Százalékszámítás III. - A százalékláb kiszámítása

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Százalékszámítás III. - A százalékláb kiszámítása"

Átírás

1 Mit, milyen sorrendben, hogyan? 1) Olvasd el a százalékszámítás módjáról szóló szöveget! 2) Húzd alá a szövegben, ha valamit nem értesz pontosan! 3) A bővítés módszerével végezd el az első feladat számításait! 4) A második feladatban számítsd ki az elért eredményeket tizedes törtté alakítással úgy, hogy a megoldást kiegészíted a megfelelő számokkal! 5) Végül oldd meg a harmadik, szöveges feladatot! Százalékszámításos feladatok a százalékláb kiszámítására Amikor egy feladat arra a kérdésre keres választ, hogy hány százaléka egy mennyiség a másiknak, akkor úgy mondjuk, hogy a százaléklábat kell kiszámolni. Ha például az a kérdés, hogy hány százalékos lett egy dolgozat eredménye, akkor azt kell kiszámolni, hogy az összes megszerezhető pontszámnak (ez a százalékalap) hányad részét, vagyis hány százalékát sikerült megszerezni. Ha például egy dolgozatban összesen 100 pontot lehet szerezni, akkor nagyon könnyű dolgunk van, mert aki 80 pontot szerzett meg, annak 80% lett a dolgozata, aki pedig 40 pontot, annak 40%-os. Itt minden egyes pont egy százalékot számít. Ha egy dolgozatban 50 pont a maximum, akkor sincs sokkal nehezebb dolgunk, hiszen itt az 50 pont jelenti a 100%-ot, vagyis minden megszerzett pont 2%-ot jelent. Aki 40 pontot szerzett, annak a dolgozata 80%- os. Ezt úgy is kiszámolhattuk volna, hogy a pontoknak a 40 századokra bővítve 80 rész, vagyis 80% részét érte el, ami 1

2 Nehezebb a dolgunk, ha a megszerzett és a megszerezhető pontok hányadosa (aránya) nem alakítható át 100 nevezőjű törtté. Ilyenkor számológép segítségével kiszámolhatjuk a tört tizedes tört alakját, és abból meg tudjuk mondani a százaléklábat. Például, ha 30 pontos a dolgozat, és valaki 24 pontot ér el, akkor a megszerezett és a megszerezhető pontok aránya: aminek tizedes tört alakját így számoljuk: 24: 30 = 0,8 = 0,80 = 80%. Tehát a dolgozat eredménye 80%-os. Egy másik eset, ha 20 pontot sikerült valakinek elérnie a 30-ból. Ekkor a keresett arány: 20 kerekíteni kell: 0, 6 0,67. Tehát 67% lett az eredmény. 30 = 0, 6 itt nem tudunk pontos értéket megadni, Ez az eljárás természetesen nem csak a dolgozatok pontszámításánál működik. Nézzük meg, hogy szöveges feladatoknál hogyan kell alkalmazni! 2

3 Lyukas szöveg feladat Bővítés módszerével számítsd ki, hogy hány százalékot ért el a) aki a 30 pontot szerzett meg az 50 pontos dolgozatból: 50 = 100, vagyis %-ot ért el. b) aki az 50 pontos dolgozatból 45 pontot szerzett: = 100, vagyis %-ot ért el. c) aki a 10 pontot szerzett meg a 25 pontos dolgozatból: = 100, vagyis %-ot ért el. d) aki a 11 pontot szerzett meg a 20 pontos dolgozatból: = 100, vagyis %-ot ért el. 3

4 Lyukas szöveg feladat Számítsd ki az elért eredményeket tizedes törtté alakítással úgy, hogy a megoldást kiegészíted a megfelelő számokkal! a) Hány százalék lett az eredménye annak, aki 12 pontot ért el 30-ból? Megoldás: 30 = 0, = 0,, vagyis %-ot ért el. b) Hány százalék lett az eredménye annak, aki a 30-ból 10 pontot ért el? Megoldás: = 0, 30 0,, vagyis %-ot ért el. 4

5 Szöveges feladat A fenti lépések alapján oldd meg a szöveges feladatot! Ákos már régen el akarta olvasni a Trónok harca című könyvet. Meglátta a könyvesboltban, hogy árleszállítás van, ezért azonnal meg is vette az első kötetet. Otthon, amikor elmesélte édesapjának, hogy milyen szerencséje volt, nem emlékezett rá pontosan, hogy hány %-os is volt a kedvezmény. Csak azt tudta, hogy az eredetileg 3800 Ft-os kötethez 3040 Ft-ért jutott hozzá. Segíts neki, számold ki, hogy hány % volt a kedvezmény! Lépések 1. lépés Megoldások A teljes összeg, vagyis a százalékalap értéke: Ft 2. lépés A kedvezmény, vagyis amennyivel kevesebbet kellett fizetnie Ákosnak: Ft 3. lépés A kedvezmény és a teljes ár törtalakban felírva: 4. lépés Ezt a műveletet kell a számológépbe beírni: :, a kapott eredmény: 0, = 0, 5. lépés Szöveges válasz: 5

6 6

5. osztály. Matematika

5. osztály. Matematika 5. osztály A természetes számok értelmezése 100 000-ig. A tízes számrendszer helyértékes írásmódja. A A természetes számok írásbeli összeadása, kivonása. A műveleti eredmények becslése. Ellenőrzés 3. A

Részletesebben

Matematika 8. osztály

Matematika 8. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos Matematika 8. osztály I. rész: Algebra Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék I. rész: Algebra................................

