MAGYAG ELŐSZABVÁNY SOROZAT EUROCODE MSZ ENV. EC0 MSZ EN 1990 A tartószerkezetek tervezésének alapjai

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "MAGYAG ELŐSZABVÁNY SOROZAT EUROCODE MSZ ENV. EC0 MSZ EN 1990 A tartószerkezetek tervezésének alapjai"

Átírás

1 MAGYAG ELŐSZABVÁNY SOROZAT EUROCODE MSZ ENV EC0 MSZ EN 1990 A tartószerkezetek tervezésének alapjai EC1 MSZ EN 1991 A tartószerkezeteket érő hatások +(teherszabvány) MSZ EN Sűrűség, önsúly és az épületek hasznos terhei MSZ EN A tűznek kitett szerkezeteket érő hatások MSZ EN A tartószerkezeteket érő hatások. Hóteher MSZ EN A tartószerkezeteket érő hatások. Szélhatás MSZ EN Hőmérsékleti hatások MSZ EN Hatások a megvalósítás során MSZ EN Rendkívüli hatások 1

2 EURÓPAI és HAZAI SZABVÁNYÜGYI SZERVEZETEK: Európai Szabványügyi Szervezet CEN (Comité Européen de Normalisation) Magyar Szabványügyi Testület (MSZT) EURÓPAI ELŐSZABVÁNYOK: NAD MSZ ENV Az európai előszabványok Nemzeti Alkalmazási Dokumentummal kiegészített magyar nyelvű kiadása MSZ EN Európai tartószerkezeti szabványok Nemzeti Melléklettel kiegészített végleges magyar változata BEVEZETÉSE: 2008 és 2010 között az összes EN szabvány jogállását tekintve kizárólagossá válik! 2

3 AZ EURÓPAI TARTÓSZERKEZETI SZABVÁNYOK NEMZETI MELLÉKLETTEL KIEGÉSZÍTETT VÉGLEGES MAGYAR VÁLTOZATA (MSZ EN) EC 0: A tartószerkezetek tervezésének alapjai EC 1: A tartószerkezeteket érő hatások EC 2: Betonszerkezetek EC 3: Acélszerkezetek EC 4: Betonnal együttdolgozó acélszerkezetek EC 5: Faszerkezetek EC 6: Falazott szerkezetek EC 7: Geotechnikai tervezés EC 8: Tartószerkezetek tervezése földrengésre EC 9: Alumínium szerkezetek 3

4 EUROCODE 0, MSZ EN 1990 A tartószerkezetek tervezésének alapjai (általános előírások) 1. Általános elvek: -fogalom meghatározások -szakkifejezések, jelölések 2. Követelmények: -alapkövetelmények -megbízhatósági szintek -tervezési állapot -tervezési élettartam -tartósság 3. Határállapotok: -általános elve -teherbírási határállapotok -használhatósági határállapotok -határállapot koncepció 4. Hatások és a környezet hatásai: -csoportosítás -karakterisztikus értékek -esetleges hatások reprezentatív értékei -környezeti hatások 5. Anyagjellemzők 6. Geometriai méretek 7. Modellezés a tartószerkezetek számításához 8. Kísérlettel segített tervezés 9. Ellenőrzés a parciális tényezők módszerével Mellékletek 4

5 1.Általános elvek: Egységes fogalom és jelölésrendszer 2.Követelmények: Alapkövetelmények: Tervezni teherbírásra (tönkremenetellel szembeni biztonság), használhatóságra és tartósságra kell. Ezen alapkövetelmények nem teljesüléséből adódó kárkövetkezmények mértéke alapján a tartószerkezeteket úgy kell megtervezni, hogy ezen alapkövetelmények nem teljesülésének valószínűsége a megadott értékű legyen. Megbízhatósági szintek: A kárkövetkezmények mértéke alapján osztályokba (consequences class (CC)) sorolt tartószerkezet típusok esetére a szabvány a fenti követelmények közül a teherbírásra való tervezés kapcsán a teherbírási követelmények nem teljesüléséhez rendelt valószínűség mértéke alapján a tartószerkezeteket un. megbízhatósági osztályokba (reliability class (RC) ) sorolja és e valószínűség mértékét egy un. megbízhatósági index (β) formájában számszerűen adja meg. 5

6 Az előírt megbízhatósági szinteket a szabványos tervezésen kívül a tartószerkezet teljes megvalósítási folyamatán keresztül előírt követelmények alapján működő minőségbiztosítási rendszer kell, hogy garantálja (de ezek az európai szabványokban csak elvi előírások formájában jelennek meg). 3. Határállapotok: A tartószerkezetek előirányzott megbízhatósági szintjeit biztosító tervezést az un. határállapot koncepció alapján kell végrehajtani. A tartószerkezet tervezés során azt kell számszerűen igazolni, hogy a tartószerkezet alapvető működési körülményeit leíró un. tervezési állapotokban az alapkövetelmények alapján megfogalmazott határállapotok túllépése nem következik be. Tervezési állapotok: Tartós (persistent) Ideiglenes (transient) Rendkívüli (accidental) Szeizmikus (seizmic) 6

7 A teherbírási és használhatósági állapotokhoz (többnyire egyenlőtlenségek formájában) megfogalmazott erőtani követelmények igazolását az adott megbízhatósági szinthez (β-értékhez) félvalószínűségi módszerrel előállított parciális (biztonsági) és kombinációs tényezők alkalmazásával nyert igénybevétel-oldali és ellenállás-oldali tervezési értékek alkalmazásával kell végrehajtani. A teherbírási határállapot vizsgálata a tartószerkezet tönkremenetelével kapcsolatos erőtani követelmények (4 db.) számszerű igazolását jelenti. A használhatósági határállapot vizsgálata a tartószerkezet zavartalan felhasználásának (funkciójának) megfelelő állapotával (5 db.) kapcsolatos erőtani követelmények igazolását jelenti. 7

8 Teherbírási határállapotok (4 db.): helyzeti állékonyság elvesztése szilárdsági törés, stabilitásvesztés (kihajlás) fáradás vagy folyási mechanizmus kialakulása túlzott mértékű alakváltozás okozta tönkremenetel altalaj törése Használhatósági határállapotok (5 db): használatának megfelelő működőképesség elvesztése (alakváltozások, elmozdulások) külső megjelenés hátrányos változása tartósság elvesztése emberi komfortérzet romlása rezgések, lengések, repedések 8

9 4. Hatások és a környezet hatásai: Hatások: -állandó (G) -esetleges (Q) -rendkívüli (A) Karakterisztikus érték (k) (alapérték) Tervezési érték (d) (szélső érték) Az esetleges terheknek négy reprezentatív értékét különböztetik meg, melyek az előfordulási valószínűség mértékében különböznek egymástól: ahol, karakterisztikus érték (Q k ), (alapérték) kombinációs érték (ψ 0 Q k ) gyakori érték (ψ 1 Q k ) kváziállandó érték (ψ 2 Q k ) ψ 0 a megbízhatósági szint, valamint az alkalmazásával előálló kombinált hatás meghaladási valószínűsége alapján határozható meg ψ 1, ψ 2 a gyakori- és a kváziállandó reprezentatív érték meghaladási valószínűsége alapján határozható meg 9

10 9. Erőtani követelmények igazolása a parciális tényezők módszerével: Teherbírási határállapotokban az igénybevétel-oldali parciális (biztonsági) tényezők (γ tényezők), valamint az ezek kombinálására vonatkozó kombinációs szabályok alkalmazásával képezett hatáskombinációk eredményéről igazolni kell, hogy kisebb, mint az ellenállás-oldali parciális (biztonsági) tényezők alkalmazásával, a belső erők egyensúlya alapján meghatározott ellenállás tervezési értéke. Használhatósági határállapotok esetén parciális tényezők nélkül, az esetleges hatások reprezentatív értékeinek felhasználásával előállított, és a kombinációs szabályoknak megfelelően képzett hatáskombinációk eredményét egy ellenállás-oldali megengedett értékkel (feszültséggel, alakváltozással, repedéstágassággal, rezgésszámmal) kell összehasonlítani. 10

