VÁRHATÓ ÉRTÉK, SZÓRÁS, MARKOV ÉS CSEBISEV EGYENLŐTLENSÉGEK
|
|
- Alajos Orsós
- 6 évvel ezelőtt
- Látták:
Átírás
1 VÁRHATÓ ÉRTÉK SZÓRÁS MARKOV ÉS CSBISV GYNLŐTLNSÉGK A VÁRHATÓ ÉRTÉK gy mgsugró vrsnyn vrsnyzők 8 vlószínűséggl ugorják á lé. Mindn vrsnyző háromszor próálkozh. Mivl könnyn mgsh hogy nm rjongunk mgsugró vrsnykér így nm ljsn lpln z kérdés hogy vrsnyző sén várhón hány ugrás kll mgkinnünk kövkző műsorszámig. Nos rről og szólni várhó érék. A várhó érék jl régn M z uói időn zonn z ngol pd vlu lpján. iszkré sn úgy kll kiszámolni hogy i i Visszérv mgsugróinkhoz készísük l gy ugró loszlásálázá. ugrások szám vlószínűség 8 NM UGORJA ÁT ÁTUGORJA 6 mking.hu 8 8 NM UGORJA ÁT NM UGORJA ÁT NM UGORJA ÁT A várhó érék úgy kpjuk hogy éréki mgszorozzuk hozzá rozó vlószínűségkkl és zk összdjuk: i i 8 6 ÁTUGORJA NM UGORJA ÁT NM UGORJA ÁT zk szrin várhón gy ugró -szr ugrik. H összsn vrsnyző vn kkor z ugrások szám há 88 vgyis olyn durván ugrásr kll számínunk. B B A várhó érék mll zonn vn gy másik onos jllmző szórás. H ugynis szórás ngy kkor várhó érék jlnőség sökkn. A loón például várhó nyrmény összg jáékonkén orin körül mozog d mégsm rr pénzr számíunk mikor loózunk. A lgön ugynis nm nyrnk smmi néhányn pdig jóvl ö nyrnk min orin. A szórás jl. Lássuk hogyn kll kiszámolni.
2 B B mking.hu A SZÓRÁS A szórás várhó érékől vló lérés méri jl kiszámolni pdig úgy lh hogy: A mgsugrós példánkhoz visszknyrodv: ugrások szám vlószínűség p 8 6 VÁRHATÓ ÉRTÉK ÉS SZÓRÁS KISZÁMOLÁSA FOLYTONOS STBN Folyonos vlószínűségi válozók sén várhó érék d Nézzünk mg gy ily: h h h. ST =. ST =. ST d d d d d d várhó érék: 6 8 második momnum: szórás: 8
3 A szórás i is úgy lsz hogy Szükség vn há második momnumr: d d d d d d A szórás pdig A MARKOV-GYNLŐTLNSÉG A Mrkov-gynlőlnség rról szól hogy minél ngyo várhó érékhz képs nnál kis vlószínűség. H például gy újságárus óránkén 6 dr újságo szoko ldni kkor nm úl vlószínű hogy gyik órán dro d l mr z várhó ldási szám négyszrs. A Mrkov-gynlőlnség lpján nnk sély /-nél kis: mking.hu MARKOV-GYNLŐTLNSÉG: H várhó ldás óránkén 6 dr kkor Így 6 6 Készíünk gy rjzo: Annk vlószínűség há hogy -nél ö újságo d l gy ór l lglj 6. Még Mrkov-gynlőlnségnél is érdks Csisv-gynlőlnség nézzük mg z is.
4 A CSBISV-GYNLŐTLNSÉG A Csisv gynlőlnség rról szól hogy várhó érékől vló lérés nm lh úl ngy. H például gy újságárus óránkén 6 dr újságo szoko ldni kkor nm úl vlószínű hogy gyik órán dro d l min hogyn z sm hogy mondjuk sk hárm. A várhó érék jl várhó érékől vló lérés. H há nézség vlón álg npi pr minák 9%-ánk z álg kékkl és %-uknk álg sárgávl jlöl rész sik. lérés ngy vlószínűség kisi lérés kisi vlószínűség ngy Adjunk Milő slés vizsgál nnk vlószínűségér rdmény mgérkzn hogy z újságos kövkző áll ldo jánll lpok áll szám lő TV-sorná dr és 8 dr mking.hu prlő közé él. sik h óránkén 6 dr újságo szoko ldni 8 dr szórássl. Rjzoljuk H öl minálg hogy mi is kék szrnénk rész ponosn: sik nm kélkdik ová és logdj hogy TVársságnk igz vn. h sárgávl jlöl rész sik mir prs nézség sén sk % z sély kkor TV-sornánk l kll ismrni hogy hmisío nézségi muók. A sorn nm ogdj 6 8 l z jánlo mr n z sn h igzuk vn %-os séllyl mégis líélik ők. Éppn zér kövkző módosíássl állnk lő. A jlk Lgyn szrin sárg második rész ípusú sk % Csisv kék gynlőlnségr rész pdig 9% lsz így szükség. h igzuk Az vn lérés és nézség várhó érékől énylg mindké npi irányn prs mimum sk % há: séllyl ünik ők igzságlnul mi nm ngy rizikó. A slés: Vgyis lglá 6 nnk vlószínűség hogy és 8 közö lsz z ldo lpok szám.