Részletesebben

Junior ranglista kiírás 2018

Junior ranglista kiírás 2018 Junior ranglista kiírás 2018 A Magyar Golf Szövetség junior játékosok számára Junior Fiú és Junior Lány kategóriákban állít fel ranglistát. A ranglista a jelen kiírás szabályai alapján szerzett pontok

Részletesebben

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki.

1. Olvassuk be két pont koordinátáit: (x1, y1) és (x2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. Számítás:. Olvassuk be két pont koordinátáit: (, y) és (2, y2). Határozzuk meg a két pont távolságát és nyomtassuk ki. 2. Olvassuk be két darab két dimenziós vektor komponenseit: (a, ay) és (b, by). Határozzuk

Részletesebben

Írásbeli szorzás. a) b) c)

Írásbeli szorzás. a) b) c) Írásbeli szorzás 96 100 1. Számítsd ki a szorzatokat! a) 321 2 432 2 112 3 222 3 b) 211 2 142 2 113 3 112 4 c) 414 2 222 2 221 4 243 2 2. Becsüld meg a szorzatokat! Számítsd ki a feladatokat! a) 216 2

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.

Részletesebben

Fejlesztőfeladatok a. MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ. standardleírás szintjeihez

Fejlesztőfeladatok a. MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ. standardleírás szintjeihez Oktatáskutató és Fejlesztő Intézet TÁMOP-3.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz Fejlesztőfeladatok a MATEMATIKA és az ANYANYELVI KOMMUNIKÁCIÓ standardleírás

Részletesebben

1. A négyzetgyökre vonatkozó azonosságok felhasználásával állítsd növekvő sorrendbe a következő számokat!

1. A négyzetgyökre vonatkozó azonosságok felhasználásával állítsd növekvő sorrendbe a következő számokat! Matematika A 10. évfolyam Témazáró dolgozat 1. negyedév 1 A CSOPORT 1. A négyzetgyökre vonatkozó azonosságok felhasználásával állítsd növekvő sorrendbe a következő számokat! 8 ; 7 1 ; ; ; 1. Oldd meg a

Részletesebben

Szerb Antal Gimnázium

Szerb Antal Gimnázium Budapest XVI. Kerületi Szerb Antal Gimnázium Budapest, Batthyány Ilona u. 12. Tel.: 4001-814; Fax.: 401-0549 E-mail: szag@szag.hu; OM: 035249 A Budapest XVI. Kerületi Szerb Antal Gimnázium Felvételi Szabályzata

Részletesebben

V.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői

V.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői V.7. NÉPSZÁMLÁLÁS Tárgy, téma A feladatsor jellemzői Eponenciális egyenletek felírása és megoldása szöveges feladatok alapján. Szöveges feladatok alapján modellt alkotunk, amely alkalmas eponenciálisan

Részletesebben

MATEMATIKAI STANDARDFEJLESZTÉS

MATEMATIKAI STANDARDFEJLESZTÉS XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 MATEMATIKAI STANDARDFEJLESZTÉS Csapodi Csaba Tartalom 1. Az első változat elkészítése és a tapasztalatok 2. A második

Részletesebben

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...

Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;... Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

1. Számológép és táblázat használata nélkül számítsd ki a következő számokat, majd. ; 8. (7 pont) függvényt! (9 pont)

1. Számológép és táblázat használata nélkül számítsd ki a következő számokat, majd. ; 8. (7 pont) függvényt! (9 pont) I..negyedéves témazáró.évfolyam A csoport. Számológép és táblázat használata nélkül számítsd ki a következő számokat, majd rendezd növekvő sorrendbe: 9 ; 8 ; 8. (7 pont). Ábrázold és jellemezd az f ( )

Részletesebben

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget!

