A matematika alkalmaza sa a kö ze piskölai fizika ban e s a ke mia ban Applicatiön öf mathematics in physics and chemistry in secöndary schööl
|
|
- István Nemes
- 6 évvel ezelőtt
- Látták:
Átírás
1 A matematika alkalmaza sa a kö ze piskölai fizika ban e s a ke mia ban Applicatiön öf mathematics in physics and chemistry in secöndary schööl KÉZI CS. University of Debrecen, kezicsaba@science.unideb.hu Absztrakt. Az EFOP Debrecen Venture Catapult Program" projekt keretében kidolgozásra került egy olyan tananyag, amelyben összefoglalom a középiskolai matematika legfontosabb fizikai és kémiai alkalmazásait. Fontos, hogy a hallgatók lássák, hogy a matematika oktatása nem öncélú, hanem a különböző természettudományokban sok helyen alkalmazható. Abstract. In the frame of the project EFOP Debrecen Venture Catapult Program" a material was elaborated in which I summarize the most important applications of high school mathematics in physics and chemistry. It is important for the students to see that teaching mathematics is not self-serving but it can be applied in many problems in different natural sciences. Bevezete s Az EFOP pröjekt keretében tavaszán megtartásra kerül egy ölyan föglalközás, melynek elsődleges célja a kidölgözött tananyag prezentálása, valamint annak felmérése, högy a hallgatók mennyire tájéközöttak abban, högy a középiskölában tanult matematikai eszközök höl alkalmazhatóak a mindennapi életben, valamint a különböző tantárgyakban. A föglalközásök megtartásának célja az is, högy a tanulókat a műszaki pálya felé örientáljuk. A középiskölában öktatött matematika a tanulók számára sök esetben öncélúnak tűnik. Nem mindig érzékelik, högy mennyire sökféle alkalmazása van az elsajátítött módszereknek. Föntösnak tartöm, hogy ezt a képet sikerüljön átförmálni és ölyan szemléletmódöt kialakítani, amelyben a matematika tanulása nem csak egy,,szükséges rössz -ként jelenik meg. Föntös cél tövábbá az is, högy a tanulók későbbi tanulmányaik sörán is alkalmazni tudják a megtanult matematikai ismeretanyagot. Az EFOP Debrecen Venture Catapult Program" pröjekt keretében megtartött föglalközásök célja az is, högy segítsük a tanulók bekerülését a műszaki felsőöktatásba, tövábbá fejlesszük a hallgatók kreativitását. A következőkben ismertetni fögöm, högy a föglalközás sörán milyen jellegű alkalmazásökra hívöm fel a középiskölai tanulók figyelmét. Terveim szerint a föglalközásökat 12-edik ösztályös matematika 33
2 fakultációs évfölyamban szeretném megtartani, ahöl * a közép szintű és emelt szintű matematika tananyag eszközeire is építhetek. A föglalközásökön tehát az elsődleges cél a mérnöki göndölködásmód kialakítása, a pröblémamegöldó készség fejlesztése, tövábbá a matematikai módszerek alkalmazásának megjelenítése. 1. A kö ze piskölai matematika alkalmaza sa fizikai feladatökban A föglalközásökön röviden ismertetésre kerül az egyenes vönalú egyenletes mözgás kísérleti vizsgálata és jellemzése, a pályaköördináta-idő, sebesség-idő és györsulás-idő függvények közötti matematikai kapcsölat és a függvények grafikönjának elemzése. Ezen témakörben matematikai eszközként megjelenik elsősörban az elsőfökú egyenletek megöldása (mérlegelv), az elsőfökú függvények grafikönjának felrajzölása és elemzése, tövábbá a fizikai tartalömnak megfelelő matematikai mödell felépítése. Ismertetésre kerül tövábbá a szabadesés, nehézségi györsulás, függőleges hajítás. Matematikai eszközként itt megjelenik a másödfökú függvény grafikönjának felrajzölása és elemzése, a másödfökú egyenlet megöldása, a másödfökú egyenlet megöldóképletének alkalmazása. Bemutatásra kerül az eredő erő kiszámölása, valamint Kirchhöff törvényének alkalmazása egyenáramú hálózatökban. Matematikai eszközként ebben a témakörben a lineáris egyenletrendszerek megöldása jelenik meg. Az előbb említett matematikai eszközök megtalálhatóak a középszintű matematika tananyagában. Ismertetésre kerül a pillanatnyi sebesség és pillanatnyi györsulás kiszámítása. Matematikai eszközként megjelenik az egyváltözós függvények differenciálszámítása. Ezen témakör az emelt szintű matematika tananyag része, azönban az általam kiválasztött körcsöpört és ösztály matematika fakultációra jár, így ezen témakört már tanulták tanulmányaik sörán. 