Császár Attila. Molekulaforgások. kvantummechanikája
|
|
- Dávid Péter
- 5 évvel ezelőtt
- Látták:
Átírás
1 1 Császár Attila Molekulaforgások kvantummechanikája Jegyzet(kezdemény) Budapest, 2001
2 2 A spektroszkópiai módszerek/mérések kvantumkémiai alapjai Adolphe Quetelet ( ), Instructions Populaires sue le Calcul des Probabilities, Tarlier, Brussels, 1828, p.230. The more progress physical sciences make, the more they tend to enter the domain of mathematics, which is a kind of centre to which they all converge. We may even judge the degree of perfection to which a science has arrived by the facility with which it may be submitted to calculation. A. Compte ( ), Philosophie Positive, Every attempt to employ mathematical methods in the study of chemical questions must be considered profoundly irrational and contrary to the spirit of chemistry. If mathematical analysis should ever hold a prominent place in chemistry an aberration which is happily impossible it would occasion a rapid and widespread degeneration of that science. Paul A. M. Dirac ( ), Proc. Roy. Soc. (London) 1929, 123, 714: The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble. Még ma is sok (főképp kísérleti) kémikus tekint ellenszenvvel az elméleti módszerek alkalmazására és alkalmazóira, valamint a digitális számítógépeknek mint "mérőeszközöknek", "műszereknek" a felhasználására. Sokan közülük szkeptikusak az elméleti eredményeket illetően. Sokan alulinformáltak, vagy előítélettel rendelkezők. Sokan nem hiszik, hogy az elmélet pontos eredményeket adhat kémiai jelenségekre. Néhányan úgy érzik, hogy az elméleti módszerek túl bonyolultak, nehezen megtanulhatók, illetve alkalmazhatók.
3 3 I. Bevezetés A félév során feldolgozandó témák: Merev molekulák forgó mozgásának kvantummechanikája: 1. Bevezetés 2. Impulzusmomentum algebra elemei. 3. Rövid csoportelmélet és szimmetria. 4. Euler-szögek és iránykoszinuszok. 5. Impulzusmomentumok csatolása, Clebsch Gordan koefficiensek. 6. Forgatási mátrixok. 7. Merev rotátor energiaszintjei és hullámfüggvényei. 8. Kiválasztási szabályok. 9. Eltérések a merev rotátor modelltől. Ab initio forgási spektroszkópia
4 4 Ajánlott irodalom: Richard N. Zare: Angular Momentum: Understanding Spatial Aspects in Chemistry and Physics, Wiley-Interscience: New York, P. R. Bunker and P. Jensen, Molecular Symmetry and Spectroscopy, 2 nd edition, NRC Research Press: Ottawa, G. Herzberg, Molekula-színképek és molekulaszerkezet II, Akadémiai Kiadó: Budapest, Ira N. Levine: Molecular Spectroscopy, Wiley-Interscience: New York, Nemes László, Többatomos molekulák forgási spektroszkópiája, in Molekulaspektroszkópia, szerk. I. Kovács, J. Szőke, Akadémiai Kiadó: Budapest, Harry W. Kroto, Molecular Rotation Spectra, Wiley: London, Walter S. Struve: Fundamentals of Molecular Spectroscopy, Wiley-Interscience: New York, E. Bright Wilson, Jr., J. C. Decius, and Paul C. Cross, Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra, Dover: New York, 1955.
5 5 Az atomi és molekulaszínképek megjelenését meghatározó tényezők: energia szintek, hullámfüggvények és populációk (a kvantumkémiai modell megoldásából adódnak) kiválasztási szabályok (nem minden átmenet megengedett a lehetséges energiaszintek között) Spektroszkópiai módszerek megértése: H$ H$ + H$ + H$ + H$ + H$ el rezg forg halado Ψ Ψ Ψ Ψ Ψ te rbeli el rezg forg halado Ete rbeli Eel + Erezg + Eforg Ha a spin koordinátákat is figyelembe vesszük: Ψ = Ψ Ψ Ψ te rbeli el. spin magspin E E + E + E te rbeli el. spin magspin Az elektron- és a magspinnek megfelelő koordináták elsősorban külső tér (elektromos illetve mágneses) jelenléte esetén válnak fontossá, egyébként azokat a rezgő és forgó mozgás hagyományos tárgyalása során többnyire elhanyagoljuk.