5 A VÁRHATÓ ÉRTÉK ÉS A SZÓRÁS TULAJONSÁGAI VÁRHATÓ ÉRTÉK SZÓRÁS H és üggln kkor és
ELOSZLÁS, ELOSZLÁSFÜGGVÉNY, SŰRŰSÉGFÜGGVÉNY
ELOSZLÁS, ELOSZLÁSÜGGVÉNY, SŰRŰSÉGÜGGVÉNY AZ ELOSZLÁSÜGGVÉNY Egy célábla sugara cm, a valószínűségi válozó jlns az, hogy milyn ávol lőünk a célábla középponjáól. Tgyük öl, hogy a céláblá bizosan laláljuk.
KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van?
NEVEZETES DISZKRÉT ÉS FOLYTONOS OK HIPERGEO. BINOM. POISSON VAN ITT EGY FELADAT ISMERTHOGY MENNYI AZ ÖSSZES ELEM ÉS AZ ÖSSZES SELEJT VAGYIS N K ILLETVE n k. CSAK VALAMI %-OS IZÉ ISMERT A VÁRHATÓ AZ ÁTLAG
adott egy nemnegatív c(u, v) kapacitás. A gráfnak kitüntetjük két pontját: az s termelőt és a t fogyasztót. Ekkor a (G; c; s; t) négyest hálózatnak
1. Hálózi olymok Diníció: Lgyn G = (V, E) gy irányío grá, mlynk minn (u, v) élén o gy nmngív c(u, v) kpciá. A gránk kiünjük ké ponjá: z rmlő é ogyzó. Ekkor (G; c; ; ) négy hálóznk nvzzük. Szmléléképpn
EGYENLETRENDSZEREK MEGOLDÁSA ELEMI BÁZISTRANSZFORMÁCIÓVAL. együttható-mátrix x-ek jobb oldali számok 2.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ. easymaths.
www.symhs.hu mk ilágos oldl symhs.hu.lépés: GENERÁLÓ ELEM VÁLASZTÁSA Csk -s oszlopól és -s soról álszhunk gnráló lm, nullá nm álszhunk és lhőlg - gy -- érdms AZ JÁTÉKSZABÁLYAI.LÉPÉS: A BÁZISTRANSZFORMÁCIÓ
ELOSZLÁS, ELOSZLÁSFÜGGVÉNY, SŰRŰSÉGFÜGGVÉNY
ELOSZLÁS, ELOSZLÁSÜGGVÉNY, SŰRŰSÉGÜGGVÉNY AZ ELOSZLÁSÜGGVÉNY Egy célábla sugara 5 cm, a valószínűségi válozó jlns az, hogy milyn ávol lőünk a célábla középponjáól. Tgyük öl, hogy a céláblá bizosan laláljuk.
MÁTRIXOK DETERMINÁNSA, SAJÁTÉRTÉKE ÉS SAJÁTVEKTORA
MÁTRIXOK DETERMINÁNS, SJÁTÉRTÉKE ÉS SJÁTVEKTOR DEFINÍCIÓ: H z gy d( ) p I ( p) i ip( i) -s mári, kkor drmiás hol p mári lmik oszlopidik prmuációi, I(p) pdig zkk prmuációkk z irziószám. Ez gy igzá rmk dfiíció,
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
2009. jnuár 29. MATEMATIKA FELADATLAP 8. évfolymosok számár 2009. jnuár 29. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn
KORLÁTOS. mateking.hu BINOMIÁLIS ELOSZLÁS. Egy úton hetente átlag 3 balesetes nap van. Mi a valószínűsége, hogy egy adott héten 2 balesetes nap van?
