérfogi E felülei ECoulomb EPuli Eni Hund! köési energi folydékcsepp-modell szerin öbbféle energiából áll össze. Klsszikus fizik lpján mgyrázhó energigok: mgbn lévő nukleonok szomszéd nukleonok erőerében mozognk: érfogi energi felüleen lévőknek kevesebb szomszédj felülei energi Proonok elekromos ölése elekroszikus energi g Coulomb-energi öbbi go kvnummechnik dj: Puli-energi (fermionok Puli-elv) Puli elv: p és n feles spinű részecskék min z e -. E p E n zonos kvnumszámú állpook nem leheségesek. ni-hund energi ni-hund szbály: zonos ípusú de ellenées spinű nukleonok szerenek egy energiszinre kerülni. hp://en.wikipedi.org/wiki/liquid_drop_model hp://en.wikipedi.org/wiki/behe-weizs%c%4cker_formul 7 z prméerek kísérleesen hározhók meg félempirikus formul! 8
4 ukleononkéni köési energi (MeV) ukleononkéni köési energi (MeV) Egy nukleon köési energiáj rendszám függvényében Mximum: 55- közö! felülei és érfogi energiák rány válozik! (r /r = /r) Coulomb erő hás növekszik! Rendszám (omi ömegegység) modell: - jósol! z illeszés mjdnem ökélees! De...! i 9 Miér nem ökélees z LDM? Rendszám (omi ömegegység) Finomszerkeze elér könnyű és mágikus számú omoknál: vgy = Ezeknél köésenergi z LDM áll jósolnál ngyobb! z elekronfelhőnél is vnnk hsonló mágikus számok: nemesgázok sbilbb elekronszerkezeűek! Ok: Ezek z omok lezár (elíe) nukleonhéjk rlmznk. Ez jelenség nincs benne z LDM-ben! kkor mos mi eheünk? Vn-e jobb modell?. omhéj modell (gömbszimmerikus) omic shell model (SM) z omhéj modell z ommg mikroszkópikus uljdonságin (energi szinek) lpul. z ommg bizonyos uljdonsági periodiciás munk. kvnummechnik (QM) képes z elekronok elekronpályákon vló viselkedésé leírni Képes-e QM nukleonok viselkedésé leírni? Elekronhéj omhéj nlógi! omhéj modell (SM) Brle Elssser 94: függelen részecske modell Jensen és Göpper-Myer 949: héjmodell z összes nukleon közös erőere hoz lére melyben nukleonok egymásól függelenül mozoghnk. nukleonr felír Schrödinger egyenle megoldás kvnál prméerekkel: energi perdüle mágneses momenum spin kvnumszámok: omhéjk jellemzi ( spin csk ½ lehe Puli-elv érvényes) zár omhéjkkl rendelkező omok sbilbbk! Rdiokiviás Elekron - J. J. Thomson (897) Proon - E. Goldsein (9) ommg - E. Ruherford (9) euron - Jmes Cheidwick (9) Kvrkok - Leon Ledermn (977) Sugárzások Sugárzások kölcsönhás z nyggl 4
5 ommg sbiliás ukleononkéni köési energi (MeV) Egy nukleon köési energiáj rendszám függvényében z ommg insbiliás rdiokiviás lpj 5 Fe Rendszám (omi ömegegység) Sbiliás elérésének módji -bomlás» -sugárzás Mghsdás mgfúzió 4 X X 4 X 4 X He : ömegszám (omszám) : proonok szám R Rn Kilépési sebességük elérhei 5 m/s-o (5 c) Vonls spekrum (krkeriszikus) omrekor ombomb csillgok hp://ourech.nf.csiro.u/educion/senior/cosmicengine/sun_nucler.hml hp:// U m R Rn Po egív -bomlás n p X -bomlás» -sugárzás Kísérle: Curie 9 Elméle: Enrico Fermi 94 e X e Kilépési sebességük elérhei 8 m/s-o ( c) Folyonos spekrum (nineurino) e 7 55 Cs 7 5 B e Poziív -bomlás p n e X -bomlás» -sugárzás - izoópok izoópok X e e H C Cs C I e e K 5