6 6 A spektroszkópia és a kvantummechanika kapcsolódási pontjai Kvantummechanika (elmélet) alapvető fizikai állandók elektron mozgás Schrödinger egyenlete ab initio molekulaállandók mag mozgás Schrödinger egyenlete ab initio energiaszintek és tulajdonságok Matematikailag tiszta és direkt megközelítés Számítási szempontból lehetetlenül nagy feladat, közelítések bevezetése nélkülözhetetlen számolt energiaszintek és tulajdonságok közelítőek Spektroszkópia (kísérlet) kísérletileg észlelt energiaszintek E E = hν interpretáció; színkép asszignáció; modell molekulaparaméterek és tulajdonságok Empirikus, inverz megközelítés Egzakt energiaszint különbségek Az interpretáció és az asszignáció nem mindig egyértelmű Az alkalmazott kiértékelő modellek többsége kvantummechanikai eredetű, mindazonáltal különböző szintű néha drasztikus közelítéseket tartalmaz A molekuláris paramétereket/tulajdonságokat az alkalmazott modell, valamint a mérhető energiaszintek nem határozzák meg pontosan A mikroszkopikus (kvantummechanikai, illetve spektroszkópiai energiaszintek) és a makroszkopikus (termodinamikai) mennyiségek közötti kapcsolatot a statisztikus mechanika biztosítja.
7 7
8 8 Ab initio (elektronszerkezet + magmozgás) kvantumkémiai módszerekkel meghatározható molekulatulajdonságok molekulageometriai paraméterek (forgási színképek) rezgési-forgási energiaszintek (infravörös és Raman színképek) elektronikus energiaszintek (UV és látható színképek) termokémia (kötésenergiák; ΔH, ΔS, ΔG, C v, C p, főképpen gázfázisban) kinetika és reakciódinamika (gátmagasságok, átmeneti állapotok, reakciósebességi állandók és mechanizmusok, potenciális energia (hiper)felületek) ionizációs potenciálok (fotoelektron és röntgen színképek) Franck Condon tényezők (átmeneti valószínűségek) IR és Raman intenzitások dipólus momentumok polarizálhatóság elektronsűrűség térképek és populáció analízis NMR paraméterek stb. Rezgési-forgási színképekből származó információ három fő hasznosítási területe: A molekulát alkotó atomokat összetartó erők vizsgálata (pl. Badger-szabály) Molekulaszerkezet meghatározása Termodinamikai mennyiségek (hőkapacitás, entrópia, szabadenergia) számítása
Császár Attila. Molekularezgések. kvantummechanikája
1 Császár Attila Molekularezgések kvantummechanikája Jegyzet(kezdemény) Budapest, 2011 2 A félév során feldolgozandó témák: 1. A tömegközéppont mozgásának leválasztása 2. Az időfüggetlen rovibronikus Schrödinger-egyenlet
MOLEKULÁRIS TULAJDONSÁGOK
7 MOLKULÁIS TULAJDONSÁGOK Az elektronszerkezet számítások fókuszában többnyire az energiának és a hullámfüggvénynek egy adott geometriában történ kiszámítása áll Bár a gyakorlati kémiában a relatív energiák
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia?
Hogyan bírhatjuk szóra a molekulákat, avagy mi is az a spektroszkópia? Prof. Túri László (ELTE, Kémiai Intézet) turi@chem.elte.hu 2012. november 19. Szent László Gimnázium Önképzőkör 1 Kapcsolódási pontok
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr ( )
a Bohr-féle atommodell (1913) Niels Hendrik David Bohr (1885-1962) atomok gerjesztése és ionizációja elektronnal való bombázással (1913-1914) James Franck (1882-1964) Gustav Ludwig Hertz (1887-1975) Nobel-díj
Atomok és molekulák elektronszerkezete
Atomok és molekulák elektronszerkezete Szabad atomok és molekulák Schrödinger egyenlete Tekintsünk egy kvantummechanikai rendszert amely N n magból és N e elektronból áll. Koordinátáikat jelölje rendre
Félmerev és flexibilis molekulák rezgési-forgási állapotainak kvantumkémiai számítása és jellemzése
Doktori értekezés tézisei Fábri Csaba Félmerev és flexibilis molekulák rezgési-forgási állapotainak kvantumkémiai számítása és jellemzése Témavezető Prof. Dr. Császár Attila Molekulaszerkezet és Dinamika
kv2n1p18 Kvantumkémia
Kiegészítő fejezetek a fizikai kémiához kv2n1p18 Kvantumkémia Szalay Péter Kémiai Intézet Eötvös Loránd Tudományegyetem szalay@chem.elte.hu Ajánlott irodalom Fizikai Kémia (4): Elméleti Kémia (emelt szint)
A kvantumszámok jelentése: A szokásos tárgyalás a pályák alakját vizsgálja, ld. majd azt is; de a lényeg: fizikai mennyiségeket határoznak meg.