2 2 = 2 p. = 2 p. 2. Végezd el a kijelölt műveleteket! 3. Végezd el a kijelölt műveleteket! 4. Alakítsad szorzattá az összeget! Matematika vizsga 014. 9. osztály Név: Az 1-1. feladatok megoldását a feladatlapra írd! A 1-19. feladatokat a négyzetrácsos lapon oldd meg! 1. Számítsd ki az alábbi kifejezések pontos értékét! 0, = = p

Részletesebben

Érettségi vizsga 2014/2015

Érettségi vizsga 2014/2015 Érettségi vizsga 2014/2015 1. Érettségi tantárgyai Öt tárgyból kell érettségi vizsgát tenni, és az öt közül négy kötelezően előírt: - Magyar nyelv és irodalom - Matematika - Történelem - Idegen nyelv Az

Részletesebben

JOGSZABÁLYKIVONATOK. Az érettségiről

JOGSZABÁLYKIVONATOK. Az érettségiről JOGSZABÁLYKIVONATOK AZ ÉRETTSÉGIRŐL (részletes leírás a 100/1997. Kormányrendeletben)...1 Felvételi vizsgatárgyak a Közgazdaságtudományi Karon meghirdetett alapszakokon...2 Érettségi vizsgaidőpontok a

Részletesebben

Hatvány, gyök, normálalak

Hatvány, gyök, normálalak Hatvány, gyök, normálalak 1. Számítsd ki a következő hatványok pontos értékét! 3 5 3 3 1 4 3 3 4 1 7 3 3 75 100 3 0,8 ( ) 6 3 1 3 5 3 1 3 0 999. 3. Számológép használata nélkül számítsd ki a következő

Részletesebben

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba

A kompetencia alapú matematika oktatás. tanmenete a 9. osztályban. Készítette Maitz Csaba A kompetencia alapú matematika oktatás tanmenete a 9. osztályban Készítette Maitz Csaba Szerkesztési feladatok 1. Síkgeometriai alapfogalmak 2. Egyszerűbb rajzok, szerkesztések körző, vonalzó használata

Részletesebben

Munkaformák Módszerek Eszközök készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek

Munkaformák Módszerek Eszközök készségek, célok Szervezési feladatok Rendezés, a füzet vezetése EM Magyarázat Tankönyv, füzetek Idő 09. 01. 1. 09. 02. 2. 09. 03. 3. 09. 04. 4. 09. 08. 5. 09. 09. 6. 09.10. 7. 09.11. 8. Tananyag Fejlesztési képességek, Munkaformák Módszerek Eszközök készségek, célok Szervezési feladatok Rendezés,

Részletesebben

Szöveges feladatok és Egyenletek

Szöveges feladatok és Egyenletek Szöveges feladatok és Egyenletek Sok feladatot meg tudunk oldani következtetéssel, rajz segítségével és egyenlettel is. Vajon mikor érdemes egyenletet felírni? Van-e olyan eset, amikor nem tanácsos, vagy

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT II. 135 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT II. 135 perc A feladatok megoldására 135 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A II/B

Részletesebben

Százalékszámítás alkalmazása

Százalékszámítás alkalmazása É N É S M Á S I K Százalékszámítás alkalmazása MODUL SZERZŐJE: N. SZBÓ NIKÓ SZOCIÁLIS, ÉLETVITELI ÉS KÖRNYEZETI KOMPETENCIÁK 6. ÉVFOLYM SZKB_106_05 50 Szociális, életviteli és környezeti kompetenciák tanári

Részletesebben

Érettségi feladatok: Szöveges feladatok

Érettségi feladatok: Szöveges feladatok Érettségi feladatok: Szöveges feladatok 2005. május 10. 17. Anna és Zsuzsi is szeretné megvenni az újságosnál az egyik magazint, de egyik lánynak sincs elegendő pénze. Anna pénzéből hiányzik a magazin

Részletesebben

Osztályozóvizsga-tematika 8. évfolyam Matematika

Osztályozóvizsga-tematika 8. évfolyam Matematika Osztályozóvizsga-tematika 8. évfolyam Matematika 1. félév 1. Gondolkozz és számolj! A természetes szám fogalma, műveleti tulajdonságok Helyiértékek rendszere a tízes számrendszerben: alakiérték, tényleges

Részletesebben

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I.

MATEMATIKA ÉRETTSÉGI május 10. KÖZÉP SZINT I. 1) Adott két pont: A ; 1 felezőpontjának koordinátáit! AB felezőpontja legyen F. MATEMATIKA ÉRETTSÉGI 005. május 10. KÖZÉP SZINT I. és B 1; Írja fel az AB szakasz 1 1 F ; F ;1 ) Az ábrán egy ; intervallumon

Részletesebben

Módszertani Intézeti Tanszéki Osztály

Módszertani Intézeti Tanszéki Osztály BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012. Név:... Kód:...... Eredmény:..... STATISZTIKA I. VIZSGA; NG KM ÉS KG TQM SZAKOKON MINTAVIZSGA Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető

Részletesebben

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont)

1. tétel. 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója 7 cm. Mekkora a háromszög átfogója? (4 pont) 1. tétel 1. Egy derékszögű háromszög egyik szöge 50, a szög melletti befogója cm. Mekkora a háromszög átfogója? (4 pont). Adott az ábrán két vektor. Rajzolja meg a b, a b és az a b vektorokat! (6 pont)

Részletesebben

M A T EMATIKA 9. év fo ly am

M A T EMATIKA 9. év fo ly am Fővárosi Pedagógiai és Pályaválasztási Tanácsadó Intézet 1088 Budapest, Vas utca 8-10. Az iskola kódja: Az osztály kódja: A tanuló kódja: A tanuló neme: Kompetenciaalapú mérés 2008/2009. M A T EMATIKA