11 Az igénybevétel-oldali parciális tényezők (γ F ) a hatások reprezentatív értékeinek bizonytalanságát (γ f ) kifejező és az igénybevételek számítási modelljeinek bizonytalanságát (γ sd ) kifejező parciális tényezők szorzataként állíthatók elő. γ F = γ f γ sd Az ellenállás-oldali parciális tényezők (γ M ) az anyagjellemzők bizonytalanságát (γ m ) és az ellenállás számítási modelljeinek bizonytalanságát (γ Rd ) kifejező parciális tényezők szorzataként állíthatók elő. γ M = γ m γ Rd 11

12 EUROCODE 1, MSZ EN A tartószerkezeteket érő hatások Sűrűség, önsúly és az épületek hasznos terhei 1. ÁLTALÁNOS ELVEK: Fogalom meghatározások, jelölések 2. A HATÁSOK BESOROLÁSA: Önsúly Az építőelemek önsúlya állandó és általában rögzített hatás. Hasznos terhek A hasznos terhek esetleges és nem rögzített hatások, amelyeket statikus tehernek kell tekinteni. 3. TERVEZÉSI ÁLLAPOTOK: Valamennyi tervezési állapothoz meg kell határozni a vonatkozó önsúlyterheket és a hasznos terheket. Önsúly A tervezési állapotban figyelembe kell venni a megvalósítást követően felkerülő további burkolatokat és elosztóvezetékeket. Tárolási célra használt épületek tervezési állapotainál figyelembe kell venni az ömlesztett anyagok származási helyét és nedvességtartalmát. 12

13 Hasznos teher Az adott épületre ható teljes hasznos terhet egyetlen hatásnak kell tekinteni minden olyan esetben, amikor más terhekkel (például a széllel) kölcsönhatásba kerülnek. Azokban az esetekben, amikor a más hatásokkal kombinációba lévő hasznos teher karakterisztikus értékét ψ tényezővel csökkentjük, a terheket valamennyi szinten az α n tényezővel való csökkentés nélkül kell figyelembe venni. 4. ÉPÍTŐANYAGOK ÉS MÁS TÁROLT ANYAGOK SŰRŰSÉGE: Egy anyag halmazsűrűsége az üregeket és pórusokat a szokásos eloszlásban tartalmazó, egységnyi térfogatú anyag teljes súlya. TÁBLÁZATOK 13

14 5. ÉPÍTŐELEMEK SÚLYA Az építőelemek közé tartoznak a tartószerkezeti és egyéb elemek. A nem tartószerkezeti elemek önsúlya magába foglalja a rögzített gépek, valamint például a föld és az ellensúly súlyát is. Nem tartószerkezeti elemek: fedés, burkolatok, nem teherhordó válaszfalak, korlátok, parapettek, szigetelések, föld stb. Rögzített gépek: felvonók, mozgólépcsők, fűtő-, szellőző-, légkondicionáló berendezések, csövek, főés elosztó kábelek Teherelrendezés Ha az önsúly rögzített hatás, akkor feltételezhető, hogy a szerkezeti elemek sűrűsége, valamint névleges és tényleges méretei közötti eltérések egy adott elemen belül nem változnak Az önsúly karakterisztikus értéke A tartószerkezeti és a nem tartószerkezeti elemek egyes részeinek súlyát, az azokat alkotó elemek súlyából kell meghatározni. Méretek A névleges méretek azok a méretek, amelyeket a tervrajzok tartalmaznak, Sűrűség táblázatokból 14

15 Önsúly épületek esetén Födémek, falak és válaszfalak A válaszfalak súlyát egyenértékű, egyenletesen megoszló teher formájában lehet figyelembe venni. Vakolatlan téglafalak súlyának meghatározásakor a habarcs súlyát is számításba kell venni. Tetők Burkolatok és bevonatok 15

16 6. ÉPÜLETEK HASZNOS TERHEI Az épületek hasznos terhei azok a terhek, amelyek a használatból származnak Teherelrendezések Vízszintes szerkezeti elemek A födémszerkezet egy szintjén belül elhelyezkedő tartószerkezeti elemek tervezése során a hasznos terheket az érintett födémterület legkedvezőtlenebb részén működő nem rögzített hatásnak kell tekinteni. A többi födémszint terhei, ha mértékadóak, egyenletesen megoszlónak tekinthetők (rögzített hatás) Egyazon használathoz tartozó hasznos teher, egy α A csökkentő tényezővel a terhelt terület függvényében csökkenthető α A = ψ 7 A A 1,0 ahol: ψ 0 a kombinációs tényező A a teljes födémterület A 0 10,0 m 2 16

17 A födémszerkezet minimális helyi ellenállásának biztosítására külön ellenőrzést kell végezni egy koncentrált teherrel, amelyet más terhekkel nem együttműködőnek kell tekinteni. Függőleges szerkezeti elemek Több födémről terhelt, függőleges tartószerkezeti elemként működő oszlopok és falak tervezése során, az egyes födémszinteken ható terheket egyenletesen megoszlónak kell tekinteni. Ha egy függőleges tartószerkezeti elemet több födém terhei terhelnek, e terhek csökkenthetők az α N csökkentő tényezővel. ahol: α N 2 + ( n 2) ψ = n n a terhelt tartószerkezeti elemek feletti szintek száma ψ 0 kombinációs tényező 0 A hasznos terhek karakterisztikus értéke Lakó-, szociális-, kereskedelmi és irodai födémterületek Födémterületi osztályok hasznos terhek 17

18 EUROCODE1, MSZ EN Hóteher 1. Általános elvek: Bevezetés, fogalom meghatározások, jelölések 2. Hatások besorolása: A hóteher esetleges, nem rögzített hatás 3. Tervezési állapotok: Valamennyi tervezési állapothoz meg kell határozni a vonatkozó hóterheket. 4. A hatások leírása: A hó a tetőn számos különböző alakban jelenhet meg függően a tető, a környezet és a légköri viszonyok adottságaitól. A teher modellezése A hóteher meghatározásához általában elsősorban a szélcsendes időjárási viszonyok között felhalmozódó egyenletes hóréteget, a tető alakját és a szeles időben kialakuló hóformákat vesszük figyelembe. 18

19 5. Teherelrendezések: A tető hóterhe: s = µ i C e C t s k, ahol: µ i a hóteher alaki tényezője, s k a felszíni hóteher karakterisztikus értéke, C e a szél miatti csökkentő tényező, értéke ált. 1,0, C t hőmérsékleti tényező, értéke általában 1,0. S k = A ahol: A a terület tengerszint feletti magassága A hóterhet függőlegesnek kell feltételezni és a tető vízszintes vetületére kell vonatkoztatni. A hóteher alaki tényezője: lásd a diagramot Egyenletesen megoszló hóteher esetén az alaki tényező a µ 1 görbéről nyerhető 19

20 A tető szélén túlnyúló hó A tető ereszrészén felhalmozódó hóterhet figyelem kell venni. s e = k s 2 / γ, ahol: s e s k a tető szélén túlnyúló hó okozta, egy méter széles sávra érvényes hóteher, a hóteher értéke a legkedvezőtlenebb esetben a hó szabálytalan alakját figyelembe vevő tényező (0,0-2,5), a NAD ban k = 0 γ a hó halmazsűrűsége (itt kb. 3,0 kn/m 3 ) 20

21 Hófogók és akadályok hóterhei A hó és a tető közötti súrlódási tényezőt zérusnak kell tekinteni. A megcsúszó hótömeg okozta, a megcsúszás irányába ható, egységnyi szélességre jutó F s erőt kell meghatározni: F s = s b sin α, ahol: s = µ i s k, a tető hóterhe (kn/m 2 ), b a hófogó vagy akadály vízszintes távolsága a gerinctől, α tetőhajlás a vízszinteshez képest, µ i a hótehernek a tetőre vonatkozó alaki tényezője. 21

22 A tető hóterhét a legkedvezőtlenebb hó eloszlás feltételezésével kell meghatározni A felszíni hóteher karakterisztikus értéke lásd képlet A hóteher alaki tényezői lásd diagram Általában három teherelrendezés különíthető el: a teljes tetőn elhelyezkedő egyenletes hóréteg (µ 1 ) az egyenletes hóréteghez tartozó, az akadályok melletti helyi hó felhalmozódás vagy a hónak a teljes tetőre kiterjedő átrendeződése (µ 2 ) a tető magasabb részéről lecsúszó hó (µ 3 ) Nyeregtetők, félnyeregtetők, speciális és összetett esetek: ÁBRÁK, TÁBLÁZATOK 22