I.6. A H-atom kvantummechanikai leírása I.6.1. Schrödinger-egyenlet, kvantumszámok Szimbolikusan tehát: Ĥψ i = E iψ i A Schrödinger-egyenletben a rendszert specifikálja: a V = e /r a potenciális energia
A fény és az anyag kölcsönhatása
A fény és az anyag kölcsönhatása Bohr-feltétel : E = E 2 E 1 = hν abszorpció foton (hν) E 2 E 2 E 1 E 1 E 2 E 2 spontán emisszió E 1 E 1 stimulált (kényszerített) emisszió E 2 E 2 E 1 E 1 Emissziós és
Alapvető bimolekuláris kémiai reakciók dinamikája
Alapvető bimolekuláris kémiai reakciók dinamikája Czakó Gábor Emory University (008 011) és ELTE (011. december ) Szedres, 01. október 13. A Polanyi szabályok Haladó mozgás (ütközési energia) vs. rezgő
SZÁMÍTÓGÉPES KÉMIA ALAPJAI VEGYÉSZMÉRNÖK BSc. NAPPALI TÖRZSANYAG
SZÁMÍTÓGÉPES KÉMIA ALAPJAI VEGYÉSZMÉRNÖK BSc. NAPPALI TÖRZSANYAG TANTÁRGYI MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR KÉMIAI INTÉZET Miskolc, 2019/20. tanév I. félév 1 Tartalomjegyzék 1. Tantárgyleírás
Császár Attila. Molekulaszerkezet és Dinamika Laboratórium ELTE TTK, Kémiai Intézet
Egzotikus úticélok Kémiába Császár Attila Molekulaszerkezet és Dinamika Laboratórium ELTE TTK, Kémiai Intézet MTA Kémiai Tudományok Osztálya felolvasóülése Budapest, 2012. március 20. We are perhaps not
Bevezetés a modern fizika fejezeteibe. 4. (a) Kvantummechanika. Utolsó módosítás: november 15. Dr. Márkus Ferenc BME Fizika Tanszék
Bevezetés a modern fizika fejezeteibe 4. (a) Kvantummechanika Utolsó módosítás: 2015. november 15. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
Műszeres analitika. Abrankó László. Molekulaspektroszkópia. Kémiai élelmiszervizsgálati módszerek csoportosítása
Abrankó László Műszeres analitika Molekulaspektroszkópia Minőségi elemzés Kvalitatív Cél: Meghatározni, hogy egy adott mintában jelen vannak-e bizonyos ismert komponensek. Vagy ismeretlen komponensek azonosítása
Kémiai reakciók mechanizmusa számítógépes szimulációval
Kémiai reakciók mechanizmusa számítógépes szimulációval Stirling András stirling@chemres.hu Elméleti Kémiai Osztály Budapest Stirling A. (MTA Kémiai Kutatóközpont) Reakciómechanizmus szimulációból 2007.
Elektronspinrezonancia (ESR) - spektroszkópia
Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben E m S μ z
Szilárdtestek el e ek e tr t o r n o s n zer e k r ez e et e e t
Szilárdtestek elektronszerkezete Kvantummechanikai leírás Ismétlés: Schrödinger egyenlet, hullámfüggvény, hidrogén-atom, spin, Pauli-elv, periódusos rendszer 2 Szilárdtestek egyelektron-modellje a magok
lásd: enantiotóp, diasztereotóp
anizokrón anisochronous árnyékolási állandó shielding constant árnyékolási járulékok és empirikus értelmezésük shielding contributions diamágneses és paramágneses árnyékolás diamagnetic and paramagnetic
ESR színképek értékelése és molekulaszerkezeti értelmezése
ESR színképek értékelése és molekulaszerkezeti értelmezése Elméleti alap: Atkins: Fizikai Kémia II, 187-188, 146, 1410, 152 158 fejezetek A gyakorlat során egy párosítatlan elektronnal rendelkező benzoszemikinon
A TételWiki wikiből. Tekintsük a következő Hamilton-operátorral jellemezhető rendszert:
1 / 12 A TételWiki wikiből 1 Ritka gázok állapotegyenlete 2 Viriál sorfejtés 3 Van der Waals gázok 4 Ising-modell 4.1 Az Ising-modell megoldása 1 dimenzióban(*) 4.2 Az Ising-modell átlagtérelmélete 2 dimenzióban(**)
Jelen pályázat egyik kijelölt bírálója a pályázat értékelésekor felrótta, hogy számára "kicsit zavaró, hogy a [pályázat] cím[e] lefedi az egész
Jelen pályázat egyik kijelölt bírálója a pályázat értékelésekor felrótta, hogy számára "kicsit zavaró, hogy a [pályázat] cím[e] lefedi az egész alkalmazott kvantumkémiát, a munkaterv pedig négy egymástól
5.4. Elektronspektroszkópia
5.4. Elektronspektroszkópia Két módszer: UV-VIS spektroszkópia: M + hν M PES, XPS (ESCA): M + hν M + + e 5.4.1. UV-VIS ultraibolya-látható spektroszkópia Alapelvek: l. fizikai kémia és műszeres analitika
Fizikai kémia 2. Előzmények. A Lewis-féle kötéselmélet A VB- és az MO-elmélet, a H 2+ molekulaion
06.07.5. Fizikai kémia. 4. A VB- és az -elmélet, a H + molekulaion Dr. Berkesi ttó ZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Előzmények Az atomok szerkezetének kvantummehanikai leírása 90-30-as
Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások. Elektrosztatikus számítások Definíciók
Jelentősége szubsztrát kötődés szolvatáció ionizációs állapotok (pka) mechanizmus katalízis ioncsatornák szimulációk (szerkezet) all-atom dipolar fluid dipolar lattice continuum Definíciók töltéseloszlás
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008.