Részletesebben

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek

Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek 2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,

Részletesebben

Bemeneti mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m JAVÍTÓKULCS A változat

Bemeneti mérés 2009/2010. M A T E M A T I K A 9. é v f o l y a m JAVÍTÓKULCS A változat Bemeneti mérés 009/010. M A T E M A T I K A 9. é v f o l y a m JAVÍTÓKULCS A változat Minden a javítókulcsban megadott leírás szerinti helyes válasz (a tevékenység helyes elvégzése) értéke: 1 pont, ha

Részletesebben

Meghatalmazott Ajánlatkérő: Hivatalos név: Tolnáért-Tolna Megyei Térségfejlesztési Nonprofit Közhasznú Kft. Postai cím: Szent István tér

Meghatalmazott Ajánlatkérő: Hivatalos név: Tolnáért-Tolna Megyei Térségfejlesztési Nonprofit Közhasznú Kft. Postai cím: Szent István tér 14. melléklet a 44/2015. (XI. 2.) MvM rendelethez KÖZBESZERZÉSI ADATBÁZIS Összegezés az ajánlatok elbírálásáról I. szakasz: Ajánlatkérő I.1) Név és címek 1 (jelölje meg az eljárásért felelős összes ajánlatkérőt)

Részletesebben

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7

Megoldás: Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 A = {1; 3; 5; 7; 9} A B = {3; 5; 7} A/B = {1; 9} Mindkét állítás hamis! Indoklás: a) Azonos alapú hatványokat úgy szorzunk, hogy a kitevőket összeadjuk. Tehát: a 3 * a 4 = a 3+4 = a 7 Azonos alapú hatványokat

Részletesebben

TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE

TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE TÖRTEK ÖSSZEHASONLÍTÁSA, EGYSZERŰSÍTÉSE, BŐVÍTÉSE . Az alábbi ábrákon a beszínezett rész -et ér. Mennyit ér a rajz be nem színezett része? Mennyit ér a teljes rajz? a) b) c) d) e) f). Állítsd növekvő sorrendbe

Részletesebben

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET

Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET Szerb Köztársaság OKTATÁSI ÉS TUDOMÁNYÜGYI MINISZTÉRIUM OKTATÁSI ÉS NEVELÉSI MINŐSÉGELLENŐRZŐ INTÉZET FELADATOK AZ ÁLTALÁNOS OKTATÁS ÉS NEVELÉS ZÁRÓVIZSGÁJÁRA a 2011/2012-es tanévben TESZT 3 matematikából

Részletesebben

Munkánk során a cellák tartalmát gyakran másolni szoktuk. Előfordul, hogy képleteket tartalmazó cellákat másolunk.

Munkánk során a cellák tartalmát gyakran másolni szoktuk. Előfordul, hogy képleteket tartalmazó cellákat másolunk. Táblázatkezelés 4. - Hivatkozások Az elmúlt órán végzett számításoknál, amikor a felhasználói képleteket készítettük, mindig annak a cellának a tartalmát használtuk, amelyben a számításhoz szükséges adat

Részletesebben

SOROZATOK- MÉRTANI SOROZAT

SOROZATOK- MÉRTANI SOROZAT SOROZATOK- MÉRTANI SOROZAT Egy mértani sorozat első tagja 8, hányadosa 1 2. Számítsa ki a sorozat ötödik tagját! 2005. május 10. 8. feladat (2 pont) Egy mértani sorozat első tagja 3, a hányadosa 2. Adja

Részletesebben

Kedvezmények, külön adózó jövedelmek

Kedvezmények, külön adózó jövedelmek Kedvezmények, külön adózó jövedelmek A béren kívüli juttatások megadóztatásával nagy összegű adóbevételre lehet szert tenni ( Robert W.Turner) Hol tartunk Az SZJA jellemzői A törvény alanyi hatálya A bevallási

Részletesebben

Amit a törtekről tudni kell 5. osztály végéig Minimum követelményszint

Amit a törtekről tudni kell 5. osztály végéig Minimum követelményszint Amit a törtekről tudni kell. osztály végéig Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat

Részletesebben

1. Írd fel hatványalakban a következõ szorzatokat!

1. Írd fel hatványalakban a következõ szorzatokat! Számok és mûveletek Hatváyozás aaaa a a darab téyezõ a a 0 0 a,ha a 0. Írd fel hatváyalakba a következõ szorzatokat! a) b),,,, c) (0,6) (0,6) d) () () () e) f) g) b b b b b b b b h) (y) (y) (y) (y) (y)

Részletesebben

ZA4981. Flash Eurobarometer 250 (Confidence in Information society) Country Specific Questionnaire Hungary

ZA4981. Flash Eurobarometer 250 (Confidence in Information society) Country Specific Questionnaire Hungary ZA4981 Flash Eurobarometer 250 (Confidence in Information society) Country Specific Questionnaire Hungary Citizens' confidence in the Information Society Flash Eurobarometer Q1. Átlagosan milyen gyakran

Részletesebben

KOMPLEX KOMMUNIKÁCIÓS ÉS TERMÉSZETTUDOMÁNYI CSOMAG MATEMATIKA TÁMOP-2.2.3-07/1-2F-2008-0011 MATEMATIKA A MINDENNAPI ÉLETBEN 9.