6 Elekromágneses sugárzás (-foon) f> 9 Hz illeve E> kev gerjesze ommgok lcsonybb energiállpob örénő ámeneekor kelekezik Fénysebességgel erjednek Vonls spekrum (krkeriszikus) K Cs sugárzás Kísérőjelenség! I B B 7m m: mesbil állpo Sugárzások - összehsonlíás külső hás nélkül kelekezik fiziki és kémii válozások nem befolyásolják ionizáló hás vn (fizik) kémii biológii hás vn Fiziki jellemzők: kiviás Élerm Spekrum Áholóképesség és LET (lineáris energi rnszfer) Összehsonlíás Összehsonlíás - Álgos élerm Rn R Po I H C K U 4 s; np; 8 np; 45 9 év np; év; 558 év; 9 év; 7 - s C m; 5 h 4 7 9K 55Cs 5I év; 9 év; év; 8 np Spekrum Vonls (krkeriszikus) Folyonos (neurino mi) Vonls (krkeriszikus) LET (ionizáció/mm) mgs 8- közepes -8 lcsony - Összehsonlíás Áholóképesség hóávolság Kicsi Levegő: cm Plexi: mm Közepes Levegő: m Plexi: cm Ólom: mm gy Ólom: cm kiviás () rdiokív bomlás vélelenszerűen bekövekező esemény! z másodperc l bekövekező mgálkulások szám. mgálkulás = bomlás Mérékegysége: Becquerel Bq = bomlás/másodperc. Figyelem! rdiokív bomlás nem jeleni z omok elűnésé! Sbil izoóp Rdiokív izoóp Leánymg Régebben hsznál mérékegysége Curie. ( Ci = 7 Bq)
7 Bomlásörvény Felezési idő álgos élerm () : kezdei bomlln ommgok szám () : időpillnbn jelenlévő bomlln ommgok szám Bomlási állndó (): Jellemzi bomlási sebessége. Megdj ommg álkulási vlószínűségé. () Álgos élerm (): bomlási állndó reciprok. Bomlln mgok szám () () / () /e T / ( ) () ( ) () T idő e ( ) () ( ) () e T T ln T e 44T Rdiokiviás Milyen deekorokkl lehe z egyes rdiokív részecskéke deekálni? ködkmr Geiger Müller számláló Szcinillációs deekor Miér vn szükség ennyiféle deekorr? Elérő z nyggl vló kölcsönhásuk méréke. 7
Az atommag szerkezete
z aommag szerkezee Biofizika előadások szepember Elekron mikroszkóp Orbán József Elekron - J. J. Thomson (897) Proon - E. Goldsein (9) ommag - E. Ruherford (9) Neuron - James Cheidwick (9) Kvarkok - Leon
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 13. Biofizika, Nyitrai Miklós Összefoglalás Atommag alkotói, szerkezete; Erős vagy magkölcsönhatás; Tömegdefektus. A kölcsönhatások világképe
Az atommag szerkezete
Az atommag szerkezete Biofizika előadások 2013 november Orbán József PTE ÁOK Biofzikai Intézet Filozófusok / tudósok Történelem Aristoteles Dalton J.J.Thomson Bohr Schrödinger Pauli Curie házaspár Teller
Sugárzások kölcsönhatása az anyaggal
Radioaktivitás Biofizika előadások 2013 december Sugárzások kölcsönhatása az anyaggal PTE ÁOK Biofizikai Intézet, Orbán József Összefoglaló radioaktivitás alapok Nukleononkénti kötési energia (MeV) Egy
Atomfizika. Az atommag szerkezete. Radioaktivitás Biofizika, Nyitrai Miklós
Atomfizika. Az atommag szerkezete. Radioaktivitás. 2010. 10. 12. Biofizika, Nyitrai Miklós Miért hiszi mindenki azt, hogy az atomfizika egyszerű, szép és szerethető? A korábbiakban tárgyaltuk Az atom szerkezete
( E) ( E) de. 4πε. Két példa: 1. példa: Rutherford-szórás. 2. példa: : Kemény gömbön történı szórás szögfüggése. szögfüggése (elméletileg(
Mg- és neuronfizik 7. elıás Emlékezeı: ommgrekió: élárgy + + Jelölés: (, ) Rekióenergi: Q = (M + M M M ) Rekióseesség: R = φ N σ Fluxus: φ Célárgy omok R szám: N Mikroszkopikus háskereszmesze: σ = N φ
Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.
MGFIZIK z atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. Z TOMMG SZERKEZETE, RDIOKTIVITÁS PTE ÁOK Biofizikai Intézet Futó Kinga magfizika azonban még nem lezárt tudomány,
Radioaktivitás. Stabilitás elérésének módjai. -bomlás» -sugárzás. Természetes dolog-e a radioaktivitás?