Radiokémia vegyész MSc radiokémia szakirány Kónya József, M. Nagy Noémi: Izotópia I és II. Debreceni Egyetemi Kiadó, 2007, 2008. Kiss István,Vértes Attila: Magkémia (Akadémiai Kiadó) Nagy Lajos György,
Spektroszkópiai módszerek 2.
Spektroszkópiai módszerek 2. NMR spektroszkópia magspinek rendeződése külső mágneses tér hatására az eredő magspin nem nulla, ha a magot alkotó nukleonok közül legalább az egyik páratlan a szerves kémiában
Stern Gerlach kísérlet. Készítette: Kiss Éva
Stern Gerlach kísérlet Készítette: Kiss Éva Történelmi áttekintés 1890. Thomson-féle atommodell ( mazsolás puding ) 1909-1911. Rutherford modell (bolygó hasonlat) Bohr-féle atommodell Frank-Hertz kísérlet
Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel
Kvantum kontrol frekvencia csörpölt lézer indukált kónikus keresztez désekkel Vibók Ágnes ELI-ALPS, ELI-HU Non-Prot Ltd. University of Debrecen Department of Theoretical Physics, Áttekintés 1 Kónikus keresztez
Az elektromágneses hullámok
203. október Az elektromágneses hullámok PTE ÁOK Biofizikai Intézet Kutatók fizikusok, kémikusok, asztronómusok Sir Isaac Newton Sir William Herschel Johann Wilhelm Ritter Joseph von Fraunhofer Robert
AZ ELEKTRON MÁGNESES MOMENTUMA. H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat.
AZ ELEKTRON MÁGNESES MOMENTUMA Mágneses dipólmomentum: m H mágneses erœtérben az m mágneses dipólmomentummal jellemzett testre M = m H forgatónyomaték hat. M = m H sinϕ (Elektromos töltés, q: monopólus
B. Függelék: Molekulaspektroszkópia
B. Függelék: Molekulaspektroszkópia Kürti Jenő 2013. április Tartalomjegyzék 1. Bevezetés 2 2. Molekulatermek jelölése 2 3. Molekulatermek osztályozása 3 3.1. Elektrontermek................................
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet
Atommodellek de Broglie hullámhossz Davisson-Germer-kísérlet Utolsó módosítás: 2016. május 4. 1 Előzmények Az atomok színképe (1) A fehér fény komponensekre bontható: http://en.wikipedia.org/wiki/spectrum
ω mennyiségek nem túl gyorsan változnak
Licenszvizsga példakérdések Fizika szak KVANTUMMECHANIKA Egy részecskére felírt Schrödinger egyenlet szétválasztható a három koordinátatengely irányában levő egydimenziós egyenletre ha a potenciális energiára
Modern fizika laboratórium
Modern fizika laboratórium 11. Az I 2 molekula disszociációs energiája Készítette: Hagymási Imre A mérés dátuma: 2007. október 3. A beadás dátuma: 2007. október xx. 1. Bevezetés Ebben a mérésben egy kétatomos
Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?