23 Nemzeti Alkalmazási Dokumentum, NAD MSZ ENV A felszíni hóteher karakterisztikus értéke: M 400 m tengerszint feletti magasságban s k = 1,25 kn/m 2 M > 400m tengerszint feletti magasságban S k = 0,25 + 0,0025 M (kn/m 2 ) Magyarország egész területén az s k értéke 1,25 kn/m 2 nél nem lehet kevesebb! A hó lecsúszását akadályozó elemként csak 0,8 m-nél magasabb, tartószerkezetként rögzített szerkezet vehető figyelembe. 23

24 EUROCODE 1, MSZ EN Szélhatás 1. Általános elvek: Bevezetés, fogalom meghatározások, jelölések 2. A hatások besorolása: A szélhatás esetleges, nem rögzített hatás 3. Tervezési állapotok: Valamennyi tervezési állapothoz meg kell határozni a vonatkozó szélhatást 4. A hatások leírása: A szél hatása és a szerkezet válasza A szél hatásai időben változnak, a zárt építmények külső és belső felületén működnek, a nyitott építmények belső felületére is hatnak és a terhelt felületre merőlegesen működnek. A szél az épületek széliránnyal párhuzamos felületeit súrolja. 24

25 Gyakran használt paraméterek és meghatározásuk: q b átlagos torlónyomás értéke, melyet a referencia-szélsebességből származtatunk. Ezt a mennyiséget karakterisztikus értéknek tekintjük [kn/m 2 ] q p torlónyomás csúcsértéke [[ c e (z) helyszíntényező, amellyel a terep tulajdonságai és a z terepszint feletti magasság vehető figyelembe z c d c f v b v m referencia magasság dinamikus tényező erőtényező szélsebesség referencia értéke szélsebesség átlagos értéke 25

26 5. Szélnyomás a felületeken: A szél támadta felületről feltételezzük, hogy kellően merev ahhoz, hogy szél okozta rezonanciája elhanyagolható. Külső nyomás Az épület külső felületére ható w e szélnyomás számítása: w e = q p (z e ) c pe, q p (z e ) = c e (z e ) q b ahol: c pe c e (z e ) q p (z e ) külső nyomási tényező, helyszíntényező torlónyomás csúcsértéke Belső nyomás Az épület belső felületén működő w i szélnyomás számítása: w i = q p (z i ) c pi, q p (z i ) = c e (z i ) q b, ahol: C pi belső nyomási tényező, 26

27 Összes nyomás A falra vagy tartószerkezeti elemre ható összes szélnyomás a fal két határoló felületére ható nyomás különbsége. A szél hatását előjelesen kell figyelembe venni. Pozitív előjelű a szélnyomás, negatív előjelű a szélszívás. 6. Szélerők: Szélerők származtatása a szélnyomásból: Kétféleképpen származtathatók: globális erők segítségével a felületre ható nyomások összegzésével Az F w globális erő származtatása: F w = q b c e (z e ) c d c f A ref,, ahol: c f A ref erőtényező, a c f -hez tartozó referenciafelület A súrlódási erő számítása: F w = q b c e (z e ) c d c fr A fr, ahol: c fr a súrlódási tényező A fr a szél által súrolt felület. 27

28 7. A szél referencia adatai: A q b átlagos torlónyomás számítása q b = ρ / 2 v b 2 (kn/m 2 ), ahol: v b ρ a szélsebesség referencia értéke, a levegő sűrűsége. A ρ értéke általában 1,25 kg / m 3 1N = 1 kgm/s 2 kg/m 3 m 2 /s 2 = kgm/s 2 1/m 2 = N/m 2 v b = 20 m/s 1, = 250 N/m 2 = 0,25 kn/m 2 A szélsebesség referencia értékének számítása: A v ref szélsebesség a II. beépítettségi kategóriához tartozó, a tengerszint felett 10 m magasságban érvényes, 10 perces átlagos szélsebesség értéke, melynek éves túllépési valószínűsége 0,02 (vagyis melynek átlagos visszatérési periódusa 50 év). 28

29 A referencia-szélsebesség számítása: v b = c dir c season v b,0, ahol: v b,0 a referencia szélsebesség kiindulási értéke, c dir az iránytényező, ált. 1,0, c season a szezonális tényező, ált. 1,0, A NAD-ban megadott hazai referencia-szélsebesség értéke: v b = 20 m/s (c dir =0,85; c season =1; v b,0 =23,6 m/s) 29

30 8. A szél paraméterei: Átlagos szélsebesség számítása v m (z) = c r (z) c t (z) v b ahol: v b c r (z) c t (z) szélsebesség referenciaértéke, érdességi tényező, topográfiai tényező. Érdességi tényező Az érdességi tényezővel figyelembe vehető, hogy az épület tervezett helyén az átlagos szélsebesség a terepszint feletti magasság és a széliránytól függően a terep érdessége következtében változik. Beépítettségi kategóriák és kapcsolódó mennyiségek Táblázat Topográfiai tényező A topográfiai tényezővel figyelembe vehető, hogy az átlagos szélsebesség megnő a különálló dombok és rézsűk felett. Helyszíntényező A helyszíntényezővel figyelembe vehető, hogy a terep érdessége, a topográfia (alaktani leírása) és a terepszint feletti magasság befolyásolja az átlagos szélsebességet. 30

31 9. A szélteher számítási módszerének megválasztása: Általános elvek A szélteher számítására két eljárás alkalmazható: egyszerű eljárás: dinamikus gerjesztésre nem érzékeny épületeknél részletes eljárás: olyan szerkezeteknél, melyek érzékenyek a dinamikus gerjesztésre és c d dinamikus tényezőjük 1,2-nél nagyobb A választás kritériumai (ismérvei) egyszerű eljárás alkalmazható legfeljebb 200 m magas épületekre és kéményekre valamint legfeljebb 200 m támaszközű közúti és vasúti hidakra, ha c d dinamikus tényezőjük 1,2-nél kisebb. Dinamikus tényező a széllökéshez Örvényleválás, aeroelasztikai instabilitás és dinamikus kölcsönhatások. 31

32 10. Aerodinamikai együtthatók: Ez a fejezet tartalmazza a következő szerkezetek, szerkezeti elemek és részek aerodinamikai együtthatóit: épületek szabadonálló tetők szabadonálló falak, kerítések és jelzőtáblák téglalap keresztmetszetű szerkezeti elemek éles szélű szerkezeti elemek szabályos sokszög keresztmetszetű szerkezeti elemek körhengerek gömbök rácsos szerkezetek és állványzatok hidak zászlók súrlódási tényezők helyettesítő karcsúság és karcsúsági tényezők Épületek és épületek egyes részei esetén a c pe külső nyomási tényező nagysága az A terhelt felület függvénye. Az egyes elrendezésekre vonatkozó táblázatokban az 1 m 2 -re, illetve a legalább 10 m 2 -re érvényes értékek szerepelnek (c pe,1 és c pe,10 ). Az ezektől különböző nagyságú terhelt felületek esetén a külső nyomási tényező az adott függvény alapján vehető fel. 32

33 A melléklet: Időjárási adatok és az egyes országok széltérképei B melléklet Részletes eljárás a szerkezet dinamikus válaszának meghatározására C melléklet Az örvénygerjesztésre és más aeroelasztikai hatásokra vonatkozó szabályok Magyar Nemzeti Alkalmazási Dokumentum 33

A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT

A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ EUROCODE SZERINT 1 ÉPÜLETEK TARTÓSZERKEZETÉNEK RÉSZEI Helyzetük

Részletesebben

SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ

SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ SZENT ISTVÁN EGYETEM YBL MIKLÓS ÉPÍTÉSTUDOMÁNYI KAR EUROCODE SEGÉDLETEK A MÉRETEZÉS ALAPJAI C. TÁRGYHOZ A segédlet nem helyettesíti az építmények teherhordó szerkezeteinek erőtani tervezésére vonatkozó

Részletesebben

A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT

A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT A MÉRETEZÉS ALAPJAI ÉPÜLETEK TARTÓSZERKEZETI RENDSZEREI ÉS ELEMEI ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ MSZ SZERINT ÉPÜLETEK TERHEINEK SZÁMÍTÁSA AZ EUROCODE SZERINT ÉPÜLETEK TARTÓSZERKEZETÉNEK RÉSZEI Helyzetük