Radioakiviás Sugárzások Sugárzások kölcsönhaása az anyaggal PE ÁOK Biofizikai néz, 0 okóbr Orbán Józsf rmészs dolog- a radioakiviás? gn, a Big Bang óa lézik... Mi a kiváló oka gy aommag radioakív áalakulásának?
ismerd meg! A digitális fényképezgép VII. rész
ismerd meg! A digiális ényképezgép VII. rész 3.5.3. Mélységélesség A képérzékel síkjábn kelekez kép szigorún véve cskis beállío ávolságr ekv árgyknál éles. Az ennél közelebb és ávolbb lev árgyk képe z
ATOMFIZIKA, RADIOAKTIVITÁS
ATOMFIZIKA, RADIOAKTIVITÁS 2013. 11. 08. A biofizika fizikai alapjai Magfizika Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. A magfizika azonban még nem lezárt
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
FIZIKA. Sugárzunk az elégedettségtől! (Atomfizika) Dr. Seres István
Sugárzunk az elégedettségtől! () Dr. Seres István atommagfizika Atommodellek 440 IE Democritus, Leucippus, Epicurus 1803 1897 John Dalton J.J. Thomson 1911 Ernest Rutherford 19 Niels Bohr 3 Atommodellek
Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós
Atomfizika. Radioaktív sugárzások kölcsönhatásai. 2010. 10. 18. Biofizika, Nyitrai Miklós Emlékeztető Radioaktív sugárzások keletkezése, típusai A Z A Z α-bomlás» α-sugárzás A Z 4 X X + 2 X A Z 4 2 X 4
8. AZ ATOMMAG FIZIKÁJA
8. AZ ATOMMAG FIZIKÁJA Az atommag szerkezete (40-44 oldal) A tömegspektrométer elve Az atommag komponensei Izotópok Tömeghiány, kötési energia, stabilitás Magerők Magmodellek Az atommag stabilitásának
DIFFÚZIÓ. BIOFIZIKA I Október 20. Bugyi Beáta
BIOFIZIKA I 010. Okóber 0. Bugyi Beáa TRANSZPORTELENSÉGEK Transzpor folyama: egy fizikai mennyiség érbeli eloszlása megválozik Emlékezeő: ermodinamika 0. főéele az egyensúly álalános feléele TERMODINAMIKAI
Sugárzások és anyag kölcsönhatása
Sugárzások és anyag kölcsönhatása Az anyaggal kölcsönhatásba lépő részecskék Töltött részecskék Semleges részecskék Nehéz Könnyű Nehéz Könnyű T D p - + n Radioaktív sugárzás + anyag energia- szóródás abszorpció
[ ] [ ] [ ] [ ] [ ] [ ] [ ] v( t) = k A B. Gyors kinetikai módszerek. Stopped flow. = k. Dr. Kengyel András. v = k A B. ( t) [ ] ( t ) ( t)
Modern iofiziki kuási módszerek 011 Okóer 0. Rekciókineik Gyors kineiki módszerek Dr. Kengyel ndrás PTE ÁOK iofiziki Inéze REKIÓSEESSÉG: rekció jellemzésére szolgáló prméer Rekcióseesség függ: részeı nygok
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Fizika A2E, 7. feladatsor megoldások
Fizika A2E, 7. feladasor ida György József vidagyorgy@gmail.com Uolsó módosíás: 25. március 3., 5:45. felada: A = 3 6 m 2 kereszmesze rézvezeékben = A áram folyik. Mekkora az elekronok drifsebessége? Téelezzük
Magfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
SPEKTROSZKÓPIA: Atomok, molekulák energiaállapotának megváltozásakor kibocsátott ill. elnyeld sugárzások vizsgálatával foglalkozik.
SPEKTROFOTOMETRI SPEKTROSZKÓPI: omok, molekulák energiaállapoának megválozásakor kibosáo ill. elnyeld sugárzások vizsgálaával foglalkozik. Más szavakkal: anyag és elekromágneses sugárzás kölsönhaása eredményeképp
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
Hcserélk alapegyenlete (írta : Ortutay Miklós)
Hcserél lpegyenlee (ír : Oruy Milós). Hávieli ényez. Közepes hmérséle ülönség (egyenárm) 3. Háviel csoldlon éjárú, öpenyoldlon egyjárú hcseréél. Hávieli ényez Állndósul állpon cs üls és els felüleén hádássl,
FIZIKA. Radioaktív sugárzás
Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos
FIZIKA KÖZÉPSZINT. Első rész. Minden feladat helyes megoldásáért 2 pont adható.