Szalay Péter (ELTE, Kémia Intézet) Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Boronkay György Műszaki Középiskola és Gimnázium Budapest, 2011. október 27. www.meetthescientist.hu
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban 4/11/2016. A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2016 március 1.) Az abszorpció mérése;
Elektronszínképek Ultraibolya- és látható spektroszkópia
Elektronszínképek Ultraibolya- és látható spektroszkópia Elektronátmenetek elektromos dipólus-átmenetek (a molekula változó dipólusmomentuma lép kölcsönhatásba az elektromágneses sugárzás elektromos terével)
Röntgensugárzás az orvostudományban. Röntgen kép és Komputer tomográf (CT)
Röntgensugárzás az orvostudományban Röntgen kép és Komputer tomográf (CT) Orbán József, Biofizikai Intézet, 2008 Hand mit Ringen: print of Wilhelm Röntgen's first "medical" x-ray, of his wife's hand, taken
Mátyus Edit. Prof. Dr. Császár Attila. Molekulaspektroszkópiai Laboratórium, Kémiai Intézet
Doktori értekezés tézisei Mátyus Edit Általánosított módszerek variációs alapú magmozgásszámításokhoz Témavezető: Prof. Dr. Császár Attila Molekulaspektroszkópiai Laboratórium, Kémiai Intézet Eötvös Loránd
Magszerkezet modellek. Folyadékcsepp modell
Magszerkezet modellek Folyadékcsepp modell Az atommag összetevői (emlékeztető) atommag Z proton + (A-Z) neutron (nukleonok) szorosan kötve Állapot leírása: kvantummechanika + kölcsönhatások Nem relativisztikus
Műszeres analitika II. (TKBE0532)
Műszeres analitika II. (TKBE0532) 4. előadás Spektroszkópia alapjai Dr. Andrási Melinda Debreceni Egyetem Természettudományi és Technológiai Kar Szervetlen és Analitikai Kémiai Tanszék A fény elektromágneses
Kutatási terület. Szervetlen és szerves molekulák szerkezetének ab initio tanulmányozása
Kutatási terület zervetlen és szerves molekulák szerkezetének ab initio tanulmányozása Cél: a molekulák disszociatív ionizációja során keletkező semleges és ionizált fragmentumok energetikai paramétereinek
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről
A kvantummechanika kísérleti előzményei A részecske hullám kettősségről Utolsó módosítás: 2016. május 4. 1 Előzmények Franck-Hertz-kísérlet (1) A Franck-Hertz-kísérlet vázlatos elrendezése: http://hyperphysics.phy-astr.gsu.edu/hbase/frhz.html
Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai
Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Dóczy-Bodnár Andrea 2011. szeptember 28. Magmágneses rezonanciához kapcsolódó Nobel-díjak * Otto Stern, USA: Nobel Prize in Physics
5. Az elektronkorreláció szerepe a metil-amin nagy amplitúdójú mozgásainak leírásában. DFT és poszt Hartree- Fock számítások
5. Az elektronkorreláció szerepe a metil-amin nagy amplitúdójú mozgásainak leírásában. DFT és poszt artree- Fock számítások VI. XIX. Csonka, G. I. and Sztraka L., Density functional and post artree-fock
Kémiai anyagszerkezettan
Kémiai anyagszerkezettan Előadó: Kubinyi Miklós tel: 21-37 kubinyi@mail.bme.hu Grofcsik András tel: 14-84 agrofcsik@mail.bme.hu Tananyag az intraneten (tavalyi): http://oktatas.ch.bme.hu/oktatas/ konyvek/fizkem/kasz/
Elektronspinrezonancia (ESR) - spektroszkópia
E m S Elektronspinrezonancia (ESR) - spektroszkópia Paramágneses anyagok vizsgáló módszere. A mágneses momentum iránykvantáltságán alapul. A mágneses momentum energiája B indukciójú mágneses térben = µ
Zitterbewegung. általános elmélete. Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék
A Zitterbewegung általános elmélete Grafén Téli Iskola 2011. 02. 04. Dávid Gyula ELTE TTK Atomfizikai Tanszék 1. Mi a Zitterbewegung? A Zitterbewegung általános elmélete 2. Kvantumdinamika Heisenberg-képben
Fizikai kémia Részecskék mágneses térben, ESR spektroszkópia. Részecskék mágneses térben. Részecskék mágneses térben
06.08.. Fizikai kémia. 3. Részecskék mágneses térben, ESR spektroszkópia Dr. Berkesi Ottó SZTE Fizikai Kémiai és Anyagtudományi Tanszéke 05 Részecskék mágneses térben A részecskék mágneses térben ugyanúgy
Mi tartja össze az atomokat a molekulákban? Az elektronszerkezet megismerésének története 1900-tól
Mi tartja össze az atomokat a molekulákban? Az elektronszerkezet megismerésének története 1900-tól Pulay Péter Department of Chemistry and Biochemistry, Fulbright College, University of Arkansas, Fayetteville,
Abszorpciós spektrometria összefoglaló
Abszorpciós spektrometria összefoglaló smétlés: fény (elektromágneses sugárzás) tulajdonságai, kettős természet fény anyag kölcsönhatás típusok (reflexió, transzmisszió, abszorpció, szórás) Abszorpció
Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben?
Szentjánosbogár, trópusi halak, sarki fény Mi a közös a természet fénytüneményeiben? Szalay Péter egyetemi tanár ELTE, Kémiai Intézet Elméleti Kémiai Laboratórium Van közös bennük? Egy kis történelem
Mágneses módszerek a mőszeres analitikában
Mágneses módszerek a mőszeres analitikában NMR, ESR: mágneses momentummal rendelkezı anyagok minıségi és mennyiségi meghatározására alkalmas analitikai módszer Atommag spin állapotok közötti energiaátmenetek:
Szilárdtestek mágnessége. Mágnesesen rendezett szilárdtestek
Szilárdtestek mágnessége Mágnesesen rendezett szilárdtestek 2 Mágneses anyagok Permanens atomi mágneses momentumok: irány A kétféle spin-beállású elektronok betöltöttsége különbözik (spin-polarizáció)
2. ZH IV I.
Fizikai kémia 2. ZH IV. kérdések 2018-19. I. félévtől Szükséges adatok és állandók: k=1,38066 10-23 JK; c= 2,99792458 10 8 m/s; e= 1,602177 10-19 C; h=6,62608 10-34 Js; N A= 6,02214 10 23 mol -1 ; me=
Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39
Kémiai kötés 4-1 Lewis-elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET.