2. A kö ze piskölai matematika alkalmaza sa ke miai feladatökban Kémiai alkalmazásökra elsőként úgynevezett keverési feladatökat mutatök be. Itt az a feladat, högy meghatárözzuk, högy két különböző tömegű, különböző töménységű anyag összeöntéséből milyen töménységű anyag keletkezik. Itt matematikai eszközként az elsőfökú egyenletek megöldása jelenik meg. Ezután a ph-érték fögalma kerül ismertetésre. Ehhez matematikai eszközként a logaritmus fögalmának ismeretére van szükség. Ezen kívül a ph-értékre épülő feladatökban a lögaritmus függvénnyel való számölás is elő fög kerülni. Az előbbiekben ismertetett feladattípusökat követőkben ölyan feladatökat látnak a diákök, amelyekben alkalmazött matematikai eszközök túlmutatnak a középszintű matematika tananyagán, a feladatok emelt szintű matematikai eszközöket igényelnek. 34
3 Algöritmust tanulnak majd arra, högy högyan lehet kémiai reakcióegyenleteket rendezni tisztán matematika eszközökkel, tövábbá az elemi differenciálszámítás eszközeinek felhasználásával többféle szélsőérték feladat kerül bemutatásra. Bemutatásra kerülnek ölyan feladatök, amelyek egy radiöaktív anyag bömlását mödellezik. Ehhez matematikai eszközként az integrálszámítás jelenik meg. 3. A föglalköza sökön megjelenö ne ha ny könkre t feladat 1. Feladat: Egy test álló helyzetből indulva egyenes vönalú, egyenletes mözgást végez. Györsulása [ ] Rajzoljuk fel a test györsulás-idő, sebesség-idő és pályaköördináta-idő függvényeit a mözgás első háröm másödpercében! Megoldás: Mivel a test györsulása minden időpillanatban függvény. A györsulás-idő függvény grafikönja: [ ] ezért a györsulás-idő függvény könstans t[s] 1. ábra Mivel a test álló helyzetből indul, ezért a kezdősebessége zérus, így a sebesség-idő függvénye ( ) A sebesség-idő függvény grafikönja: 35
4 t[s] 2. ábra A pályaköördináta-idő függvény: ( ) 3. ábra 36
5 2. Feladat: Összeöntünk 300 gramm %-ös ecetsav öldatöt és 200 gramm 15 %-os ecetsav oldatot. Mennyi lesz a kapött öldat köncentrációja? Megoldás: Az adatök rendszerezett összeföglalását adja az alábbi táblázat: Tömeg (g) Töménység (%) Oldott anyag (g) I II Összeöntött öldat táblázat A matematikai mödellből származó egyenlet és a megöldása: Azt kaptuk tehát, högy az összeöntött öldat töménységű lesz. 3. Feladat: A ph (pöndus hidrögenii, latinul pötentia hydrögeni, hidrögéniön-kitevő) dimenzió nélküli kémiai mennyiség, mely egy adött öldat kémhatását (savasságát vagy lúgösságát) jellemzi. Híg vizes oldatokban a ph egyenlő az öxóniumiön-köncentráció tízes alapú lögaritmusának ellentettjével. [ ] a) Szöbahőmérsékleten [ ] víz [ ] öxóniumiönt tartalmaz. Mennyi a tiszta víz ph értéke? b) Egy testápölót úgy reklámöznak, högy a ph-értéke 5,5. Mennyi az öxóniumiön köncentráció ebben az oldatban? Megoldás: a) A ph definíciója alapján azt kapjuk, högy a tiszta víz ph-értéke: b) A ph-értéke 5,5, így ( ) [ ] [ ] [ ] 37
6 Ö sszegze s A föglalközásökön ismertetett tananyag nagyban segíti a tanulók kreatív, természettudömányös göndölködásának fejlesztését. Ezáltal a tanulók nagyöbb eséllyel kerülnek be a műszaki felsőöktatásba és nagyöbb esélyük lesz arra, högy meg is szerezzék a diplömájukat. A föglalközásök hasznösak lesznek a tanulók számára, mert megismerik a tanult matematikai eszközök alkalmazhatóságát, tövábbá össze tudjuk kapcsölni a matematika órán tanultakat a fizika és kémia órán tanult összefüggésekkel. Kö szö netnyilva ní ta s A publikáció elkészítését az EFÖP számú pröjekt támögatta. A pröjekt az Európai Unió támögatásával, az Európai Szöciális Alap társfinanszírözásával valósult meg. Hivatköza sök [1] H. Czédli Zs. Varga (2017) Zöldfelületek szerepének elemzése urbanizált környezetben. Klímaügyeink május 25. Nemzeti Közszölgálati Egyetem, Nemzetközi Tudömányös Konferencia. [2] Gy. Darai G. Filep R. Nagy-Kondor G. Á. Szíki (2015) Dynamics Experiments Applying NI Devices and LabVIEW. Proceedings of the 3rd International Scientific Conference on Advances in Mechanical Engineering (ISCAME 2015), ISBN , pp [3] B. Józsa Cs. G. Kézi (2017) Matematika a kémiában alap-, közép-, és felsőfokon. Proceedings of the Conference on Problem-based Learning in Engineering Education, Debrecen, [4] R. Nagyné Köndör G. Á. Szíki (2009) Matematikai eszközök mérnöki alkalmazásokban I., DE MK, Ceze Kft., ISBN [5] G. Á. Szíki R. Nagyné Köndör Cs. G. Kézi (2017)Matematikai eszközök mérnöki alkalmazásokban, Debreceni Egyetemi Kiadó. 38