Részletesebben

Teherfelvétel. Húzott rudak számítása. 2. gyakorlat

Teherfelvétel. Húzott rudak számítása. 2. gyakorlat Teherfelvétel. Húzott rudak számítása 2. gyakorlat Az Eurocode 1. részei: (Terhek és hatások) Sűrűségek, önsúly és az épületek hasznos terhei (MSZ EN 1991-1-1) Tűznek kitett tartószerkezeteket érő hatások

Részletesebben

A.4. Az Eurocode 1 tárgya és felépítése

A.4. Az Eurocode 1 tárgya és felépítése A.4.1 Bevezetés A.4. Az Eurocode 1 tárgya és felépítése Az Eurocode szabványsorozat előírásai szerint a szerkezeteket hatások felvételére kell tervezni. Ezek elsősorban terheket jelentenek (közvetlen hatások),

Részletesebben

Mérnöki faszerkezetek korszerű statikai méretezése

Mérnöki faszerkezetek korszerű statikai méretezése Mérnöki faszerkezetek korszerű statikai méretezése okl. faip. mérnök - szerkezettervező Előadásvázlat Bevezetés, a statikai tervezés alapjai, eszközei Az EuroCode szabványok rendszere Bemutató számítás

Részletesebben

SZÉLTEHER. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

SZÉLTEHER. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Szakmérnöki tanfolyam SZÉLTEHER Erdélyi Tamás egy. tanársegéd BME Építészmérnöki kar Szilárdságtani és Tartószerkezeti Tanszék 2014. február 27. Szabványok MSZ EN 1991-1-4: 2005. Wind actions pren 1991-1-4

Részletesebben

TARTÓ(SZERKEZETE)K. 3.Tartószerkezeteket érő hatások és tervezési állapotok TERVEZÉSE II. Dr. Szép János Egyetemi docens

TARTÓ(SZERKEZETE)K. 3.Tartószerkezeteket érő hatások és tervezési állapotok TERVEZÉSE II. Dr. Szép János Egyetemi docens TARTÓ(SZERKEZETE)K TERVEZÉSE II. 3.Tartószerkezeteket érő hatások és tervezési állapotok Dr. Szép János Egyetemi docens 2018. 10. 15. Az előadás tartalma Terhek térbeli megoszlása Terhek lefutása Terhek

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés SZÉLTEHER Erdélyi Tamás BME Építészmérnöki kar Szilárdságtani és Tartószerkezeti Tanszék 2016. február 26. Szakmérnöki tanfolyam Szabványok MSZ EN 1991-1-4: 2005. Wind actions pren 1991-1-4 2004. January

Részletesebben

TARTÓSZERKEZETI TERVEZŐ, SZAKÉRTŐ: 1. A tartószerkezeti tervezés kiindulási adatai

TARTÓSZERKEZETI TERVEZŐ, SZAKÉRTŐ: 1. A tartószerkezeti tervezés kiindulási adatai TARTÓSZERKEZETI KIVITELI TERVDOKUMENTÁCIÓ a Újtikos, Széchenyi tér 12-14. sz. ( Hrsz.: 135/1 ) alatt lévő rendelő átalakításának, bővítésének építéséhez TARTÓSZERKEZETI TERVEZŐ, SZAKÉRTŐ: Soós Ferenc okl.

Részletesebben

A geotechnikai tervezés alapjai az Eurocode 7 szerint

A geotechnikai tervezés alapjai az Eurocode 7 szerint A geotechnikai tervezés alapjai az Eurocode 7 szerint Tartószerkezeti Eurocode-ok EN 1990 EC-0 A tartószerkezeti tervezés alapjai EN 1991 EC-1: A tartószerkezeteket érő hatások EN 1992 EC-2: Betonszerkezetek

Részletesebben

TARTÓSZERKEZETEK ÁLTALÁNOS TERHEI

TARTÓSZERKEZETEK ÁLTALÁNOS TERHEI TARTÓSZERKEZETEK ÁLTALÁNOS TERHEI Önsúly, hasznos terhek, meteorológiai terhek Visnovitz György Kulcsár Béla Erdélyi Tamás 2016. február 26. szakmérnök előadás EC 1: TERHEK ÉS HATÁSOK MSZ EN 1991-1-1:2005

Részletesebben

Terhek felvétele az EC 1 ENV szerint Szemelvények

Terhek felvétele az EC 1 ENV szerint Szemelvények Terhek felvétele az EC 1 ENV szerint Szemelvények Varga Géza, 2004-09-09 1. Önsúlyterhek karakterisztikus értéke (ENV 1991-2-1) TEHERFAJTA ÉRTÉK (kn/m 3 ) Acél 77 Normálbeton 24 Cementhabarcs 19-23 Gipsz-

Részletesebben

TARTÓSZERKEZETI KIVITELI TERVDOKUMENTÁCIÓ

TARTÓSZERKEZETI KIVITELI TERVDOKUMENTÁCIÓ TARTÓSZERKEZETI KIVITELI TERVDOKUMENTÁCIÓ ÉPÍTÉS TÁRGYA: RADÓ KÚRIA FELÚJÍTÁSA ÉPÍTÉSI HELY: RÉPCELAK, BARTÓK B. U. 51. HRSZ: 300 ÉPÍTTETŐ: TERVEZŐ: RÉPCELAK VÁROS ÖNKORMÁNYZATA RÉPCELAK, BARTÓK B. U.

Részletesebben

STATIKAI SZÁMÍTÁS (KIVONAT) A TOP Társadalmi és környezeti szempontból fenntartható turizmusfejlesztés című pályázat keretében a

STATIKAI SZÁMÍTÁS (KIVONAT) A TOP Társadalmi és környezeti szempontból fenntartható turizmusfejlesztés című pályázat keretében a Kardos László okl. építőmérnök 4431 Nyíregyháza, Szivárvány u. 26. Tel: 20 340 8717 STATIKAI SZÁMÍTÁS (KIVONAT) A TOP-6.1.4.-15 Társadalmi és környezeti szempontból fenntartható turizmusfejlesztés című

Részletesebben

BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. Dr. Móczár Balázs

BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. Dr. Móczár Balázs Dr. Móczár Balázs 1 Az előadás célja MSZ EN 1997 1 szabvány 6. fejezetében és egyes mellékleteiben leírt síkalapozással kapcsolatos előírások lényegesebb elemeinek, a szabvány elveinek bemutatása Az eddig

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János

Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János VASBETON SZERKEZETEK TERVEZÉSE 2 Szabvány A tartószerkezetek tervezése jelenleg Magyarországon és az EU államaiban az Euronorm szabványsorozat alapján

Részletesebben

BETONSZERKEZETEK TERVEZÉSE AZ EUROCODE 2 SZERINT VASÚTI HIDÁSZ TALÁLKOZÓ 2009 KECSKEMÉT

BETONSZERKEZETEK TERVEZÉSE AZ EUROCODE 2 SZERINT VASÚTI HIDÁSZ TALÁLKOZÓ 2009 KECSKEMÉT BETONSZERKEZETEK TERVEZÉSE AZ EUROCODE 2 SZERINT VASÚTI HIDÁSZ TALÁLKOZÓ 2009 KECSKEMÉT Farkas György Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszéke Az Eurocode-ok története

Részletesebben

Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 11. Előadás Faszerkezetek II. Dr. Szalai József Főiskolai adjunktus Tartalom Méretezés az Eurocode szabványrendszer szerint áttekintés Teherbírási határállapotok Húzás Nyomás

Részletesebben

A FERIHEGYI IRÁNYÍTÓTORONY ÚJ RADARKUPOLÁJA LEERÕSÍTÉSÉNEK STATIKAI VIZSGÁLATA TARTALOM

A FERIHEGYI IRÁNYÍTÓTORONY ÚJ RADARKUPOLÁJA LEERÕSÍTÉSÉNEK STATIKAI VIZSGÁLATA TARTALOM A FERIHEGYI IRÁYÍTÓTOROY ÚJ RADARKUPOLÁJA LEERÕSÍTÉSÉEK STATIKAI VIZSGÁLATA TARTALOM 1. KIIDULÁSI ADATOK 3. 2. TERHEK 6. 3. A teherbírás igazolása 9. 2 / 23 A ferihegyi irányítótorony tetején elhelyezett

Részletesebben

GYŐR ARÉNA, Győr-Kiskút liget, Tóth László utca 4. Hrsz.:5764/1. multifunkcionális csarnok kialakításának építési engedélyezési terve