Dr. Takáts Ágoston ENERGETIKAI AXIÓMARENDSZEREN NYUGVÓ RENDSZERELMÉLET I. KÖTET. A TUDOMÁNYOS GONDOLKODÁSRÓL ÉS A MEGISMERÉS HÁRMAS ABSZTRAKCIÓS SZINTJÉRŐL 2007. Tartalom 1. AZ ENERGETIKAI AXIÓMARENDSZER
Mi mindenről tanúskodik a Me-OH néhány NMR spektruma
Mi mindenről tanúskodik a Me-OH néhány NMR spektruma lcélok és fogalmak: l- az NMR-rezonancia frekvencia (jel), a kémiai környezete, a kémiai eltolódás, l- az 1 H-NMR spektrum, l- az -OH és a -CH 3 csoportokban
BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz
BŐVÍTETT TEMATIKA a Kondenzált anyagok fizikája c. tárgyhoz Az anyag szerveződési formái Ebben a részben bemutatjuk az anyag elemi építőköveinek sokszerű kapcsolódási formáit, amelyek makroszkopikusan
Dóczy-Bodnár Andrea október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai
Dóczy-Bodnár Andrea 2012. október 3. Magmágneses rezonancia (NMR) és elektronspinrezonancia (ESR) alapjai Atommagok saját impulzusmomentuma (spin) protonok, neutronok (elektronhoz hasonlóan) saját impulzusmomentum
Tartalomjegyzék. Emlékeztetõ. Emlékeztetõ. Spektroszkópia. Fényelnyelés híg oldatokban A fény; Abszorpciós spektroszkópia
Tartalomjegyzék PÉCS TUDOMÁNYEGYETEM ÁLTALÁNOS ORVOSTUDOMÁNY KAR A fény; Abszorpciós spektroszkópia Elektromágneses hullám kölcsönhatása anyaggal; (Nyitrai Miklós; 2015 január 27.) Az abszorpció mérése;
Molekulák világa 1. kémiai szeminárium
GoBack Molekulák világa 1. kémiai szeminárium Szilágyi András 2008. október 6. Molekulák világa 1. kémiai szeminárium Molekuláris bionika szak I. év 1 Kvantummechanika Klasszikus fizika eszközei tömegpont
A spin. November 28, 2006
A spin November 28, 2006 1 A spin a kvantummechanikában Az elektronnak és sok más kvantummechanikai részecskének is van egy saját impulzusnyomatéka amely független a mozgásállapottól. (Úgy is mondhatjuk,
http://www.nature.com 1) Magerő-sugár: a magközéppontból mért távolság, ameddig a magerők hatótávolsága terjed. Rutherford-szórásból határozható meg. R=1,4 x 10-13 A 1/3 cm Az atommag terének potenciálja
Mágneses módszerek a műszeres analitikában
Mágneses módszerek a műszeres analitikában NMR, ESR: mágneses momentummal rendelkező anyagok minőségi és mennyiségi meghatározására alkalmas Atommag spin állapotok közötti energiaátmenetek: NMR (magmágneses
Degenerált állapotok és nemadiabatikus folyamatok molekuláris rendszerekben
MTA doktori értekezés tézisei Degenerált állapotok és nemadiabatikus folyamatok molekuláris rendszerekben Halász Gábor Debreceni Egyetem, Informatikai Kar Debrecen, 2012 I. Előzmények A molekuladinamikai
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok november 18. 16:00 ELTE Kémiai Intézet 065-ös terem Észbontogató (www.chem.elte.hu/pr)
Kifejtendő kérdések június 13. Gyakorló feladatok
Kifejtendő kérdések 2016. június 13. Gyakorló feladatok 1. Adott egy egyenletes térfogati töltéssel rendelkező, R sugarú gömb, melynek felületén a potenciál U 0. Az elektromos potenciál definíciója (1p)
Kémiai kötés. Általános Kémia, szerkezet Dia 1 /39
Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39
Kémiai kötés 12-1 Lewis elmélet 12-2 Kovalens kötés: bevezetés 12-3 Poláros kovalens kötés 12-4 Lewis szerkezetek 12-5 A molekulák alakja 12-6 Kötésrend, kötéstávolság 12-7 Kötésenergiák Általános Kémia,
2015/16/1 Kvantummechanika B 2.ZH
2015/16/1 Kvantummechanika B 2.ZH 2015. december 10. Információk 0. A ZH ideje minimum 90 perc, maximum 180 perc. 1. Az összesen elérhet pontszám 270 pont. 2. A jeles érdemjegy eléréséhez nem szükséges
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK. Kalocsai Angéla, Kozma Enikő
ATOMMODELLEK, SZÍNKÉP, KVANTUMSZÁMOK Kalocsai Angéla, Kozma Enikő RUTHERFORD-FÉLE ATOMMODELL HIBÁI Elektromágneses sugárzáselmélettel ellentmondásban van Mivel: a keringő elektronok gyorsulnak Energiamegmaradás
2010. január 31-én zárult OTKA pályázat zárójelentése: K62441 Dr. Mihály György
Hidrosztatikus nyomással kiváltott elektronszerkezeti változások szilárd testekben A kutatás célkitűzései: A szilárd testek elektromos és mágneses tulajdonságait az alkotó atomok elektronhullámfüggvényeinek
http://www.flickr.com Az atommag állapotait kvantummechanikai állapotfüggvénnyel írjuk le. A mag paritását ezen fv. paritása adja meg. Paritás: egy állapot tértükrözéssel szemben mutatott viselkedését
dinamikai tulajdonságai
Szilárdtest rácsok statikus és dinamikai tulajdonságai Szilárdtestek osztályozása kötéstípusok szerint Kötések eredete: elektronszerkezet k t ionok (atomtörzsek) tö Coulomb- elektronok kölcsönhatás lokalizáltak
BÍRÁLAT. Kállay Mihály Automatizált módszerek a kvantumkémiában című MTA doktori értekezéséről.