FIZIKA KÖZÉPSZINT Első rész Minden felada helyes megoldásáér 2 pon adhaó. 1. Egy rakor először lassan, majd nagyobb sebességgel halad ovább egyenleesen. Melyik grafikon muaja helyesen a mozgás? v v s s
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés J.J. Thomson (1897) Katódsugárcsővel végzett kísérleteket az elektron fajlagos töltésének (e/m) meghatározására. A katódsugarat alkotó részecskét
Az atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
Atomfizika. Fizika kurzus Dr. Seres István
Atomfizika Fizika kurzus Dr. Seres István Történeti áttekintés 440 BC Democritus, Leucippus, Epicurus 1660 Pierre Gassendi 1803 1897 1904 1911 19 193 John Dalton Joseph John (J.J.) Thomson J.J. Thomson
Izotóp geológia: Elemek izotópjainak használata geológiai folyamatok értelmezéséhez.
Radioaktív izotópok Izotópok Egy elem különböző tömegű (tömegszámú - A) formái; Egy elem izotópjainak a magjai azonos számú protont (rendszám - Z) és különböző számú neutront (N) tartalmaznak; Egy elem
Az atom szerkezete. Az eltérülés ritka de nagymértékű. Thomson puding atom-modellje nem lehet helyes.
Az atom szerkezete Rutherford kísérlet (1911): Az atom pozitív töltése és a tömeg nagy része egy nagyon kis helyre összpontosul. Ezt nevezte el atommagnak. Az eltérülés ritka de nagymértékű. Thomson puding
Úton az elemi részecskék felé. Atommag és részecskefizika 2. előadás február 16.
Úton az elemi részecskék felé Atommag és részecskefizika 2. előadás 2010. február 16. A neutron létének következményei I. 1. Az atommag alkotórészei Z db proton + N db neutron, A=N+Z az atommag tömege
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
Az atom felépítése Alapfogalmak
Anyagszerkezeti vizsgálatok 2017/2018. 1. félév Az atom felépítése Alapfogalmak Csordás Anita E-mail: csordasani@almos.uni-pannon.hu Tel:+36-88/624-924 Pannon Egyetem Radiokémiai és Radioökológiai Intézet
Mag- és neutronfizika
Mag- és neutronfizika z elıadás célja: : megalapozni az atomenergetikai ismereteket félév során a következı témaköröket ismertetjük: Magfizikai alapfogalmak (atommagok, radioaktivitás) Sugárzás és anyag
Az elektron töltése, Millikan kísérlet, az elektron tömegének mérése:
Az elekron ölése, Millikan kísérle, az elekron ömegének mérése: A kísérleek szerin a ölésnek léezik egy legkisebb, ovább nem oszhaó adagja. Az elemi ölés nagyságá ami éppen egy elekronnak a ölése, Millikan
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
TSHK 644 TSHK 643. Bekötési rajz A09153 A09154 A09155 A09156 A09157 A09158 A09159 A09160
21.164/1 SHK 621...661: Fn-Coil helyiséghőmérséklet-szályozó (elektromechnikus) Hogyn jvíthtó z energi htásfok égtechniki eszközök kívánt vezérlését dj. Felhsználási területek kó- és üzlethelyiségek egységes
Definíciók 3 rész. Fogalom Képlet, definíció Jelölések Jelmagyarázat, mértékegység A cellareakció szabadentalpiaváltozása és az elektromotoros erő
Defníó 3 rész oglom Kéle, defníó Jelölése Jelmgyráz, méréegység A ellreó szbdenlválozás és z eleromooros erő M z reó ölésszám () r reó szbdenl-válozás (J/mol) r -z özö sol dffúzós oenál elnygoló rdy-állndó
Radioaktivitás biológiai hatása
Radioaktivitás biológiai hatása Dózis definíciók Hatások Biofizika előadások 2013 december Orbán József PTE ÁOK Biofizikai Intézet A radioaktív sugárzás elleni védekezés 3 pontja Minimalizált kitettségi
26. HÁLÓZATI TÁPEGYSÉGEK. Célkitűzés: A hálózati egyenirányító és stabilizáló alapkapcsolások és jellemzőinek megismerése, illetőleg mérése.
26. HÁLÓZATI TÁPEGYSÉGEK Célkiűzés: A hálózi egyenirányíó és silizáló lpkpcsolások és jellemzőinek megismerése, illeőleg mérése. I. Elmélei áekinés Az elekronikus készülékek működeéséhez legöször egyenfeszülségre
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek emel szin Javíási-érékelési úmuaó ÉETTSÉGI VIZSG 0. okóber. ELEKTONIKI LPISMEETEK EMELT SZINTŰ ÍÁSELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ EMEI EŐFOÁSOK MINISZTÉIUM Elekronikai
6. Laboratóriumi gyakorlat KAPACITÍV SZINTÉRZÉKELŐK
6. Lbortóriumi gykorlt KAPAITÍV SZINTÉRZÉKELŐK. A gykorlt célj A kpcitív szintmérés elvének bemuttás. A (x) jelleggörbe ábrázolás szigetelő és vezető olyékok esetén. Egy stbil multivibrátor elhsználás
+ + Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen.