GYŐR ARÉNA, Győr-Kiskút liget, Tóth László utca 4. Hrsz.:5764/1. multifunkcionális csarnok kialakításának építési engedélyezési terve GYŐR ARÉNA, Győr-Kiskút liget, Tóth László utca 4. Hrsz.:5764/1 multifunkcionális csarnok kialakításának építési engedélyezési terve STATIKAI SZÁMÍTÁSOK Tervezők: Róth Ernő, okl. építőmérnök TT-08-0105

Részletesebben

Rendkívüli terhek és hatáskombinációk az Eurocode-ban

Rendkívüli terhek és hatáskombinációk az Eurocode-ban Rendkívüli terhek és hatáskombinációk az Eurocode-ban dr. Visnovitz György BME Szilárdságtani és Tartószerkezeti Tanszék Rekonstrukciós szakmérnöki tanfolyam Terhek és hatások - 2014. 03. 20. 1 Rekonstrukciós

Részletesebben

2011.11.08. 7. előadás Falszerkezetek

2011.11.08. 7. előadás Falszerkezetek 2011.11.08. 7. előadás Falszerkezetek Falazott szerkezetek: MSZ EN 1996 (Eurocode 6) 1-1. rész: Az épületekre vonatkozó általános szabályok. Falazott szerkezetek vasalással és vasalás nélkül 1-2. rész:

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Terhek és hatások 3. előadás Rendkívüli terhek és hatáskombinációk az Eurocode-ban dr. Visnovitz György 1 2 1 Kérdés 1: Miben más a földrengés, mint a többi rendkívüli hatás? Kérdés 2: rendkívüli hatás-e

Részletesebben

SZÉLTEHER. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. BME Szilárdságtani és Tartószerkezeti Tanszék. Erdélyi Tamás március 23.

SZÉLTEHER. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. BME Szilárdságtani és Tartószerkezeti Tanszék. Erdélyi Tamás március 23. zélteher SZÉLTEHER Erdélyi Tamás egy. tanársegéd BME Építészmérnöki kar Szilárdságtani és Tartószerkezeti Tanszék 2012. március 23. Szakmérnöki tanfolya zabványok SZ EN 1991-1-4: 2005. ind actions ren

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Terhek és hatások 4. előadás Rendkívüli terhek és hatáskombinációk az Eurocode-ban dr. Visnovitz György Rekonstrukciós szakmérnöki tanfolyam Terhek és hatások - 2016. 04. 08. 1 Rekonstrukciós szakmérnöki

Részletesebben

SZERKEZETI MŰSZAKI LEÍRÁS + STATIKAI SZÁMÍTÁS

SZERKEZETI MŰSZAKI LEÍRÁS + STATIKAI SZÁMÍTÁS 454 Iváncsa, Arany János utca Hrsz: 16/8 Iváncsa Faluház felújítás 454 Iváncsa, Arany János utca Hrsz.: 16/8 Építtető: Iváncsa Község Önkormányzata Iváncsa, Fő utca 61/b. Fedélszék ellenőrző számítása

Részletesebben

A.3. Acélszerkezetek tervezése az Eurocode szabványsorozat szerint

A.3. Acélszerkezetek tervezése az Eurocode szabványsorozat szerint A.3. Acélszerkezetek tervezése az Eurocode szabványsorozat szerint A.3.1. Bevezetés Az Eurocode szabványok (amelyeket gyakran EC-knek is nevezünk) kiadása az Európai Szabványügyi Bizottság (CEN) feladata.

Részletesebben

SÍKALAPOK TERVEZÉSE. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

SÍKALAPOK TERVEZÉSE. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés SÍKALAPOK TERVEZÉSE SÍKALAPOK TERVEZÉSE síkalap mélyalap mélyített síkalap Síkalap, ha: - megfelelő teherbírású és vastagságú talajréteg van a felszín közelében; - a térszín közeli talajréteg teherbírása

Részletesebben

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint

Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Tartószerkezetek tervezése tűzhatásra - az Eurocode szerint Dr. Horváth László egyetemi docens Budapesti Műszaki és Gazdaságtudományi Egyetem Hidak és Szerkezetek Tanszék Tartalom Mire ad választ az Eurocode?

Részletesebben

ÉPÜLETEK HASZNOS ÉS METEOROLÓGIAI TERHEI AZ EUROCODE SZERINT

ÉPÜLETEK HASZNOS ÉS METEOROLÓGIAI TERHEI AZ EUROCODE SZERINT ÉPÜLETEK HASZNOS ÉS METEOROLÓGIAI TERHEI AZ EUROCODE SZERINT Eurocode 1 MSZ EN 1991-1-1 Eurocode 1: A tartószerkezeteket terhelő hatások. 1-1. rész: Általános hatások Sűrűség, önsúly és az épületek hasznos

Részletesebben

Geometriai adatok. réteghatárok magassági helyzete földkiemelési szintek geotechnikai szerkezet méretei

Geometriai adatok. réteghatárok magassági helyzete földkiemelési szintek geotechnikai szerkezet méretei 24. terepmagasság térszín hajlása vízszintek Geometriai adatok réteghatárok magassági helyzete földkiemelési szintek geotechnikai szerkezet méretei a d =a nom + a a: az egyes konkrét szerkezetekre vonatkozó

Részletesebben

TARTÓSZERKEZETI MŰSZAKI LEÍRÁS

TARTÓSZERKEZETI MŰSZAKI LEÍRÁS TARTÓSZERKEZETI MŰSZAKI LEÍRÁS MÁGOCS, ÓVODA BŐVÍTÉS, BÖLCSŐDE ÉPÍTÉS KIVITELEZÉSHEZ 734 MÁGOCS, TEMPLOM TÉR. HRSZ.: 539. ÉPÍTTETŐ ÉPÍTÉSZ STATIKUS TERVEZŐ Mágocs Városi Önkormányzata 734 Mágocs, Szabadság

Részletesebben

STATIKAI TERVDOKUMENTÁCIÓ. Bencs Villa átalakítás és felújítás. Nyíregyháza, Sóstói út 54.

STATIKAI TERVDOKUMENTÁCIÓ. Bencs Villa átalakítás és felújítás. Nyíregyháza, Sóstói út 54. K21 Építőipari Kereskedelmi és Szolgáltató KFT 4431 Nyíregyháza, Szivárvány u. 26. Tel: 20 340 8717 STATIKAI TERVDOKUMENTÁCIÓ Bencs Villa átalakítás és felújítás (Építtető: Nyíregyháza MJV Önkormányzata,

Részletesebben

TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek

TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes

Részletesebben

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6. statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek

Részletesebben

Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk be.

Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk be. 2. számú mérnöki kézikönyv Frissítve: 2016. Február Szögtámfal tervezése Program: Szögtámfal File: Demo_manual_02.guz Feladat: Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk

Részletesebben

Építőmérnöki alapismeretek

Építőmérnöki alapismeretek Építőmérnöki alapismeretek Szerkezetépítés 3.ea. Dr. Vértes Katalin Dr. Koris Kálmán BME Hidak és Szerkezetek Tanszék Építmények méretezésének alapjai Az építmények megvalósításának folyamata igény megjelenése

Részletesebben

Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke

Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján. Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke Végeselemes analízisen alapuló méretezési elvek az Eurocode 3 alapján Dr. Dunai László egyetemi tanár BME, Hidak és Szerkezetek Tanszéke 1 Tartalom Méretezési alapelvek Numerikus modellezés Analízis és

Részletesebben

Tervezés földrengés hatásra: bevezetés az Eurocode 8 alapú tervezésbe

Tervezés földrengés hatásra: bevezetés az Eurocode 8 alapú tervezésbe artószerkezetek IV. 204/205 I. félév Előadás /9 204. október 3., péntek, 9 50-30, B- terem ervezés földrengés hatásra: bevezetés az Eurocode 8 alapú tervezésbe Alapvető fogalmak Földrengés hatás ervezési

Részletesebben

BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. Dr. Móczár Balázs

BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. Dr. Móczár Balázs Dr. Móczár Balázs 1 Az előadás célja MSZ EN 1997 1 szabvány 6. fejezetében és egyes mellékleteiben leírt síkalapozással kapcsolatos előírások lényegesebb elemeinek, a szabvány elveinek bemutatása Az eddig