NEVEZETES DISZKRÉT ÉS FOLYTONOS OK HIPERGEO. BINOM. POISSON VAN ITT EGY FELADAT ISMERTHOGY MENNYI AZ ÖSSZES ELEM ÉS AZ ÖSSZES SELEJT VAGYIS N K ILLETVE n k. CSAK VALAMI %-OS IZÉ ISMERT A VÁRHATÓ AZ ÁTLAG
Mágneses anyagok elektronmikroszkópos vizsgálata
Mágnss anyagok lktronmikroszkópos vizsgálata 1. Transzmissziós lktronmikroszkóp 1.1. A mágnss kontraszt rdt a TEM-bn Az lktronmikroszkópban 100-200 kv-os (stlg 1 MV-os) gyorsítófszültséggl gyorsított lktronok
FELVÉTELI FELADATOK 8. osztályosok számára M 1 feladatlap
200. jnuár-fruár FELVÉTELI FELADATOK 8. osztályosok számár M 1 fltlp Név:... Szültési év: hó: np: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást fltlpon végzz! Mllékszámításokr z utolsó, ürs
MAGYAR NYELVI FELADATLAP a 4. évfolyamosok számára
4. évfolym AMNy1 fltlp MAGYAR NYELVI FELADATLAP 4. évfolymosok számár 2010. jnuár 22. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügylj küllkr! A fltokt ttszés szrinti sorrnn olhto mg. A mgolásr
Írásbeli szorzás kétjegyû szorzóval
Írásli szorzás kétjgyû szorzóvl Kiolgozott mintpél Egy krtész 36 plántát ültttt gy sor. Hány plántát ül - t ttt 24 sor? Atok: sor 36 plánt 24 sor x Trv: x = 24 36 vgy x = 36 24 Bslés: x 20 40 = 800 Számolás:
10. lecke. potenciális GDP alakulása. munkanélküliség okai. Konjunkturális. a potenciális kibocsátás szintjén? a tanult növekedéselmélet szerint igen
10. lck A munkpic jllmzõi és s munknélk lküliség g oki Rövid ávú gynsúly, ponciális kibocsáás, GDP-rés, munknélküliség. A munknélküliség rmészs rááj, rmészs munknélküliség oki. Konjunkurális munknélküliség,
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
2008. jnuár 31. MATEMATIKA FELADATLAP 8. évfolymosok számár 2008. jnuár 31. 15:00 ór M 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
2007. fruár 1. MATEMATIKA FELADATLAP 6. évfolymosok számár 2007. fruár 1. 15:00 ór M 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást, mllékszámítást fltlpon
A radioaktív bomlás kinetikája. Összetett bomlások
A radioakív bomlás kinikája Össz bomlások Össz bomlások: lágazó bomlás B A B 40 K,EX 40 40 Ca Ar 0 B B Lvzés mgalálhaó az Izoópia I. 4. fjzébn! U-38 bomlási sor fonosabb agjai U-38 Th-34 Pa-34 U-34 Th-30
FELVÉTELI FELADATOK 4. osztályosok számára M 1 feladatlap
2004. jnuár-fruár FELVÉTELI FELADATOK 4. osztályosok számár M 1 fltlp Név:... Szültési év: hó: np: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást fltlpon végzz! Mllékszámításokr z utolsó, ürs
ANYANYELVI FELADATLAP a 8. évfolyamosok számára
ÚJ FELADATLAP 2007. ruár 1. ANYANYELVI FELADATLAP 8. évolymosok számár 2007. ruár 1. 14:00 ór ÚJ FELADATLAPI NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A ltokt ttszés szrinti sorrnn olhto mg. Ügylj mgllő iőosztásr és
KOD: B377137. 0, egyébként
KOD: 777. Egy csomagológép kilogrammos zacskókat tölt. A zacskóba töltött cukor mnnyiség normális loszlású valószínûségi változó kg várható értékkl és.8 kg szórással. A zacskó súlyra nézv lsõ osztályú,
MAGYAR NYELVI FELADATLAP a 6. évfolyamosok számára
6. évfolym AMNy2 fltlp MAGYAR NYELVI FELADATLAP 6. évfolymosok számár 2011. jnuár 27. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügylj küllkr! A fltokt ttszés szrinti sorrnn olhto mg. A mgolásr
Mérıkapcsolások 5. fejezet /Elmélet & Képletgyőjtemény/
. Kompnzált osztó: Mérıkpcsolások 5. fjzt /Elmélt & Képltgyőjtmény/ C b C. Hídkpcsolás: τ b τ C C 4 t Alpértlmztt stbn: 4, íd mnti fzsültség gynlíttt állpotbn 0V. I.. st Egy llnállás változik d 4 t d (
Országos Szilárd Leó fizikaverseny feladatai
Országos Szilárd Ló fizikavrsny fladatai I katgória döntő, 5 április 9 Paks A fladatok mgoldásáoz 8 prc áll rndlkzésr Mindn sgédszköz asználató Mindn fladatot külön lapra írjon, s mindn lapon lgyn rajta
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym Mt2 fltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 2018. jnuár 25. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg.
ANYANYELVI FELADATLAP a 8. évfolyamosok számára
2006. fruár 2. ANYANYELVI FELADATLAP 8. évfolymosok számár 2006. fruár 2. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! Tolll olgozz! A
ANYANYELVI FELADATLAP a 8. évfolyamosok számára
2006. jnuár 28. ANYANYELVI FELADATLAP 8. évfolymosok számár 2006. jnuár 28. 10:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! Tolll olgozz!
MATEMATIKA FELADATLAP a 4. évfolyamosok számára
4. évfolym Mt2 fltlp MATEMATIKA FELADATLAP 4. évfolymosok számár 2017. jnuár 26. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg.
Országos Szakiskolai Közismereti Tanulmányi Verseny 2007/2008 IRODALOM MAGYAR NYELV ÉS HELYESÍRÁS. II. (regionális) forduló. 2008. február 22.
Országos Szkiskoli Közismrti Tnulmányi Vrsny 2007/2008 IRODALOM MAGYAR NYELV ÉS HELYESÍRÁS II. (rgionális) foruló 2008. fruár 22. Mgolás 1 Országos Szkiskoli Közismrti Irolom Mgyr nylv és hlysírás Tnulmányi
Vezetéki termikus védelmi funkció
Budaps, 011. április Bvzés A vzéki rmikus védlmi fukció alapvő a hárm miavélz fázisáram méri. Kiszámlja az ffkív érékk, és a hőmérsékl számíásá a fázisáramk ffkív érékér alapzza. A hőmérséklszámíás a rmikus
Egy harmadik fajta bolha mindig előző ugrásának kétszeresét ugorja és így a végtelenbe jut el.