BÍRÁLAT Kállay Mihály Automatizált módszerek a kvantumkémiában című MTA doktori értekezéséről. Kállay Mihály Automatizált módszerek a kvantumkémiában című az MTA doktora cím elnyerésére benyújtott 132
Adatbázis alapú molekulaspektroszkópia
Doktori értekezés tézisei FURTENBACHER TIBOR Adatbázis alapú molekulaspektroszkópia Témavezető: Prof. Dr. Császár Attila Molekulaspektroszkópiai Laboratórium, Kémiai Intézet, Eötvös Loránd Tudományegyetem
A D 2 17 O és D 2 18 O molekulák
A D 2 17 O és D 2 18 O molekulák nagyfelbontású kísérleti színképeinek elemzése Szakdolgozat Kémia alapszak DÉNES NÓRA Témavezetők: Prof. Dr. Császár Attila Dr. Furtenbacher Tibor Molekulaspektroszkópiai
Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség
Evans-Searles fluktuációs tétel Crooks fluktuációs tétel Jarzynski egyenlőség Osváth Szabolcs Evans-Searles fluktuációs tétel Denis J Evans, Ezechiel DG Cohen, Gary P Morriss (1993) Denis J Evans, Debra
Az anyagok kettős (részecske és hullám) természete
Az anyagok kettős (részecske és hullám) természete de Broglie hipotézise (1924-25): Bármilyen fénysebességgel mozgó részecskére: mc = p E = mc 2 = hn p = hn/c = h/ = h/p - de Broglie-féle hullámhossz Nem
Spin Hall effect. Egy kis spintronika Spin-pálya kölcsönhatás. Miért szeretjük mégis? A spin-injektálás buktatói
Spin Hall effect Egy kis spintronika Spin-pálya kölcsönhatás Miért nem szeretjük a spin-pálya pálya kölcsönhatást? Miért szeretjük mégis? A spin-injektálás buktatói Spin Hall effect: a kezdetek Dyakonov
Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel
Angol Középfokú Nyelvvizsgázók Bibliája: Nyelvtani összefoglalás, 30 kidolgozott szóbeli tétel, esszé és minta levelek + rendhagyó igék jelentéssel Timea Farkas Click here if your download doesn"t start
Kvantummechanika gyakorlat Beadandó feladatsor Határid : 4. heti gyakorlatok eleje
Kvantummechanika gyakorlat 015 1. Beadandó feladatsor Határid : 4. heti gyakorlatok eleje 1. Mutassuk meg, hogy A és B tetsz leges operátorokra igaz, hogy e B A e B = A + [B, A] + 1![ B, [B, A] ] +....
Abszorpció, emlékeztetõ
Hogyan készültek ezek a képek? PÉCI TUDMÁNYEGYETEM ÁLTALÁN RVTUDMÁNYI KAR Fluoreszcencia spektroszkópia (Nyitrai Miklós; február.) Lumineszcencia - elemi lépések Abszorpció, emlékeztetõ Energia elnyelése
Atomfizika. FIB1208 (gyakorlat) Meghirdetés féléve 4 Kreditpont 3+2 Összóraszám (elmélet+gyakorlat) 3+2
Tantárgy neve Atomfizika Tantárgy kódja FIB1108 (elmélet) FIB1208 (gyakorlat) Meghirdetés féléve 4 Kreditpont 3+2 Összóraszám (elmélet+gyakorlat) 3+2 Számonkérés módja Kollokvium + gyakorlati jegy Előfeltétel
Kvantummechanika. - dióhéjban - Kasza Gábor július 5. - Berze TÖK
Kvantummechanika - dióhéjban - Kasza Gábor 2016. július 5. - Berze TÖK 1 / 27 Mire fogunk választ kapni az előadásból? Miért KVANTUMmechanika? Miért részecske? Miért hullám? Mit mond a Schrödinger-egyenlet?