Részletesebben

A vasbetonszerkezetek tervezésének jelene és jövője

A vasbetonszerkezetek tervezésének jelene és jövője A vasbetonszerkezetek tervezésének jelene és jövője Teljesítőképesség-alapú tervezés, Tervezési eljárások Komárom-Esztergom Megyei Mérnöki Kamara szakmai továbbképzés Tatabánya, 2019. márc. 28. Dr. Kovács

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1. Bevezetés Falazott szerkezetek Tartalom Megnevezések, fal típusok Anyagok Mechanikai jellemzők 1 Falazott szerkezetek alkalmazási területei: 20. század: alacsony és középmagas épületek kb. 100 évvel

Részletesebben

Korai vasbeton építmények tartószerkezeti biztonságának megítélése

Korai vasbeton építmények tartószerkezeti biztonságának megítélése Korai vasbeton építmények tartószerkezeti biztonságának megítélése Dr. Orbán Zoltán, Dormány András, Juhász Tamás Pécsi Tudományegyetem Műszaki és Informatikai Kar Építőmérnök Tanszék A megbízhatóság értelmezése

Részletesebben

Súlytámfal ellenőrzése

Súlytámfal ellenőrzése 3. számú mérnöki kézikönyv Frissítve: 2016. Február Súlytámfal ellenőrzése Program: Súlytámfal Fájl: Demo_manual_03.gtz Ebben a fejezetben egy meglévő súlytámfal számítását mutatjuk be állandó és rendkívüli

Részletesebben

VASBETON ÉPÍTMÉNYEK SZERKEZETI OSZTÁLYA ÉS BETONFEDÉS

VASBETON ÉPÍTMÉNYEK SZERKEZETI OSZTÁLYA ÉS BETONFEDÉS Betontechnológiai Szakirányú Továbbképzés MINŐSÉGBIZTOSÍTÁS VASBETON ÉPÍTMÉNYEK SZERKEZETI OSZTÁLYA ÉS BETONFEDÉS SZERKEZETI OSZTÁLYOK Nem kiemelt Minőségellenőrzés szintje Kiemelt Szerkezet alakja Szerkezet

Részletesebben

TARTÓ(SZERKEZETE)K. 8. Tartószerkezetek tervezésének különleges kérdései (állékonyság, dilatáció, merevítés) TERVEZÉSE II.

TARTÓ(SZERKEZETE)K. 8. Tartószerkezetek tervezésének különleges kérdései (állékonyság, dilatáció, merevítés) TERVEZÉSE II. TARTÓ(SZERKEZETE)K TERVEZÉSE II. 8. Tartószerkezetek tervezésének különleges kérdései (állékonyság, dilatáció, merevítés) Dr. Szép János Egyetemi docens 2018. 10. 15. Az előadás tartalma Szerkezetek teherbírásának

Részletesebben

TARTÓSZERKEZETI SZAKVÉLEMÉNY a TISZALADÁNYI ÁLTALÁNOS ISKOLA ÉS ÓVODA ENERGETIKAI KORSZERŰSÍTÉSHEZ 3929 TISZALADÁNY, KOSSUTH LAJOS UTCA 54. HRSZ.

TARTÓSZERKEZETI SZAKVÉLEMÉNY a TISZALADÁNYI ÁLTALÁNOS ISKOLA ÉS ÓVODA ENERGETIKAI KORSZERŰSÍTÉSHEZ 3929 TISZALADÁNY, KOSSUTH LAJOS UTCA 54. HRSZ. TARTÓSZERKEZETI SZAKVÉLEMÉNY a TISZALADÁNYI ÁLTALÁNOS ISKOLA ÉS ÓVODA ENERGETIKAI KORSZERŰSÍTÉSHEZ 3929 TISZALADÁNY, KOSSUTH LAJOS UTCA 54. HRSZ.:294 Miskolc, 2017. december 12 1. TARTÓSZERKEZETI TERVEZŐI

Részletesebben

Használhatósági határállapotok. Alakváltozások ellenőrzése

Használhatósági határállapotok. Alakváltozások ellenőrzése 1.GYAKORLAT Használhatósági határállapotok A használhatósági határállapotokhoz tartozó teherkombinációk: Karakterisztikus (repedésmentesség igazolása) Gyakori (feszített szerkezetek repedés korlátozása)

Részletesebben

Tartószerkezetek földrengési méretezésének hazai kérdései az előregyártott szerkezetek tekintetében

Tartószerkezetek földrengési méretezésének hazai kérdései az előregyártott szerkezetek tekintetében Joó Attila László, Kollár László Tartószerkezetek földrengési méretezésének hazai kérdései az előregyártott szerkezetek tekintetében Köszönetnyilvánítás: Kollár László Tartalom 1. Földrengések kialakulása

Részletesebben

Új szelek fújnak? A szél változásának tendenciái.

Új szelek fújnak? A szél változásának tendenciái. Új szelek fújnak? A szél változásának tendenciái. Kakasy Gergely, építészmérnök 2013 Bevezetésként Építészmérnök... hogyhogy...? Eredeti cél: szakmai kiadvány frissítésével áttekintést adni a szélteher

Részletesebben

GEOTECHNIKA II. NGB-SE005-02 GEOTECHNIKAI TERVEZÉS ALAPJAI

GEOTECHNIKA II. NGB-SE005-02 GEOTECHNIKAI TERVEZÉS ALAPJAI GEOTECHNIKA II. NGB-SE005-02 GEOTECHNIKAI TERVEZÉS ALAPJAI 2014-15 1. félév Szabványosítás áttekintése 2 EU-program 2007-08 valamennyi tervezett európai szabvány megjelenése 6 hónapos nemzeti bevezetési

Részletesebben

MÉRETEZÉSELMÉLET. 6.előadás

MÉRETEZÉSELMÉLET. 6.előadás MÉRETEZÉSELMÉLET 6.előadás 2011.09.28. EU ÉS EU SZABVÁNYOK TÖRTÉNETI HÁTTERE A két világháború között politikusok, írók, stb. részvételével páneurópai mozgalom jön létre 1924-ben hivatalosan is Bécsben;

Részletesebben

Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását.

Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását. 10. számú mérnöki kézikönyv Frissítve: 2016. Február Síkalap süllyedése Program: Fájl: Síkalap Demo_manual_10.gpa Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését

Részletesebben

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus

Fa- és Acélszerkezetek I. 1. Előadás Bevezetés. Dr. Szalai József Főiskolai adjunktus Fa- és Acélszerkezetek I. 1. Előadás Bevezetés Dr. Szalai József Főiskolai adjunktus Okt. Hét 1. Téma Bevezetés acélszerkezetek méretezésébe, elhelyezés a tananyagban Acélszerkezetek használati területei

Részletesebben

Si-Ma Bt. 1033 Budapest, Huszti út 21.

Si-Ma Bt. 1033 Budapest, Huszti út 21. 2013 Pomáz, Hunyadi u. 5 Si-Ma Bt. 1033 Budapest, Huszti út 21. Előadó: Szitányiné Siklósi Magdolna okl. faip. mérnök nyug. tűzoltó alezredes faanyagvédelmi szakértő építész tűzvédelmi szakértő 9/2008.

Részletesebben

A méretezés alapjai II. Épületek terheinek számítása az MSZ szerint SZIE-YMMF 1. Erőtani tervezés 1.1. Tartószerkezeti szabványok Magyar Szabvány: MSZ 510 MSZ 15012/1 MSZ 15012/2 MSZ 15020 MSZ 15021/1

Részletesebben

KRITIKUS KÉRDÉS: ACÉL ELEMEK

KRITIKUS KÉRDÉS: ACÉL ELEMEK KRITIKUS KÉRDÉS: ACÉL ELEMEK KRITIKUS HŐMÉRSÉKLETE Dr. Horváth László egyetem docens Acélszerkezetek tűzvédelmi tervezése workshop, 2018. 11.09 TARTALOM Acél elemek tönkremeneteli folyamata tűzhatás alatt

Részletesebben

Dr. Móczár Balázs. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Dr. Móczár Balázs. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Dr. Móczár Balázs 1 A z e l ő a d á s c é l j a MSZ EN 1997-1 szabvány 6. fejezetében és egyes mellékleteiben leírt síkalapozással kapcsolatos előírások lényegesebb elemeinek, a szabvány elveinek bemutatása

Részletesebben

A tartószerkezeti méretezés módszereinek történeti fejlődése

A tartószerkezeti méretezés módszereinek történeti fejlődése Szakmérnök képzés 2014 Terhek és hatások 1. ELŐADÁS A tartószerkezeti méretezés módszereinek történeti fejlődése Dr. Visnovitz György Szilárdságtani és Tartószerkezeti Tanszék 2014. február 27. Szakmérnök

Részletesebben

TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek

TARTÓSZERKEZETEK II. NGB_se004_02 Vasbetonszerkezetek Széchenyi István Egyetem Szerkezetépítési és Geotechnikai Tanszék TARTÓSZERKEZETEK II. NGB_se004_0 Vasbetonszerkezetek Monolit vasbetonvázas épület födémlemezének tervezése című házi feladat részletes

Részletesebben

Magasépítési acélszerkezetek

Magasépítési acélszerkezetek Magasépítési acélszerkezetek Egyhajós acélszerkezetű csarnok tervezése Szabó Imre Gábor Pécsi Tudományegyetem Műszaki és Informatikai Kar Építőmérnök Tanszék 1. ábra. Acél csarnoképület tipikus hierarchikus

Részletesebben

Tartószerkezetek II. Használhatósági határállapotok május 07.