MAGFIZIKA Az atomhéj (atommag körüli elektronok) fizikáját a kvantumfizika írja le teljes körűen. AZ ATOMMAG SZERKEZETE, RADIOAKTIVITÁS 9. 9. 4. PTE ÁOK Biofizikai Intézet Vig Andrea A magfizika azonban
Fermi Dirac statisztika elemei
Fermi Dirac statisztika elemei A Fermi Dirac statisztika alapjai Nagy részecskeszámú rendszerek fizikai jellemzéséhez statisztikai leírást kell alkalmazni. (Pl. gázokra érvényes klasszikus statisztika
JÁTSSZUNK RÉSZECSKEFIZIKÁT!
JÁTSSZUNK RÉSZECSKEFIZIKÁT! Dr. Oláh Éva Mária Bálint Márton Általános Iskola és Középiskola, Törökbálint MTA Wigner FK, RMI, NFO ELTE, Fizikatanári Doktori Iskola, Fizika Tanítása Program PhD olaheva@hotmail.com
FIZIKA. Atommag fizika
Atommag összetétele Fajlagos kötési energia Fúzió, bomlás, hasadás Atomerőmű működése Radioaktív bomlástörvény Dozimetria 2 Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 He Z A 4 2
finanszírozza más városnak, tehát ezt máshonnan finanszírozni nem lehet.
19 finnszírozz más városnk, tehát ezt máshonnn finnszírozni lehet. Amennyiben z mortizációs költség szükségessé váló krbntrtási munkár elég, s melynek forrás csk ez, bbn z esetben z önkormányzt fizeti
Az ionizáló sugárzások fajtái, forrásai
Az ionizáló sugárzások fajtái, forrásai magsugárzás Magsugárzások Röntgensugárzás Függelék. Intenzitás 2. Spektrum 3. Atom Repetitio est mater studiorum. Röntgen Ionizációnak nevezzük azt a folyamatot,
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin ÉETTSÉG VZSGA 0. május. ELEKTONKA ALAPSMEETEK KÖZÉPSZNTŰ ÍÁSBEL ÉETTSÉG VZSGA JAVÍTÁS-ÉTÉKELÉS ÚTMTATÓ EMBE EŐFOÁSOK MNSZTÉMA Egyszerű, rövid feladaok Maximális ponszám:
I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag?
I. Az anyagszerkezetről alkotott kép változása Ókori görög filozófusok régi kérdése: Miből vannak a testek? Meddig osztható az anyag? Platón (i.e. 427-347), Arisztotelész (=i.e. 387-322): Végtelenségig
A Lorentz transzformáció néhány következménye
A Lorenz ranszformáció néhány köekezménye Abban az eseben, ha léezik egy sebesség, amely minden inercia rendszerben egyforma nagyságú, akkor az egyik inercia rendszerből az áérés a másik inercia rendszerre
A radioaktív bomlás kinetikája. Összetett bomlások
A radioakív bomlás kinikája Össz bomlások Össz bomlások: lágazó bomlás B A B 40 K,EX 40 40 Ca Ar 0 B B Lvzés mgalálhaó az Izoópia I. 4. fjzébn! U-38 bomlási sor fonosabb agjai U-38 Th-34 Pa-34 U-34 Th-30
Bevezetés a részecske fizikába
Bevezetés a részecske fizikába Kölcsönhatások és azok jellemzése Kölcsönhatás Erősség Erős 1 Elektromágnes 1 / 137 10-2 Gyenge 10-12 Gravitációs 10-44 Erős kölcsönhatás Közvetítő részecske: gluonok Hatótávolság:
Kvarkok. Mag és részecskefizika 2. előadás Február 23. MRF2 Kvarkok, neutrínók
Kvarkok Mag és részecskefizika. előadás 018. Február 3. A pozitron felfedezése A1 193 Anderson (Cal Tech) ködkamra kozmikus sugárzás 1300 db fénykép pozitrónium PET Antihidrogén Kozmikus sugárzás antirészecske:
Elektronika 2. TFBE1302
Elekronika. TFE30 Analóg elekronika áramköri elemei TFE30 Elekronika. Analóg elekronika Elekronika árom fő ága: Analóg elekronika A jelordozó mennyiség érékkészlee az érelmezési arományon belül folyonos.
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin 3 ÉETTSÉG VZSG 04. május 0. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSBE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ EMBE EŐFOÁSOK MNSZTÉM Egyszerű, rövid feladaok Maximális ponszám: 40.)
REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS
REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet
XVII. SZILÁRD LEÓ NUKLEÁRIS TANULMÁNYI VERSENY Beszámoló, II. rész
osan megszûn Ez alapján közelíôleg egy évben kimondoan csak a avaszi óraáállíásnak köszönheôen álagosan 43 GWh érékkel csökken az országos villamosenergia-fogyaszás Hasonlóképpen számolunk mind az 5 évben
A nukleáris fizika története, a nukleáris energetika születése
Tematika 1. Az atommagfizika elemei 2. A nukleáris fizika története, a nukleáris energetika születése 3. Magsugárzások detektálása és detektorai 4. Az atomreaktor 5. Reaktortípusok a felhasználás módja
OPTIKA STATISZTIKUS OPTIKA IDŐBELI KOHERENCIA. Budapesti Műszaki és Gazdaságtudományi Egyetem Atomfizika Tanszék, dr. Erdei Gábor
OPTIK STTISZTIKUS OPTIK IDŐELI KOHERENCI udpesi Műszki és Gzdságudományi Egyeem omfizik Tnszék, dr. Erdei Gáor Ágzi felkészíés hzi ELI projekel összefüggő képzési és K+F feldokr TÁMOP-4...C-//KONV-0-0005
Az atombomba története
Az atombomba története Szegedi Péter TTK Tudománytörténet és Tudományfilozófia Tanszék Déli Tömb 1-111-es szoba 372-2990 vagy 6670-es mellék pszegedi@caesar.elte.hu és http://hps.elte.hu Tematika 1. A
Modern fizika vegyes tesztek
Modern fizika vegyes tesztek 1. Egy fotonnak és egy elektronnak ugyanakkora a hullámhossza. Melyik a helyes állítás? a) A foton lendülete (impulzusa) kisebb, mint az elektroné. b) A fotonnak és az elektronnak
2014/2015-ös tanév II. féléves tematika
Dr Vincze Szilvi 24/25-ös tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási módszereik
Biofizika tesztkérdések
Biofizika tesztkérdések Egyszerű választás E kérdéstípusban A, B,...-vel jelölt lehetőségek szerepelnek, melyek közül az egyetlen megfelelőt kell kiválasztani. A választ írja a kérdés előtt lévő kockába!
Szemináriumi feladatok megoldása (kiegészítés) I. félév
Szemináriumi feldtok megoldás (kiegészítés) I. félév VI. Szeminárium 1. Frncis kísérlet (1925). Az ionos mechnizmus indirekt zzl támszthtó lá, hogy sem mgs hőmérsékletre, sem ultriboly fényre nincs szükség
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei
7. tétel: Elsı- és másodfokú egyenletek és egyenletrendszerek megoldási módszerei Elsıfokú függvények: f : A R A R, A és f () = m, hol m; R m 0 Az elsıfokú függvény képe egyenes. (lásd késı) m: meredekség,
Atommodellek. Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Rausch Péter kémia-környezettan tanár
Atommodellek Ha nem tudod egy pincérnőnek elmagyarázni a fizikádat, az valószínűleg nem nagyon jó fizika. Ernest Rutherford Rausch Péter kémia-környezettan tanár Modellalkotás A modell a valóság nagyított
A A. A hidrosztatikai nyomás a folyadék súlyából származik, a folyadék részecskéi nyomják egymást.
. Ideális olyadék FOLYDÉKOK ÉS GÁZOK SZTTIKÁJ Nincsenek nyíróerők, a olyadékréegek szabadon elmozdulanak egymásoz kées. Emia a nyugó olyadék elszíne mindig ízszines, azaz merőleges az eredő erőre. Összenyomaalan
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
KVANTUMMECHANIKA. a11.b-nek
KVANTUMMECHANIKA a11.b-nek HŐMÉRSÉKLETI SUGÁRZÁS 1 Hősugárzás: elektromágneses hullám A sugárzás által szállított energia: intenzitás I, T és λkapcsolata? Példa: Nap (6000 K): sárga (látható) Föld (300
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin Javíási-érékelési úmaó 09 ÉETTSÉGI VIZSG 00. májs 4. ELEKTONIKI LPISMEETEK KÖZÉPSZINTŰ ÍÁSBELI ÉETTSÉGI VIZSG JVÍTÁSI-ÉTÉKELÉSI ÚTMUTTÓ OKTTÁSI ÉS KULTUÁLIS MINISZTÉIUM
A digitális multiméterek
A digiális muliméere A digiális muliméere - z nlóg muliméerehez hsonlón - egyen- és válozó feszülség, egyen- és válozó árm, vlmin ohmos-ellenállás mérésére llms. Szolgálásu zonbn - digiális jelfeldolgozás
Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot
Reakiókinetika aktiválási energia kiindulási állapot energia nyereség felszabaduló energia végállapot Reakiókinetika kinetika: mozgástan reakiókinetika (kémiai kinetika): - reakiók időbeli leírása - reakiómehanizmusok
Hatvani István fizikaverseny 2015-16. 1. forduló megoldások. 1. kategória
1. ktegóri 1.1.1. Adtok: ) Cseh László átlgsebessége b) Chd le Clos átlgsebessége Ezzel z átlgsebességgel Cseh László ideje ( ) ltt megtett távolság Így -re volt céltól. Jn Switkowski átlgsebessége Ezzel
MATEMATIKA ÉRETTSÉGI 2007. október 25. KÖZÉPSZINT I.