Végtl sok vlós számból álló összgkt sorokk vzzük. A sorb szrplő tgokt képzljük l úgy, mit gy bolh ugrásit számgys. A sor összg h létzik ily z szám hov bolh ugrási sorá ljut. Nézzük például kövtkzős sort:...
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym Mt1 fltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást,
MATEMATIKA FELADATLAP a 6. évfolyamosok számára
6. évfolym Mt2 fltlp MATEMATIKA FELADATLAP 6. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást,
Elorejelzés (predikció vagy extrapoláció) Adatpótlás (interpoláció)
lorjlzés (prdikció vagy xrapoláció) Adapólás (inrpoláció) kompozíciós vagy drminiszikus modllk. A rndfüggvény A ciklikus haás A szzonális haás A zaj (hibaag) 3-3 4 5 6 7 8 9 Az idõsor 3 - - - 3 4 5 6 7
FELVÉTELI FELADATOK 8. évfolyamosok számára. A 2 feladatlap. Név:...
2005. jnuár-fruár FELVÉTELI FELADATOK 8. évfolymosok számár A 2 fltlp Név:... Szültési év: hó: np: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! A mgolásr összsn 45 pr vn.
ANYANYELVI FELADATLAP
2007. jnuár 26. ANYANYELVI FELADATLAP 4. évfolymosok számár 2007. jnuár 26. 14:00 ór A 1 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! A mgolásr
MATEMATIKA FELADATLAP a 4. évfolyamosok számára
2006. jnuár 27. MATEMATIKA FELADATLA 4. évfolymosok számár 2006. jnuár 27. 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NA: A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást, mllékszámítást fltlpon végzz! Mllékszámításokr
Név:... osztály:... Matematika záróvizsga 2008. 1. Tedd ki a megfelelő relációjelet! ; 4
Mtmtik záróvizsg Név:... osztály:... 1. T ki mgllő rláiójlt! 15 4 675 ; 180 115, 151, ; 31% 10 3 1000 ; 4 5 5 + ; 8. Mlyik átváltás hiás? A hlyskt jlöl pipávl, hiás átváltásoknál húz át z gynlőségjlt!.
Rockfall lejtésképző elemek
LAPOSTETŐ SZIGETELÉS LEZÁRVA: 00. MÁRCIUS. Rokll ljtésképző lmk Műszki tlp Vonlr-, lln- és pontrljtő lmk, ttikék A Rokwool Rokll rnszrévl iztosíthtó ttők tökélts vízlvztés Műgynt kötésű, tljs krtmtsztén
FELVÉTELI FELADATOK 8. osztályosok számára A 2 feladatlap. 1. Alkoss kétféleképpen szókapcsolatokat vagy értelmes szavakat!
2004. jnuár-ruár FELVÉTELI FELADATOK 8. osztályosok számár A 2 ltlp Név:... Szültési év: hó: np: A ltokt ttszés szrinti sorrnn olhto mg. Ügylj mgllő iőosztásr és küllkr! A mgolásr összsn 45 pr vn. Az utolsó
Modern piacelmélet. ELTE TáTK Közgazdaságtudományi Tanszék. Selei Adrienn
Modrn piaclmélt ELTE TáTK Közgazdaságtudományi Tanszék Sli Adrinn A tananyag a Gazdasági Vrsnyhiatal Vrsnykultúra Központja és a Tudás-Ökonómia Alapítány támogatásáal készült az ELTE TáTK Közgazdaságtudományi
Operatív döntéstámogatás módszerei
..4. MSKOLC YM azaságtuomáyi Kar Üzlti formációgazálkoási és Mószrtai tézt Számvitl tézti aszék Opratív ötéstámogatás mószri Dr. Musiszki Zoltá Opratív ötéstámogatás mószri Statisztikai, matmatikai mószrk
53. sz. mérés. Hurokszabályozás vizsgálata
53. sz. mérés Hurokszaályozás vizsgálata nagyszültségű alap- illtv losztóhálózat (4,, kv a hálózatok unkcióáól kövtkzőn hurkolt (töszörösn hurkolt kialakítású. sok csomóponttal, tö táplálási illtv ogyasztási
Ptolemaios-tétele, Casey-tétel, feladatok
Kutov ntl Ptolemios, sey, feldtok Kutov ntl (Kposvár) Ptolemios-tétele, sey-tétel, feldtok Ptolemios-tétel: H egy konvex négyszög szemközti oldli és, ill. és d; átlói e és f, kkor + d e f. Egyenlőség kkor
MAGYAR NYELVI FELADATLAP
2009. jnuár 23. MAGYAR NYELVI FELADATLAP 4. évfolymosok számár 2009. jnuár 23. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! A mgolásr
ANYANYELVI FELADATLAP a 4. évfolyamosok számára
2006. ruár 2. ANYANYELVI FELADATLAP 4. évolymosok számár 2006. ruár 2. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A ltokt ttszés szrinti sorrnn olhto mg. Ügylj mgllő iőosztásr és küllkr! Tolll olgozz! A mgolásr
Név:... osztály:... Matematika záróvizsga 2010.