Tartószerkezetek II. Használhatósági határállapotok május 07. Tartószerkezetek II. Használhatósági határállapotok 2010. május 07. Használhatósági határállapotok Használhatósági (használati) határállapotok: a normálfeszültségek korlátozása a repedezettség ellenırzése

Részletesebben

Tartószerkezetek I. Használhatósági határállapotok

Tartószerkezetek I. Használhatósági határállapotok Tartószerkezetek I. Használhatósági határállapotok Szép János A tartószerkezeti méretezés alapjai Tartószerkezetekkel szemben támasztott követelmények: A hatásokkal (terhekkel) szembeni ellenállóképesség

Részletesebben

A tartószerkezeti méretezés módszereinek történeti fejlődése

A tartószerkezeti méretezés módszereinek történeti fejlődése Szakmérnök képzés 2012 Terhek és hatások 1. ELŐADÁS A tartószerkezeti méretezés módszereinek történeti fejlődése Dr. Visnovitz György Szilárdságtani és Tartószerkezeti Tanszék 2012. március 1. Szakmérnök

Részletesebben

Tartószerkezetek modellezése

Tartószerkezetek modellezése Tartószerkezetek modellezése 16.,18. elıadás Repedések falazott falakban 1 Tartalom A falazott szerkezetek méretezési módja A falazat viselkedése, repedései Repedések falazott szerkezetekben Falazatok

Részletesebben

KONFERENCIASOROZAT 2015 KONFERENCIASOROZAT 2015. PREFA Hungária Kft. www.prefa.hu judit.nemere@prefa.com +36 (30) 6866786 2040 Budaörs, Gyár utca 2.

KONFERENCIASOROZAT 2015 KONFERENCIASOROZAT 2015. PREFA Hungária Kft. www.prefa.hu judit.nemere@prefa.com +36 (30) 6866786 2040 Budaörs, Gyár utca 2. KONFERENCIASOROZAT 2015 KONFERENCIASOROZAT 2015 PREFA Hungária Kft. www.prefa.hu judit.nemere@prefa.com +36 (30) 6866786 2040 Budaörs, Gyár utca 2. SZERVEZŐK SZAKMAI VÉDNÖK MÉDIATÁMOGATÓK » Alapítás éve:

Részletesebben

A faanyagú tartószerkezetek - Eurocode szerinti - tűzhatásra történő tervezése

A faanyagú tartószerkezetek - Eurocode szerinti - tűzhatásra történő tervezése Szitányiné Siklósi Magdolna A faanyagú tartószerkezetek - Eurocode szerinti - tűzhatásra történő tervezése Az új OTSZ ebben is új követelményeket hozott! Ennek megfelelően az Európában kidolgozott és használatos,

Részletesebben

TARTÓ(SZERKEZETE)K. 11. Meglévő épületek átalakításának, felújításának tartószerkezeti kérdései TERVEZÉSE II. Dr. Szép János Egyetemi docens

TARTÓ(SZERKEZETE)K. 11. Meglévő épületek átalakításának, felújításának tartószerkezeti kérdései TERVEZÉSE II. Dr. Szép János Egyetemi docens TARTÓ(SZERKEZETE)K TERVEZÉSE II. 11. Meglévő épületek átalakításának, felújításának tartószerkezeti kérdései Dr. Szép János Egyetemi docens 2018. 11. 01. Az előadás tartalma Erőtani követelmények A szerkezetek

Részletesebben

TARTÓSZERKEZETI MŰSZAKI LEÍRÁS

TARTÓSZERKEZETI MŰSZAKI LEÍRÁS Kardos László okl. építőmérnök 4431 Nyíregyháza, Szivárvány u. 26. Tel: 20 340 8717 TARTÓSZERKEZETI MŰSZAKI LEÍRÁS A TOP-6.1.4.-15 Társadalmi és környezeti szempontból fenntartható turizmusfejlesztés című

Részletesebben

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás

Vasbeton födémek tűz alatti viselkedése Egyszerű tervezési eljárás tűz alatti eljárás A módszer célja 2 3 Az előadás tartalma Öszvérfödém szerkezetek tűz esetén egyszerű módszere 20 C Födém modell Tönkremeneteli módok Öszvérfödémek egyszerű eljárása magas Kiterjesztés

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés TARTÓSZERKEZETI EUROCODE-OK A tervezés alapelvei Terhek és hatások 1. Dr. Visnovitz György BME Építészmérnöki Kar Szilárdságtani és Tartószerkezeti Tanszék Rekonstrukciós szakmérnökképzés 2012. március

Részletesebben

UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI

UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI UTÓFESZÍTETT SZERKEZETEK TERVEZÉSI MÓDSZEREI DR. FARKAS GYÖRGY Professor emeritus BME Hidak és Szerkezetek Tanszék MMK Tartószerkezeti Tagozat Szakmai továbbképzés 2017 október 2. KÁBELVEZETÉS EGYENES

Részletesebben

Központosan nyomott vasbeton oszlop méretezése:

Központosan nyomott vasbeton oszlop méretezése: Központosan nyomott vasbeton oszlop méretezése: Központosan nyomott oszlopok ellenőrzése: A beton által felvehető nyomóerő: N cd = A ctot f cd Az acélbetétek által felvehető nyomóerő: N sd = A s f yd -

Részletesebben

Szádfal szerkezet ellenőrzés Adatbev.

Szádfal szerkezet ellenőrzés Adatbev. Szádfal szerkezet ellenőrzés Adatbev. Projekt Dátum : 8.0.05 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : Acél szerkezetek : Acél keresztmetszet teherbírásának

Részletesebben

Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez

Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez Pécs, 2015. június . - 2 - Tartalomjegyzék 1. Felhasznált irodalom... 3 2. Feltételezések... 3 3. Anyagminőség...

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan)

Tartószerkezetek I. (Vasbeton szilárdságtan) Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János 2012.10.11. Vasbeton külpontos nyomása Az eső ágú σ-ε diagram miatt elvileg minden egyes esethez külön kell meghatározni a szélső szál összenyomódását.

Részletesebben

Tartószerkezeti műszaki leírás

Tartószerkezeti műszaki leírás 1. Előzmények Tartószerkezeti műszaki leírás Nyíregyháza, Bocskai-Kálmán szolgáltató ház (4400 Nyíregyháza, Bocskai u. 16., hrsz. 76/1) Kiviteli terveihez Megrendelő (Nyíregyháza Megyei Jogú Város Önkormányzata)

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Épület alapozása síkalappal (1. rajz feladat) Minden építmény az önsúlyát és a rájutó terheléseket az altalajnak adja át, s állékonysága, valamint tartóssága attól függ, hogy sikerült-e az építmény és

Részletesebben

A méretezés alapjai I. Épületek terheinek számítása az MSZ szerint SZIE-YMMF BSc Építőmérnök szak I. évfolyam Nappali tagozat 1. Bevezetés 1.1. Épületek tartószerkezetének részei Helyzetük szerint: vízszintes:

Részletesebben

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT.

TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. TU 7 NYOMÁSSZABÁLYZÓ ÁLLOMÁSOK ROBBANÁSVESZÉLYES TÉRSÉGÉNEK MEGHATÁROZÁSA ÉS BESOROLÁSA AZ MSZ EN 60079-10:2003 SZABVÁNY SZERINT. Előterjesztette: Jóváhagyta: Doma Géza koordinációs főmérnök Posztós Endre

Részletesebben

LINDAB TRAPÉZLEMEZEK STATIKAI MÉRETEZÉSE TERVEZÉSI ÚTMUTATÓ

LINDAB TRAPÉZLEMEZEK STATIKAI MÉRETEZÉSE TERVEZÉSI ÚTMUTATÓ LINDAB TRAPÉZLEMEZEK STATIKAI MÉRETEZÉSE TERVEZÉSI ÚTMUTATÓ HARMADIK, ÁTDOLGOZOTT KIADÁS Készítették: Dr. Dunai László Ádány Sándor Kotormán István LINDAB KFT., 2007. Tartalom 1. BEVEZETÉS... 4 1.1. A

Részletesebben

Gyakorlat 04 Keresztmetszetek III.

Gyakorlat 04 Keresztmetszetek III. Gyakorlat 04 Keresztmetszetek III. 1. Feladat Hajlítás és nyírás Végezzük el az alábbi gerenda keresztmetszeti vizsgálatait (tiszta esetek és lehetséges kölcsönhatások) kétféle anyaggal: S235; S355! (1)

Részletesebben

MECHANIKA I. /Statika/ 1. előadás SZIE-YMM 1. Bevezetés épületek, építmények fizikai hatások, köztük erőhatások részleges vagy teljes tönkremenetel használhatatlanná válás anyagi kár, emberáldozat 1 Cél:

Részletesebben

A.2. Acélszerkezetek határállapotai

A.2. Acélszerkezetek határállapotai A.. Acélszerkezetek határállapotai A... A teherbírási határállapotok első osztálya: a szilárdsági határállapotok A szilárdsági határállapotok (melyek között a fáradt és rideg törést e helyütt nem tárgyaljuk)

Részletesebben

Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; - vonalzók.

Használható segédeszköz: - szöveges adatok tárolására és megjelenítésére nem alkalmas számológép; - körző; - vonalzók. A 4/2015 (II. 19.) NGM rendelet és a 27/2012 (VIII. 27.) NGM rendelet a 12/2013 (III. 28.) NGM rendelet által módosított szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosítószáma és megnevezése

Részletesebben

FASZERKEZETŰ CSARNOK MSZ EN SZABVÁNY SZERINTI ELLENŐRZŐ ERŐTANI SZÁMÍTÁSA. Magyar Mérnöki Kamara Tartószerkezeti Tagozat - Budapest, 2010

FASZERKEZETŰ CSARNOK MSZ EN SZABVÁNY SZERINTI ELLENŐRZŐ ERŐTANI SZÁMÍTÁSA. Magyar Mérnöki Kamara Tartószerkezeti Tagozat - Budapest, 2010 FASZERKEZETŰ CSARNOK MSZ EN SZABVÁNY SZERINTI ELLENŐRZŐ ERŐTANI SZÁMÍTÁSA Magyar Mérnöki Kamara Tartószerkezeti Tagozat - Budapest, 2010 FASZERKEZETŰ CSARNOK MSZ EN SZABVÁNY SZERINTI ELLENŐRZŐ ERŐTANI

Részletesebben

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek

Részletesebben

EC4 számítási alapok,

EC4 számítási alapok, Öszvérszerkezetek 2. előadás EC4 számítási alapok, beton berepedésének hatása, együttdolgozó szélesség, rövid idejű és tartós terhek, km. osztályozás, képlékeny km. ellenállás készítette: 2016.10.07. EC4

Részletesebben

ÉPÍTMÉNYEK TEHERHORDÓ SZERKEZETEINEK ERÕTANI TERVEZÉSE Magasépítési szerkezetek terhei

ÉPÍTMÉNYEK TEHERHORDÓ SZERKEZETEINEK ERÕTANI TERVEZÉSE Magasépítési szerkezetek terhei 3. kiadás, 1989 624.042 Magyar Népköztársaság Országos Szabvány ÉPÍTMÉNYEK TEHERHORDÓ SZERKEZETEINEK ERÕTANI TERVEZÉSE Magasépítési szerkezetek terhei MSZ 15021/1-86 Az MSZ 15021/1-1971 és MSZ KGST 1407-1978

Részletesebben

T E R V E Z É S I S E G É D L E T

T E R V E Z É S I S E G É D L E T BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM HIDAK ÉS SZERKEZETEK TANSZÉK T E R V E Z É S I S E G É D L E T a Magasépítési Vasbetonszerkezetek című tantárgy féléves gyakorlati feladatához (BSc. képzés)

Részletesebben

SZEMMEL méretezm. ldrengésre. Előadó: Tornai László tartószerkezeti vezető tervező KÉSZ Építő Zrt. 2011. december 16. 1

SZEMMEL méretezm. ldrengésre. Előadó: Tornai László tartószerkezeti vezető tervező KÉSZ Építő Zrt. 2011. december 16. 1 A FÖLDRENGF LDRENGÉSRŐL L MÉRNM RNÖK SZEMMEL 3. rész: r méretezm retezés s földrengf ldrengésre Előadó: Tornai László tartószerkezeti vezető tervező KÉSZ Építő Zrt. 2011. december 16. 1 A FÖLDRENGF LDRENGÉS-MÉRETEZÉS

Részletesebben

Tartószerkezetek II. (Vasbetonszerkezet II.) TARTÓSZERKEZETEK II. Tantárgyi követelmények. Szép János

Tartószerkezetek II. (Vasbetonszerkezet II.) TARTÓSZERKEZETEK II. Tantárgyi követelmények. Szép János Tartószerkezetek II. (Vasbetonszerkezet II.) Szép János TARTÓSZERKEZETEK II. Tárgyfelelős : Szép János D410 www.sze.hu/~szepj email : szepj@sze.hu Konzultációs időpont : Hétfő : 10 45-12 15 D410 Tantárgyi

Részletesebben

Lindab poliészter bevilágítócsík Műszaki adatlap

Lindab poliészter bevilágítócsík Műszaki adatlap Műszaki adatlap Termék: Funkció: Egyrétegű, üvegszálerősítésű poliészter anyagú bevilágító trapézlemez. Önhordó tetőfedő és falburkoló trapézlemezek bevilágító elemek céljára, külső és belső felhasználásra,

Részletesebben

Lindab Z/C gerendák statikai méretezése tűzteher esetén

Lindab Z/C gerendák statikai méretezése tűzteher esetén Lindab Z/C gerendák statikai méretezése tűzteher esetén Tervezési útmutató Készítette: Dr. Horváth László; Dr. Ádány Sándor Budapesti Műszaki Egyetem Lindab Kft. 2009. május 1 1. Bevezetés a méretezéshez

Részletesebben

Tartószerkezetek előadás

Tartószerkezetek előadás Tartószerkezetek 1. 11. előadás Acélszerkezeti kapcsolatok kialakítása és méretezése Csavarozott kapcsolatok Építőmérnöki BSc hallgatók számára Bukovics Ádám egy. adjunktus Szerkezetépítési és Geotechnikai

Részletesebben

dr. Szepesházi Róbert Az Eurocode-ok végleges bevezetése elé

dr. Szepesházi Róbert Az Eurocode-ok végleges bevezetése elé www.sze.hu/~szepesr Geotechnika 2009 áckeve dr. Szepesházi óbert Széchenyi István Egyetem, Gyır Az Eurocode-ok végleges bevezetése elé A geotechnikai tevékenység változása a tervezési folyamatban Geotechnikai

Részletesebben

Acélszerkezetek. 3. előadás 2012.02.24.

Acélszerkezetek. 3. előadás 2012.02.24. Acélszerkezetek 3. előadás 2012.02.24. Kapcsolatok méretezése Kapcsolatok típusai Mechanikus kapcsolatok: Szegecsek Csavarok Csapok Hegesztett kapcsolatok Tompavarrat Sarokvarrat Coalbrookdale, 1781 Eiffel

Részletesebben

Rugalmasan ágyazott gerenda. Szép János

Rugalmasan ágyazott gerenda. Szép János Rugalmasan ágyazott gerenda vizsgálata AXIS VM programmal Szép János 2013.10.14. LEMEZALAP TERVEZÉS 1. Bevezetés 2. Lemezalap tervezés 3. AXIS Program ismertetés 4. Példa LEMEZALAPOZÁS Alkalmazás módjai

Részletesebben