MATEMATIKA ÉRETTSÉGI 007. október 5. KÖZÉPSZINT I. ) Az A hlmz elemei háromnál ngyobb egyjegyű számok, B hlmz elemei pedig húsznál kisebb pozitív pártln számok. Sorolj fel z hlmz elemeit! ( pont) A B AB
Magspektroszkópiai gyakorlatok
Magspektroszkópiai gyakorlatok jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Deák Ferenc Mérés dátuma: 010. április 8. Leadás dátuma: 010. április 13. I. γ-spekroszkópiai mérések A γ-spekroszkópiai
2010/2011 es tanév II. féléves tematika
2 február 9 Dr Vincze Szilvi 2/2 es tnév II féléves temtik Mátrix foglm, speciális mátrixok Műveletek mátrixokkl, mátrix inverze 2 A determináns foglm és tuljdonsági 3 Lineáris egyenletrendszerek és megoldási
A bizonytalanság és az információ közgazdaságtana
(C) hp://kg.be.h/ /4 A bizonylnság és z inforáció közgzdságn Mjor Iván A közgzdságn fıárlánk lpelvei A neoklssziks közgzdságn lpji: közgzdságn, in ársdli fizik (Jevons, Menger, Böh-Bwerk és z oszrák iskol)
Radioaktív sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktív sugárzások detektálása.
Különböző sugárzások tulajdonságai Típus töltés Energia hordozó E spektrum Radioaktí sugárzások tulajdonságai és kölcsönhatásuk az elnyelő közeggel. A radioaktí sugárzások detektálása. α-sugárzás pozití
TENGELY szilárdsági ellenőrzése
MISKOLCI EGYETEM GÉP- ÉS TERMÉKTERVEZÉSI TASZÉK OKTATÁSI SEGÉDLET GÉPELEMEK c. tntárgyhoz TEGELY szilárdsági ellenőrzése Összeállított: Dr. Szente József egyetemi docens Miskolc, 010. A feldt megfoglmzás
t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,
Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló
3. Gyakorlat. A soros RLC áramkör tanulmányozása
3. Gyakorla A soros áramkör anlmányozása. A gyakorla célkiőzései Válakozó áramú áramkörökben a ekercsek és kondenzáorok frekvenciafüggı reakív ellenállással ún. reakanciával rendelkeznek. Sajáságos lajdonságaik
Folyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
A Nukleáris Medicina alapjai
A Nukleáris Medicina alapjai Szegedi Tudományegyetem Nukleáris Medicina Intézet Történet 1. 1896 Henri Becquerel titokzatos sugár (Urán) 1897 Marie and Pierre Curie - radioaktivitás 1901-1914 Rádium terápia
10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen
10. lck A munkpic jllmzõi és s munknélk lküliség g oki Rövid ávú gynsúly, ponciális kibocsáás, GDP-rés, munknélküliség. A munknélküliség rmészs rááj, rmészs munknélküliség oki. Konjunkurális munknélküliség,
VÁRHATÓ ÉRTÉK, SZÓRÁS, MARKOV ÉS CSEBISEV EGYENLŐTLENSÉGEK
VÁRHATÓ ÉRTÉK SZÓRÁS MARKOV ÉS CSBISV GYNLŐTLNSÉGK A VÁRHATÓ ÉRTÉK gy mgsugró vrsnyn vrsnyzők 8 vlószínűséggl ugorják á lé. Mindn vrsnyző háromszor próálkozh. Mivl könnyn mgsh hogy nm rjongunk mgsugró
Hadronok, atommagok, kvarkok
Zétényi Miklós Hadronok, atommagok, kvarkok Teleki Blanka Gimnázium Székesfehérvár, 2012. február 21. www.meetthescientist.hu 1 26 Atomok Démokritosz: atom = legkisebb, oszthatatlan részecske Rutherford
Kerületi Közoktatási Esélyegyenlőségi Program Felülvizsgálata Budapest Főváros IX. Kerület Ferencváros Önkormányzata 2011.