KOMPLEX KOMMUNIKÁCIÓS ÉS TERMÉSZETTUDOMÁNYI CSOMAG MATEMATIKA TÁMOP-2.2.3-07/1-2F-2008-0011 MATEMATIKA A MINDENNAPI ÉLETBEN 9. KOMPLEX KOMMUNIKÁCIÓS ÉS TERMÉSZETTUDOMÁNYI CSOMAG MATEMATIKA TÁMOP-2.2.3-07/1-2F-2008-0011 MATEMATIKA A MINDENNAPI ÉLETBEN 9. ÉVFOLYAM TANÁRI KÉZIKÖNYV MAT9_TK.indd 1 2009.11.05. 13:40:27 A kiadvány a

Részletesebben

33. modul 1. melléklet 3. évfolyam Mérőlap/1. Név:. 1. Becsüld meg az összegeket! A tagok százasokra kerekített értékeivel végezd a becslést! Majd végezd is el az összeadásokat. Számításaidat kivonással

Részletesebben

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez

TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika

Részletesebben

Madách Imre Gimnázium Somorja Šamorín, Slnečná 2, Szlovákia Telefon: Feladatok

Madách Imre Gimnázium Somorja Šamorín, Slnečná 2, Szlovákia Telefon: Feladatok G MADÁCH IMRE GIMNÁZIUM SOMORJA G M Madách Imre Gimnázium 931 01 Somorja Šamorín, Slnečná 2, Szlovákia Telefon: 00421-31-5622257 e-mail: mtg@gmadsam.edu.sk Feladatok gyakorlásra a 8 osztályos gimnáziumba

Részletesebben

Cukrász Cukrász. Kedves Vizsgázó!

Cukrász Cukrász. Kedves Vizsgázó! A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP

P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ. 9. osztályosoknak SZAKKÖZÉP J UHÁSZ I STVÁN P ÓTVIZSGA F ELKÉSZÍTŐ FÜZETEK UNIÓS RENDSZERŰ PÓTVIZSGÁHOZ T é m a k ö r ö k é s p r ó b a f e l a d a t s o r 9. osztályosoknak SZAKKÖZÉP 1. oldal 9. OSZTÁLYOS PÓTVIZSGA TÉMAKÖRÖK: I.

Részletesebben

Előadó: Horváth Judit

Előadó: Horváth Judit Előadó: Horváth Judit Előkészítés Tapasztalatszerzés: tevékenység eszközhasználat játék Az összeadás, kivonás típusai Változtatás Hasonlítás Egyesítés A típusok variánsai Fordított, indirekt szövegű feladatok

Részletesebben

Az egyszerűsítés utáni alak:

Az egyszerűsítés utáni alak: 1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű

Részletesebben

Ügyeljen arra, hogy a programmodul sorszáma és megnevezése azonos legyen a I. A program általános tartalma fejezet 11. pontjában írtakkal!

Ügyeljen arra, hogy a programmodul sorszáma és megnevezése azonos legyen a I. A program általános tartalma fejezet 11. pontjában írtakkal! II. ADATLAP - Programmodul részletes bemutatása Valamennyi programmodulra külön-külön kitöltendő 1. A programmodul azonosító adatai Ügyeljen arra, hogy a programmodul sorszáma és megnevezése azonos legyen

Részletesebben

Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x

Matematika érettségi emelt 2008 október. x 2 0. nem megoldás. 9 x Matematika érettségi emelt 8 október ( ) lg( 8) 8 8 nem megoldás lg( 8) 8 9 ] ; [ ] ; [, M {;} Matematika érettségi emelt 8 október 6 I. eset II. eset ;[ ] 5 5 6 ;[ ], [ [; 5 5 6 [ [; 4, {;} M Matematika

Részletesebben

VII.A. Oszthatóság, maradékos osztás Megoldások

VII.A. Oszthatóság, maradékos osztás Megoldások VIIA Oszthatóság, maradékos osztás Megoldások 11 Igen, mert a 4x = 8 egyenlet megoldható a természetes számok halmazában: x = 2 12 Nem, mert a 4x = 10 egyenlet nem oldható meg a természetes számok halmazában

Részletesebben

Amit a törtekről tudni kell Minimum követelményszint

Amit a törtekről tudni kell Minimum követelményszint Amit a törtekről tudni kell Minimum követelményszint Fontos megjegyzés: A szabályoknak nem a pontos matematikai meghatározását adtuk. Helyettük a gyakorlatban használható, egyszerű megfogalmazásokat írtunk.