Mtmtik záróvizsg 00. Név:... osztály:.... Az lái rjzon gy thrutó rktrénk vázltos rjz láthtó. Az árán olvshtó számtok, rkoásr ténylgsn flhsználhtó térfogtr vontkoznk. Mkkor thrutó hsznos rktrénk térfogt?
Jegyzőkönyv. Termoelektromos hűtőelemek vizsgálatáról (4)
Jegyzőkönyv ermoelektromos hűtőelemek vizsgáltáról (4) Készítette: üzes Dániel Mérés ideje: 8-11-6, szerd 14-18 ór Jegyzőkönyv elkészülte: 8-1-1 A mérés célj A termoelektromos hűtőelemek vizsgáltávl kicsit
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt1 feltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 11:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zseszámológépet nem hsználhtsz. A feltokt tetszés szerinti sorrenen olhto meg. Minen
MAGYAR NYELVI FELADATLAP a 8. évfolyamosok számára
8. évfolym AMNy1 fltlp MAGYAR NYELVI FELADATLAP 8. évfolymosok számár 2010. jnuár 23. 10:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügylj küllkr! A fltokt ttszés szrinti sorrnn olhto mg. A mgolásr
ANYANYELVI FELADATLAP
2007. fruár 1. ANYANYELVI FELADATLAP 4. évfolymosok számár 2007. fruár 1. 14:00 ór A 2 fltlp NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! A mgolásr
DR. JUHÁSZ MÁRTA BME Ergonómia és Pszichológia Tanszék 1111 Budapest, Egry J. u. 1. Email: juhaszm@erg.bme.hu Tel: 1/463 40 22 www.erg.bme.
DR. JUHÁSZ MÁRTA BME Ergonómia és Pszichológia Tanszék 1111 Budapst, Egry J. u. 1. Email: juhaszm@rg.bm.hu Tl: 1/463 40 22 www.rg.bm.hu A KIVÁLASZTÁS ÉS A MUNKAKÖRI ALKALMASSÁG PSZICHOLÓGIÁJA II. Az lızı
ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő ö ó ü ó ő ő ő ő ű ő ö ő ü ő ő ó ő ö ö ö ő ó ő ő ő ó ü ö
Á ó ö ő ó ó ő ő ő ő ő ó ó Á ö ö ő ő ö ő ő ő ó ö ó ó ó ó ó ő ú ő ö ő ő ó ó ó ö ő ó ó ő ö ű ö ő ő ő ö ö ő ő ó ő ó ó ó ő ó ő ó ő ő ő ó ö ó ó ö ő ő ö ő ö ű ó ő ő ű ő ő ö ő ó ó ő ö ó ö ő ő ű ó ö ő ő ű ő ő ő
Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű
Ö Á ű Á Ú Ö Ö Ö Ö Á ű ű ű ű ű ű ű ű ű ű ű Ú ű ű ű Ö ű Ö ű ű ű ű Ö Ú Á Á ű ű ű ű ű Á Ó Ó Á Á Ó Ú Ó Ó Ó Á Ó Ö Á Ú Ú Ö Ú ű Ú Ú Ú Ú Ó ű ű Ó ű Á Ó ű ű ű ű ű ű ű Ö ű ű Ú ű Ú ű ű Á ű Ó ű ű Ö ű Ú Ó Á Ú Á ű Á
Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú
ü Ú ú ü ú ű ű ű ü ü ü ü ü Ó Á Ö ü ú ü ű ü ű ü Á ü ű ű ú ű Á Ű ú ü ü ú ű Á ü Ú ü ű ü ü ű ü ú ú ü ú ü ü ü ü ü ü Ü Ü Ü ü Ö Ü ü ü ü ű ü ü ű ú ü ú ú Ü ü ü ü ü Ü ü ü ü Á ü ü Ü ú ü ü ü Ö ú ü ű ü ü ü ü ü ú ü ú
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym AMt2 fltlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Zsszámológépt nm hsználhtsz. A fltokt ttszés szrinti sorrnn olhto mg. Minn próálkozást,
III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra)
5.3.3. VÁLLALATI ÉNZÜGYEK III. A RÉSZVÉNYEK ÉRTÉKELÉSE ( óa Összállíoa: Naá János okl. üzmgazdász, okl. közgazdász-aná Részvény: olyan ljáa nélküli éékaí, amly a ásasági agnak: az alaők mghaáozo hányadá
JT 379 www.whirlpool.com
JT 379.hirlpool.com A HÁLÓZATRA CSATLAKOZTATÁS ELŐTT ÜZEMBE HELYEZÉS ELLENŐRIZZE, HOGY A TÖRZSLAPON jlztt fszültség mggyzik- a lakás fszültségévl. NE TÁVOLÍTSA EL A MIKROLLÁM-BEVEZETÉST VÉDŐ LEMEZEKET,
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym TMt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár tehetséggondozó változt 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti
Országos Szakiskolai Közismereti Tanulmányi Verseny 2005/2006 MAGYAR NYELV ÉS HELYESÍRÁS
Orszáos Szkiskoli Közismrti Tnulmányi Vrsny 2005/2006 MAGYAR NYELV ÉS HELYESÍRÁS II. (rionális) oruló 2006. ruár 17... Hlyszín jélyzőj Vrsnyző Pontszám Kój Elértő Elért Százlék. 120.. % Jvító tnár Zsűri
Villamos érintésvédelem
Villamos érintésvédlm A villamos nrgia ipari mértű flhasználása a század ljén kzdtt gyr nagyobb mértékbn ltrjdni és zzl gyidőbn jlntkztk az áramütésből rdő balstk is. Ennk kövtkztébn nagyarányú kutatás
1.) Példa: MOS FET munkapontja, kivezérelhetősége ( n csatornás, növekményes FET)
.) élda: O FET munkaponja, vzérlhőség ( n csaornás, növkménys FET) Ado az alábbi kapcsolás, a kövkző adaokkal: ub ig G ug u u, 6 kω, 4 kω, 4 ma, unkapon? Kivzérlhőség? 4 - unkapon számíás: gynáramú számíás
FELVÉTELI FELADATOK 8. évfolyamosok számára. A 1 feladatlap. Név:...