Kerületi Közokttási Esélyegyenlőségi Progrm Felülvizsgált Budpest Főváros IX. Kerület Ferencváros Önkormányzt 2011. A felülvizsgált 2010-ben z OKM esélyegyenlőségi szkértője áltl ellenjegyzett és z önkormányzt
Alapfogalmak. Dozimetria, sugárvédelem Nukleáris méréstechnika. Sugárzások gyengülése: tötléssel rendelkező sug. γ-sugárzás
Dozimeria, sugárvédelem Nukleáris mérésechnika A magsugárzások ulajdonságai mérése dozimeriája orvosi alkalmazása Magsugárzás: Alapfogalmak Az aommag áalakulásakor kelekezik. α (He 2 ), β (e,e ), γ (em.),
ELEMI RÉSZECSKÉK ATOMMODELLEK
ELEMI RÉSZECSKÉK ATOMMODELLEK Az atomok felépítése Készítette: Horváthné Vlasics Zsuzsanna Mi van az atomok belsejében? DÉMOKRITOSZ (Kr.e. 460-370) az anyag nem folytonos parányi, tovább nem bontható,
FIZIKA FELVÉTELI MINTA
Idő: 90 perc Maximális pon: 100 Használhaó: függvényábláza, kalkuláor FIZIKA FELVÉTELI MINTA Az alábbi kérdésekre ado válaszok közül minden eseben ponosan egy jó. Írja be a helyesnek aro válasz beűjelé
Fizikai tulajdonságok mérések
Épíőanyagok II - Laborgyakorla Fizikai ulajdonságok, érések A fizikai ulajdonságok csoporjai Töegeloszlással kapcsolaos ulajdonságok és vizsgálauk Fajlagos felüle egaározása Szecseére-eloszlás egaározása
Atomfizikai összefoglaló: radioaktív bomlás. Varga József. Debreceni Egyetem OEC Nukleáris Medicina Intézet 2010. 2. Kötési energia (MeV) Tömegszám
Egy nukleonra jutó kötési energia Atomfizikai összefoglaló: radioaktív bomlás Varga József Debreceni Egyetem OEC Nukleáris Medicina Intézet Kötési energia (MeV) Tömegszám 1. 1. Áttekintés: atomfizika Varga
3. Mekkora feszültségre kell feltölteni egy defibrillátor 20 μf kapacitású kondenzátorát, hogy a defibrilláló impulzus energiája 160 J legyen?
Impulzusgeneráorok. a) Mekkora kapaciású kondenzáor alko egy 0 MΩ- os ellenállással s- os időállandójú RC- kör? b) Ezen RC- kör kisüésekor az eredei feszülségnek hány %- a van még meg s múlva?. Egy RC-
Numerikus módszerek 2.
Numerikus módszerek 2. 12. elődás: Numerikus integrálás I. Krebsz Ann ELTE IK 2015. május 5. Trtlomjegyzék 1 Numerikus integrálás 2 Newton Cotes típusú kvdrtúr formulák 3 Hibformulák 4 Összetett formulák
XX. Nemzetközi Magyar Matematika Verseny
XX. Nemzetközi Mgyr Mtemtik Verseny onyhá, 011. március 11 15. 11. osztály 1. felt: Igzoljuk, hogy ármely n 1 természetes szám esetén. Megolás: Az összeg tgji k k 1+ k = = 1+ + n +... < 1+ 1+ n 3 1+ k
ELEKTRONIKAI ALAPISMERETEK
Elekronikai alapismereek középszin Javíási-érékelési úmuaó 063 ÉETTSÉG VZSG 006. okóber 4. EEKTONK PSMEETEK KÖZÉPSZNTŰ ÍÁSE ÉETTSÉG VZSG JVÍTÁS-ÉTÉKEÉS ÚTMTTÓ OKTTÁS ÉS KTÁS MNSZTÉM Elekronikai alapismereek
VB NÉGYZÖG KEREZTETZET TERVEZÉE HAJLÍTÁRA Vseton keresztmetszet tervezése történet: kötött tervezéssel: keresztmetszet nygi és méretei ottk, megtervezenő mértékó nyomtékoz szükséges célmennyiség, sz tervezéssel:
alapvető tulajdonságai
A z a to m m a g o k alapvető tulajdonságai Mérhető mennyiségek Az atommagok mérete, tömege, töltése, spinje, mágneses momentuma, elektromos kvadrupól momentuma Az atommag töltés- és nukleon-eloszlása