Részletesebben

A-1 A-2 A-3 A

A-1 A-2 A-3 A A-1 Egy kabát árát elıször 12%-kal felemelték, majd kereslet hiányában 35%-kal csökkentették. a. Mennyibe került eredetileg, ha a kétszeri árváltozás után 12000 Ft volt az ára? b. Hány százalékos volt

Részletesebben

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika 7. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) 2017. április 04. Készítette: Szafiánné Csécsei Tímea,

Részletesebben

KÖZLEKEDÉSI ALAPISMERETEK

KÖZLEKEDÉSI ALAPISMERETEK ÉRETTSÉGI VIZSGA 2009. május 22. KÖZLEKEDÉSI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2009. május 22. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS

Részletesebben

A felmérési egység kódja:

A felmérési egység kódja: A felmérési egység lajstromszáma: 0133 ÚMFT Programiroda A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: SzocEüPed//50/Rea//Ált Szociális, egészségügy, pedagógiai asszisztens

Részletesebben

Bevezetés a programozásba I.

Bevezetés a programozásba I. Bevezetés a programozásba I. 3. gyakorlat Tömbök, programozási tételek Surányi Márton PPKE-ITK 2010.09.21. ZH! PlanG-ból papír alapú zárthelyit írunk el reláthatólag október 5-én! Tömbök Tömbök Eddig egy-egy

Részletesebben

MATEMATIKA VERSENY

MATEMATIKA VERSENY Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket

Részletesebben

"CSALÁDI HÁTTÉR" felmérés. Balmazújvárosi Veres Péetr Gimnázium és Szakképző Iskola. 9. évfolyama. 2014/2015. tanév

CSALÁDI HÁTTÉR felmérés. Balmazújvárosi Veres Péetr Gimnázium és Szakképző Iskola. 9. évfolyama. 2014/2015. tanév "CSALÁDI HÁTTÉR" felmérés Balmazújvárosi Veres Péetr Gimnázium és Szakképző Iskola 9. évfolyama 214/215. tanév Kérdések - Válaszok - Alapadatok Ssz. Kérdés 9.a 9.b Gimnázium 9.c 9.d 9.e Szakiskola Iskolai

Részletesebben

Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből

Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:

Részletesebben

Excel Hivatkozások, függvények használata

Excel Hivatkozások, függvények használata Excel Hivatkozások, függvények használata 1. Fejezet Adatok, képletek, függvények Adatok táblázat celláiba írjuk, egy cellába egy adat kerül lehet szám, vagy szöveg * szám esetén a tizedes jegyek elválasztásához

Részletesebben

Matematika 11. osztály

Matematika 11. osztály ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék

Részletesebben

Boronkay György Műszaki Középiskola és Gimnázium

Boronkay György Műszaki Középiskola és Gimnázium Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. (: 27-317 - 077 (/fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2014/2015.

Részletesebben

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész

Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november. I. rész Pataki János, november Emelt szintű érettségi feladatsorok és megoldásaik Összeállította: Pataki János; dátum: november I rész feladat Oldja meg az alábbi egyenleteket: a) log 7 log log log 7 ; b) ( )

Részletesebben

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I.

MATEMATIKA ÉRETTSÉGI 2005. május 28. KÖZÉPSZINT I. ) Mely valós számokra igaz, hogy 7 7 MATEMATIKA ÉRETTSÉGI 005. május 8. KÖZÉPSZINT I. 7? Összesen: pont ) Egy 40 000 Ft-os télikabátot a tavaszi árleszállításkor 0%-kal olcsóbban lehet megvenni. Mennyi

Részletesebben

Csomagolástechnológus szakmérnök és szakember képzés. Dr. Koltai László Óbudai Egyetem

Csomagolástechnológus szakmérnök és szakember képzés. Dr. Koltai László Óbudai Egyetem Csomagolástechnológus szakmérnök és szakember képzés Dr. Koltai László Óbudai Egyetem Felsőfokú képzések Felsőfokú végzettségi szintek: FOSZK, BSc, BA, MSc, MA, Szakképzettség: pl. könnyűipari mérnök,

Részletesebben

Excel Hivatkozások, függvények használata

Excel Hivatkozások, függvények használata Excel Hivatkozások, függvények használata 1. Fejezet Adatok, képletek, függvények Adatok táblázat celláiba írjuk, egy cellába egy adat kerül lehet szám, vagy szöveg * szám esetén a tizedes jegyek elválasztásához

Részletesebben

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT

MATEMATIKA ÉRETTSÉGI május 8. KÖZÉPSZINT MATEMATIKA ÉRETTSÉGI 007. május 8. KÖZÉPSZINT ) Egyszerűsítse a következő törtet! (a; b valós szám, ab 0)! a b ab ab ab ( a ) a ab I. Összesen: pont ) Egy mértani sorozat második eleme 3, hatodik eleme.

Részletesebben

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

MATEMATIKA a 8. évfolyamosok számára. Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ 8. évfolyam Mat1 Javítási-értékelési útmutató MATEMATIKA a 8. évfolyamosok számára Mat1 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A javítási-értékelési útmutatóban feltüntetett válaszokra a megadott pontszámok adhatók.