2005. jnuár-fruár FELVÉTELI FELADATOK 8. évfolymosok számár A 1 fltlp Név:... Szültési év: hó: np: A fltokt ttszés szrinti sorrnn olhto mg. Ügylj mgfllő iőosztásr és küllkr! A mgolásr összsn 45 pr vn.
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
( E) ( E) de. 4πε. Két példa: 1. példa: Rutherford-szórás. 2. példa: : Kemény gömbön történı szórás szögfüggése. szögfüggése (elméletileg(
Mg- és neuronfizik 7. elıás Emlékezeı: ommgrekió: élárgy + + Jelölés: (, ) Rekióenergi: Q = (M + M M M ) Rekióseesség: R = φ N σ Fluxus: φ Célárgy omok R szám: N Mikroszkopikus háskereszmesze: σ = N φ
A művészeti galéria probléma
A műészti galéria probléma A műészti galéria probléma (art galry problm): A műészti galéria mgfigylés kamrákkal / őrökkl. Hálózattrzés Alapjai 2007 8: Műészti Galéria Probléma Őrzési / Mgilágítási problémák
MATEMATIKA A változat. A tanuló neve, osztálya:...
MATEMATIKA A változt A tnuló nv, osztály:... Az lmúlt tnév véi osztályzt mtmtikáól:... Olvs l iylmsn ltokt! A ltokt ttszés szrinti sorrnn olto m. Törkj rr, oy molások lírás yértlmő lyn, iylj rnztt küllkr!
segítségével! Hány madárfajt találtál meg? Gratulálunk!
Odú llnőrzés CSORMÍVES Ha mgfogadtad a téli számban javasolt odúkihlyzést, vagy már volt odú kihlyzv a krtbn, márciustól már érdms figylgtnd trmésztsn csak gy kissé távolabbról hogy van- a környékén mozgolódás,
Valószínűségszámítás. A standard normális eloszlás karakterisztikus függvénye. További tulajdonságok. További tulajdonságok.
Karakriszikus függvéy Valószíűségszámíás. lőadás 07..05 Kompl érékű valószíűségi válozók: Z=+iY, ahol és Y is valószíűségi válozók. Z):=)+iY). (valós) valószíűségi válozó karakriszikus függvéy: ():= i
Matematika záróvizsga Név:... osztály:...
Mtmtik záróvizsg 007. Név:... osztály:.... Krs mg z gynlőkt! 0 4 8 4 68 6,, 0,6 0,,7 00 000 4 : 6 0,6000 8 4 0% pl. : 4 0. 0,66 6, 0,7 66,6% : 4 0 %. Ír mérőszámokt vgy mértékgységkt!. 0 000 mm =. 4 h
MAGYAR NYELVI FELADATLAP a 4. évfolyamosok számára
4. évfolym AMNy2 fltlp MAGYAR NYELVI FELADATLAP 4. évfolymosok számár 2010. jnuár 28. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll olgozz! Ügylj küllkr! A fltokt ttszés szrinti sorrnn olhto mg. A mgolásr
Lineáris egyenletrendszerek. Készítette: Dr. Ábrahám István
Lináris gynltrndszrk Készíttt: Dr. Ábrhám István A lináris gynltrndszrkt kitrjdtn hsználják optimumszámítási fldtokbn. A tém tárgylásához lőkészültt kll tnni. Mátri fktorizáció A fktorizáció mátri szorzttá
ANYANYELVI FELADATLAP a 4. évfolyamosok számára
2006. jnuár 27. ANYANYELVI FELADATLAP 4. évolymosok számár 2006. jnuár 27. 14:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: A ltokt ttszés szrinti sorrnn olhto mg. Ügylj mgllő iőosztásr és küllkr! Tolll olgozz! A
II. A számtani és mértani közép közötti összefüggés
4 MATEMATIKA A 0. ÉVFOLYAM TANULÓK KÖNYVE II. A számtni és mértni közép közötti összefüggés Mintpéld 6 Számítsuk ki következő számok számtni és mértni közepeit, és ábrázoljuk számegyenesen számokt és közepeket!