Kémiai kötés. Általános Kémia, szerkezet Slide 1 /39
Kémiai kötés 4-1 Lewis elmélet 4-2 Kovalens kötés: bevezetés 4-3 Poláros kovalens kötés 4-4 Lewis szerkezetek 4-5 A molekulák alakja 4-6 Kötésrend, kötéstávolság 4-7 Kötésenergiák Általános Kémia, szerkezet
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 5. mérés: Elektronspin rezonancia. 2008. március 18.
Modern Fizika Labor Fizika BSc A mérés dátuma: 28. március 18. A mérés száma és címe: 5. mérés: Elektronspin rezonancia Értékelés: A beadás dátuma: 28. március 26. A mérést végezte: 1/7 A mérés leírása:
9. Fotoelektron-spektroszkópia
9/1 9. Fotoelektron-spektroszkópia 9.1. ábra. Fotoelektron-spektroszkópiai módszerek 9.2. ábra. UP-spektrométer vázlata 9/2 9.3. ábra. N 2 -fotoelektron-spektrum 9.4. ábra. 2:1 mólarányú CO-CO 2 gázelegy
Az anyagszerkezet alapjai. Az atomok felépítése
Az anyagszerkezet alapjai Az atomok felépítése Kérdések Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél
Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz
Közös minimum kérdések és Vizsgatételek a Fizika III tárgyhoz 2005. Fizika C3 KÖZÖS MINIMUM KÉRDÉSEK Kvantummechanika 1. Rajzolja fel a fekete test sugárzását jellemző kísérleti görbéket T 1 < T 2 hőmérsékletek
Orvosi Biofizika I. 12. vizsgatétel. IsmétlésI. -Fény
Orvosi iofizika I. Fénysugárzásanyaggalvalókölcsönhatásai. Fényszóródás, fényabszorpció. Az abszorpciós spektrometria alapelvei. (Segítséga 12. tételmegértéséhezésmegtanulásához, továbbá a Fényabszorpció
Az anyagszerkezet alapjai. Az atomok felépítése
Az anyagszerkezet alapjai Az atomok felépítése Kérdések Mik az építőelemek? Milyen elvek szerint épül fel az anyag? Milyen szintjei vannak a struktúrának? Van-e végső, legkisebb építőelem? A legkisebbeknél
Infravörös, spektroszkópia
Infravörös, Raman és CD spektroszkópia Spektroszkópia Az EM sugárzás abszorbcióján alapszik: látható (leggyakrabban kvantitatív) UV IR (inkább kvalitatív) RAMAN ESR (mikrohullám) NMR (rádióhullám) Fény
Modellszámításokkal kapcsolatos kutatások bemutatása
Modellszámításokkal kapcsolatos kutatások bemutatása Dr. Boda Dezső alprojektfelelős Fizikai Kémiai Tanszék Pannon Egyetem boda@almos.vein.hu 2013. május 31. Dr. Boda Dezső (Modellszámítások alprojekt)
Tartalom. Typotex Kiadó
Tartalom Előszó 13 1. A kvantumelmélet kezdetei 15 1.1. A Planck-féle sugárzási törvény és a szigetelő kristályok hőkapacitása 15 1.2. A fényelektromos jelenség: Lénárd és Einstein 19 1.3. Az atomos gázok
II. Képzettségre vonatkozó adatok
Szakmai életrajz I. Személyi adatok Név: Dr. Berkesi Ottó Születési hely, idő: Budapest XX., 1957. június 6. Munkahely: Szegedi Tudományegyetem, Fizikai Kémiai és Anyagtudományi Tanszéke Munkahely címe,
Modern Fizika Labor. Fizika BSc. Értékelés: A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia. 2008. május 6.
Modern Fizika Labor Fizika BSc A mérés dátuma: A mérés száma és címe: 12. mérés: Infravörös spektroszkópia Értékelés: A beadás dátuma: 28. május 13. A mérést végezte: 1/5 A mérés célja A mérés célja az
A kvantummechanikai atommodell
A kvantummechanikai atommodell A kvantummechanika alapjai A Heinsenberg-féle határozatlansági reláció A kvantummechanikai atommodell A kvantumszámok értelmezése A Stern-Gerlach kísérlet Az Einstein-de
Kvantumos jelenségek lézertérben
Kvantumos jelenségek lézertérben Atomfizika Benedict Mihály SZTE Elméleti Fizikai Tanszék Az előadást támogatta a TÁMOP-4.2.1/B-09/1/KONV-2010-0005 sz. Kutatóegyetemi Kiválósági Központ létrehozása a Szegedi