Részletesebben

Érettségi és felvételi tájékoztató

Érettségi és felvételi tájékoztató Érettségi és felvételi tájékoztató 2017-18. mesterdiploma Osztatlan képzés felsőfokú szakképesítés A bolognai rendszer 6 félév / 180 kredit doktori képzés (PhD) doktori diploma Ph.D. / D.L.A. 4 félév /

Részletesebben

TIMSS & PIRLS Tanulói kérdőív. 4. évfolyam. Azonosító címke

TIMSS & PIRLS Tanulói kérdőív. 4. évfolyam. Azonosító címke Azonosító címke TIMSS & PIRLS 2011 Tanulói kérdőív 4. évfolyam Oktatási Hivatal Közoktatási Mérési és Értékelési Osztály 1054 Budapest, Báthory u. 10. IEA, 2011 Útmutató Ebben a kérdőívben Veled kapcsolatos

Részletesebben

Miért van az, hogy a legtöbben. a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból

Miért van az, hogy a legtöbben. a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból Miért van az, hogy a legtöbben a szöveges feladatokkal nem boldogulnak? Részletek a szövegértést fejleszt, kidolgozott feladatlapokból Elszó 0 éves személyes tapasztalataim azt mutatják, hogy a tanulóknak

Részletesebben

A javítási-értékelési útmutatótól eltérő helyes megoldásokat is el kell fogadni.

A javítási-értékelési útmutatótól eltérő helyes megoldásokat is el kell fogadni. A 27/2012. (VIII. 27.) NGM rendelet a 29/2016. (VIII. 26.) NGM rendelet által módosított szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 811 01 Vendéglátásszervező

Részletesebben

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY

45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY 45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY 1. Marci tolltartójában fekete, piros és kék ceruzák vannak, összesen 20 darab. Hány fekete ceruza van

Részletesebben

A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján.

A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. A 27/2012 (VIII. 27.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 35 811 02 Vendéglátó-üzletvezető Tájékoztató A vizsgázó az első lapra írja fel a

Részletesebben

Pontszámítás egyetemi felvételihez

Pontszámítás egyetemi felvételihez Pontszámítás egyetemi felvételihez A felvételi összpontszám, vagyis a rangsorolás alapjául szolgáló eredmény 400+100 pontos pontszámítási rendszerben kerül kiszámításra. A pontszámítás alapját a tanulmányi

Részletesebben

A felmérési egység kódja:

A felmérési egység kódja: A felmérési egység lajstromszáma: 006 A felmérési egység adatai A felmérési egység kódja: A kódrészletek jelentése: KerVeKz//50/Rea//s Kereskedelem, vendéglátás közös szakképesítéscsoportban, a célzott,

Részletesebben

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez

Függvények II. Indítsuk el az Excel programot! A minta alapján vigyük be a Munka1 munkalapra a táblázat adatait! 1. ábra Minta az adatbevitelhez Bevezetés Ebben a fejezetben megismerkedünk a Logikai függvények típusaival és elsajátítjuk alkalmazásukat. Jártasságot szerzünk bonyolultabb feladatok megoldásában, valamint képesek leszünk a függvények

Részletesebben

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória

A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató. INFORMATIKA II. (programozás) kategória Oktatási Hivatal A 2016/2017 tanévi Országos Középiskolai Tanulmányi Verseny első forduló javítási-értékelési útmutató INFORMATIKA II. (programozás) kategória Kérjük a tisztelt tanár kollégákat, hogy a

Részletesebben

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika

XLII. Országos Komplex Tanulmányi Verseny Megyei forduló. Matematika 6. Matematika Az emberek csak azért gondolják, hogy a matematika nehéz, mert még nem döbbentek rá, hogy az élet maga milyen bonyolult. (Neumann János) 2017. április 04. Készítette: Szafiánné Csécsei Tímea,

Részletesebben

Nagy Erika. Matekból Ötös. 5. osztályosoknak. www.matek.info

Nagy Erika. Matekból Ötös. 5. osztályosoknak. www.matek.info Nagy Erika Matekból Ötös 5. osztályosoknak www.matek.info 1 Készítette: Nagy Erika 2009 Javított kiadás 2010 MINDEN JOG FENNTARTVA! Jelen kiadványt vagy annak részeit tilos bármilyen eljárással (elektronikusan,

Részletesebben

2. Százalékszámítás és alkalmazásai

2. Százalékszámítás és alkalmazásai 2. Százalékszámítás és alkalmazásai Tanulási cél: Százalékszámítás ismétlése, megismerni az ÁFA valamint az egyszerű és kamatos kamat számítási módszereit Motivációs példa Az újságban olvassuk, hogy a

Részletesebben

Osztályozóvizsga követelményei

Osztályozóvizsga követelményei Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási

Részletesebben

MATEMATIKAI KOMPETENCIATERÜLET A

MATEMATIKAI KOMPETENCIATERÜLET A MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyz jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 7. osztály. A versenyz jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 7. osztály A versenyz jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

Matematika 5. osztály Osztályozó vizsga

Matematika 5. osztály Osztályozó vizsga Matematika 5. osztály Osztályozó vizsga A TERMÉSZETES SZÁMOK A tízes számrendszer A természetes számok írása, olvasása 1 000 000-ig. Helyi-értékes írásmód a tízes számrendszerben, a helyiérték-táblázat

Részletesebben

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc

PRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok

Részletesebben

SZÁMÍTÁSI FELADATOK I.