MATEMATIKA FELADATLAP a 8. évfolyamosok számára
8. évfolym Mt2 feldtlp MATEMATIKA FELADATLAP 8. évfolymosok számár 15:00 ór NÉV: SZÜLETÉSI ÉV: HÓ: NAP: Tolll dolgozz! Zseszámológépet nem hsználhtsz. A feldtokt tetszés szerinti sorrenden oldhtod meg.
mateking.hu -beli vektorokat, de egyáltalán nem biztos, hogy így az egész V
LINEÁRIS LEKÉPEZÉSEK ÉS TRANSZFORMÁCIÓK A leképezés lineáris leképezésnek neezzük, h ármely elesül, hogy ; ekorokr és R számr Minden lineáris leképezés lhogy így néz ki: Kerφ Imφ meking.hu H kkor lineáris
A Laplace transzformáció és egyes alkalmazásai
A aplac razormáció é gy alkalmazáai A PTE PMMFK villamomérök zako lvző agozao allgaói zámára kéziraké özállíoa Ki Mikló őikolai adjuku 3 Irodalomjgyzék: Bako Ivá: Elkrocika I-II (KKVMF Budap 969 Duca J:
Néhány pontban a függvény értéke: x -4-2 -1-0.5 0.5 1 2 4 f (x) -0.2343-0.375 0 6-6 0 0.375 0.2343
Házi ladatok mgoldása 0. nov.. HF. Elmzz az ( ) = üggvényt (értlmzési tartomány, olytonosság, határérték az értlmzési tartomány véginél és a szakadási pontokban, zérushly, y-tnglymtszt, monotonitás, lokális
VT 265 www.whirlpool.com
VT 265.hirlpool.com 1 BEÜZEMELÉS A HÁLÓZATRA CSATLAKOZTATÁS ELŐTT ELLENŐRIZZE, HOGY A TÖRZSLAPON jlztt fszültség mggyzik- a lakás fszültségévl. NE TÁVOLÍTSA EL A MIKROLLÁM-BEVEZETÉST VÉDŐ LE- MEZEKET,
Matematika záróvizsga Név:... osztály: ; 5 + 9
006. Név:... osztály:.... T ki mgllő rláiójlt! 7 00 7 4, 0% 4 8 - + 9 8 - : 9 6. Ír mérőszámokt vgy mértékgységkt!..... 0m h,8 mm kg 0,0 m km m m 400 l. π. Végz l számításokt!.) : 4.), 8 : 0, +, 0 7, 4
Ó Ó ó ö ó
É ó ö É Á ó ó ü ó Ü ó ö ú ű ö ö ö ü ó Ó Ó ó ö ó Ó Ó ö ö ö ü Ó Ó ö ö ü ö ó ó ü ü Ó Ó Ó Ó ó ö ó ö ó ö ó ö ü ö ö ü ö ó ü ö ü ö ö ö ü ü ö ü É ü ö ü ü ö ó ü ü ü ü Ó Ó ü ö ö ü ö ó ö ö ü ó ü ó ö ü ö ü ö ü ö ó
LINEÁRISAN FÜGGETLEN ÉS LINEÁRISAN ÖSSZEFÜGGŐ VEKTOROK. csak úgy teljesül, ha minden 0. úgy is teljesül, hogy van olyan 0
www.esymths.hu mtek ilágos oll Mosózi Arás LINEÁISAN FÜGGETLEN ÉS LINEÁISAN ÖSSZEFÜGGŐ VEKTOOK esymths.hu DEFINÍCIÓ: A... ektorok lieáris összefüggők, h... úgy is teljesül, hogy oly i Nézzük ezekre péákt!
ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á
ú ú ö ö ö ö ö ö Á ö ö ö á á á ű Ü ű ö ö Á á Á Á ú á ú á Á ö á ö ö ö ú á á ö ö ö ö á ű Ü ú ö Ü ű ö ú ű á á á ú á ú ú á ö ö ú ö ú ú ö ö ú ö ö ö á ö ö ö á á ö ú ö á á Ú á ö ö ö Ü ú Á á ű ö Ü ö ú Á á ö á ö
ő ő Ó
ú ő ű ű ő ű ú ő ő ű ű ű ű ú ő ő Ó ú ú ú Ó ő ő ő ú ő ú ú ú ú ú ő ő ő ú ő ú ű ő ő ő ő ú ő ő ő ő ú ú ő ő ő ú Ö ő ú ű ő ű ő ű ő ú ő ő ű Á ő ő ő ő Á Ö Á Ö Ö Ü Ö Ö Ü Ö Ö Í Ö Ö ő Ö Ö Á Ö ő Ó Ó Á Á Ö Ö Á Ő Á Á
ü ú ú ü ú ú ú ú
ú ú ú ü Ü ú ú ű ú ú ü ú ü ü ú ú ü ú ú ú ú ü ú Ö ü ü ü ú ü ú Ó ü ü ű ü Á Ü ü ű ü ű ü ű ű ü Ó ű ú ú ű ú ü ü ú ű ű ú ű ü ú ű ű ü ü ü ű ü ű ü ü ű ü ü ü ü ü ü ü ü ü ú ű ü ű Ó ü ü ü ú Á Ü ú ü ű ü Á Ü Ö Ú Á Á
ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É
Ü ű ű ű Ú Ú Á ű Ö ű ű Ú Ő É É ű Ö Ö Á É ű Ö Ö Á Ü Á ű ű Ó Ó Á Á É Ü É ű Ó Á Ó Á ű Ö ű ű É Ü Ö ű É Ö ű ű Ó ű ű Ú ű ű ű ű ű É ű É Ú Ö Á É ű ű Ó ű ű ű ű ű ű Ó ű Ü ű ű ű É ű ű Ü Ü ű ű Ő Á Á Á ű ű ű Ó Ó Ó ű
Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö
Ó ú ú ú ú ű ű ű ú Á Ö ű Á Ö Ö Ö Ö ú ú Ö Ö Ó Ó ú ú Ü ú Ó Ö Ö Ü Ó Ö Ö Á Ó ú ú ú ű Ö Ö Ö Ö Á Ó Ö Ó ú ú Ö Ú ű ú É Á Ó Ó É Ó Ó ú ű ű ű ú Ö Ó Ö ú ú Ö ú Ü ú Ü É Ö Á Á Á Á ú Ó Ö ú ú ú Ü Ö ú ú ú ú ú ú Ö ú Ö Ó ű
Ó Ó Ó Ü Í Ü Ü Ü Ü Ü Ü Á Ő Ü Ü Ü Ü Ó Ó Á Ü Ö
Ő Ó Ö Ó Ő Ü Í Ó Ö Ü Ő Á Ü Ó Ó Á Ü Ö Ó Ó Ó Ü Í Ü Ü Ü Ü Ü Ü Á Ő Ü Ü Ü Ü Ó Ó Á Ü Ö Ó Ó Á Ö Á Ó Ó Ü Í Ó Í Ü Ü Ó Ó Í Á Ö Á Ü Ö Í Ü Í Ó Ó Ó Ó Á Ó Ó Ü Ó Ö Ó Ó Ó Ó Ö Ö Ü Ó Ü Ü Ö Ó Ó Ü Ü Ó Ó Ó Í Ó Ü Ú Ö Ó Ó Ó Ü
ű Ö ű Ú ű ű ű Á ű
ű ű Ó É É ű Ó ű Ü ű ű Ö ű Ú ű ű ű Á ű É ű Á ű ű ű ű ű ű ű ű ű ű ű Á ű ű Ö Ü Ö É ű ű Ü Ü ű É Á Ú É É ű ű ű Ö É ű É Ó É Á Á É ű ű Á ű ű ű Á É ű Ö Á ű ű ű Á ű Á É Ö Ó Ö ű ű ű ű ű ű ű Á É Á Á ű ű ű Á ű ű ű
Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö
É Ó ö É Á ű Ü Ü ö Ú ö ö ö ö ö ö ö ú ö ö ö ö ö ú ú ú ú ú ú ü ú ú ö ö ű ö ü ú ö Ó Ó ö ú ö ö ö ö ü ú ú ö ö ö ú ú ö ö ö ú ú ú ű ö ö ú ö ü ö ö ö ö ü ú Á ö ü Á ö ö ö ö ö ö Á Ó ú ö Á ö Á ö ú ú ö ö ö ö ü ü Ü ú
1. Melyik átváltás hibás? A helyeseket jelöld pipával, a hibás átváltásoknál húzd át az egyenlőségjelet!
Mtmtik záróvizsg 011. Név:... osztály:... 1. Mlyik átváltás hiás? A hlyskt jlöl pipávl, hiás átváltásoknál húz át z gynlőségjlt!. 0,578 t = 578 kg;. 100 m g. = 0,1 h; 0 pr = 0,5 ór;.. h. 3,05 kg = 350
ó ő ő ó ő ö ő ő ó ó ó ö ő ó ó ó ö ő ó ő ő ö Ö ő ö ó ő ö ő ő ú ö ö ü ö ó ö ö ö ő ö ö Ö ú ü ó ü ő ő ő ő ó ő ü ó ü ö ő ö ó ő ö ő ö ü ö ü ő ö ö ó ö ő ő ö
ü ö ő ö ő ó ö ő ü ü ö ő ó ó ü ő ö ő ö ő ö ü ö ő ö ő ó ö ü ü ö ő ő ő ö ő ö ü ö ő ó ő ö ü ö ő ő ű ő ö ö ő ű ő ü ö Ő ó ö ö ő ü ó ü ú ű ú ő ó ó ó ő ö ő ő ö ó ö ö ő ő ö ö ó ú ő ő ö ó ö ó ö ü ó ő ő ö ó ő ő ó