SZÁMÍTÁSI FELADATOK I. SZÁMÍTÁSI FELADATOK I. A feladatokat figyelmesen olvassa el! A válaszokat a feladatban előírt módon adja meg! A számítást igénylő feladatoknál minden esetben először írja fel a megfelelő összefüggést (képletet),

Részletesebben

KÉRDŐÍV Hallgatói pályaorientáció egyetemi szolgáltatások munkaerőpiaci kilátások hallgatók az EU-ról

KÉRDŐÍV Hallgatói pályaorientáció egyetemi szolgáltatások munkaerőpiaci kilátások hallgatók az EU-ról UNIVERSITAS PRESS JELTÁRS Képzési és Tudományos Információs Ügynökség Jelenkor Társadalomkutató Műhely 1146 Budapest, Ajtósi D. sor 19-21. 1146 Budapest, Ajtósi D. sor 19-21. Tel.: 321-32-46, 343-48-00/368.

Részletesebben

Gauss elimináció, LU felbontás

Gauss elimináció, LU felbontás Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek

Részletesebben

Vizsgaidőszak. adott tanév május-júniusi érettségi vizsgaidőszak jelentkezés: február 15.

Vizsgaidőszak. adott tanév május-júniusi érettségi vizsgaidőszak jelentkezés: február 15. Vizsgaidőszak adott tanév május-júniusi érettségi vizsgaidőszak jelentkezés: 2018. február 1. A jelentkezés helye Tanulói jogviszony alatt: - saját iskolájában jelentkezik a tanuló közép- és emelt szintre

Részletesebben

4. évfolyam A feladatsor

4. évfolyam A feladatsor Név: 4. évfolyam A feladatsor Osztály: Kedves Vizsgázó! Olvasd el figyelmesen a feladatokat, gondold át a megoldások menetét! Eredményes, sikeres munkát kívánunk!. a) Írd le számjegyekkel! Rendezd a számokat

Részletesebben

2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN

2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN Matematika A 9. szakiskolai évfolyam 2. modul MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN MATEMATIKA A 9. szakiskolai évfolyam 2. modul: MŰVELETEK RACIONÁLIS SZÁMOK KÖRÉBEN Tanári útmutató 2 A modul célja Időkeret

Részletesebben

KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN)

KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) Közgazdasági alapismeretek (elméleti gazdaságtan) középszint 0521 É RETTSÉGI VIZSGA 2005. október 24. KÖZGAZDASÁGI ALAPISMERETEK (ELMÉLETI GAZDASÁGTAN) KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI

Részletesebben

2017/2018. Matematika 9.K

2017/2018. Matematika 9.K 2017/2018. Matematika 9.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép 2 órás, 4 jegyet ér 2018. május 28. hétfő 1-2. óra A312 terem Aki hiányzik, a következő

Részletesebben

Vizsgaidőszak. adott tanév május-júniusi érettségi vizsgaidőszak jelentkezés: 2016. február 15.

Vizsgaidőszak. adott tanév május-júniusi érettségi vizsgaidőszak jelentkezés: 2016. február 15. Vizsgaidőszak adott tanév május-júniusi érettségi vizsgaidőszak jelentkezés: 2016. február 15. A jelentkezés helye Tanulói jogviszony alatt: - saját iskolájában jelentkezik a tanuló középés emelt szintre

Részletesebben

Próbaérettségi feladatsor_b NÉV: osztály Elért pont:

Próbaérettségi feladatsor_b NÉV: osztály Elért pont: Próbaérettségi feladatsor_b NÉV: osztály Elért pont: I. rész A feladatsor 12 példából áll, a megoldásokkal maimum 30 pont szerezhető. A kidolgozásra 45 perc fordítható. 1. feladat Egy derékszögű háromszög

Részletesebben

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.

A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek. Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.

Részletesebben

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc

MATEMATIKA KISÉRETTSÉGI Ponthatárok: (5) (4) (3) (2) (1) Pontszám. I. rész - A rendelkezésre álló idő: 45 perc MATEMATIKA KISÉRETTSÉGI 2014. Ponthatárok: (5) 83-100 (4) 65-82 (3) 47-64 (2) 30-46 (1) 0-29 Név, osztály Pontszám I. rész - A rendelkezésre álló idő: 45 perc I. rész 30 pont Érdemjegy II. rész 70 pont

Részletesebben