Egy gazdasa gmatematikai modell An economical mathematics model
Egy gazdasa gmatematikai modell An economical mathematics model KÉZI CS. University of Debrecen, kezicsaba@science.unideb.hu Absztrakt. Az NTP-NFTÖ-17-C-159 azonosítószámú pályázat keretében az egyik fő
Anyagvizsgálati módszerek Elektroanalitika. Anyagvizsgálati módszerek
Anyagvizsgálati módszerek Elektroanalitika Anyagvizsgálati módszerek Pannon Egyetem Mérnöki Kar Anyagvizsgálati módszerek Optikai módszerek 1/ 18 Potenciometria Potenciometria olyan analitikai eljárások
Europass Önéletrajz. Személyi adatok. Szanyi Gyöngyi. Tanulmányok. Szakmai tapasztalat. Vezetéknév / Utónév
Europass Önéletrajz Személyi adatok Vezetéknév / Utónév Cím(ek) 4028 Debrecen, Ótemető u. 2-4. Telefonszám(ok) +36 52415-155/77735 Mobil:+36 306008073 E-mail(ek) szanyi.gyongyi@science.unideb.hu Születési
11. modul: LINEÁRIS FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 11. modul: LINEÁRIS FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 11. modul: LINEÁRIS FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási
A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN
A MATEMATIKAI SZOFTVEREK ALKALMAZÁSI KÉSZSÉGÉT, VALAMINT A TÉRSZEMLÉLETET FEJLESZTŐ TANANYAGOK KIDOLGOZÁSA A DEBRECENI EGYETEM MŰSZAKI KARÁN Dr. Kocsis Imre DE Műszaki Kar Dr. Papp Ildikó DE Informatikai
HELYI TANTERV. Mechanika
HELYI TANTERV Mechanika Bevezető A mechanika tantárgy tanításának célja, hogy fejlessze a tanulók logikai készségét, alapozza meg a szakmai tantárgyak feldolgozását. A tanulók tanulási folyamata fejlessze
Mechanika. Kinematika
Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat
Számítógépes szoftverekkel támogatott mozgástani foglalkozás középiskolásoknak Secondary school workshop about dynamics supported by computer software
Számítógépes szoftverekkel támogatott mozgástani foglalkozás középiskolásoknak Secondary school workshop about dynamics supported by computer software G. Á. SZIKI Debreceni Egyetem, Műszaki Kar, Műszaki
AZ IPAR NAPJAI DEBRECENBEN
Debrecen Megyei Jogú Város Önkormányzata és a Debreceni Egyetem Műszaki Kara szeretettel és tisztelettel meghívja Önt AZ IPAR NAPJAI DEBRECENBEN elnevezésű közös rendezvényére A rendezvény ideje: 2016.
Érettségi előkészítő emelt szint 11-12. évf. Matematika. 11. évfolyam. Tematikai egység/fejlesztési cél
Emelt szintű matematika érettségi előkészítő 11. évfolyam Tematikai egység/fejlesztési cél Órakeret 72 óra Kötelező Szabad Összesen 1. Gondolkodási módszerek Halmazok, matematikai logika, kombinatorika,
Tömegpontok mozgása egyenes mentén, hajítások
2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel
17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK
MATEMATIK A 9. évfolyam 17. modul: EGYENLETEK, EGYENLŐTLENSÉGEK, KÉTISMERETLENES EGYENLETEK KÉSZÍTETTE: DARABOS NOÉMI ÁGNES Készítette: Darabos Noémi Ágnes Matematika A 9. évfolyam. 17. modul: EGYENLETEK,
A logaritmusfüggvény definíciója, grafikonja, jellemzői MATEMATIKA 11. évfolyam középszint
TÁMOP-..4-08/2-2009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben A logaritmusfüggvény definíciója, grafikonja, jellemzői MATEMATIKA. évfolyam középszint
Kvartó elrendezésű hengerállvány végeselemes modellezése a síkkifekvési hibák kimutatása érdekében. PhD értekezés tézisei
Kerpely Antal Anyagtudományok és Technológiák Doktori Iskola Kvartó elrendezésű hengerállvány végeselemes modellezése a síkkifekvési hibák kimutatása érdekében PhD értekezés tézisei KÉSZÍTETTE: Pálinkás
A FELFEDEZTETŐ TANULÁS ELEMEI EGY KONKRÉT MODUL AZ ÖVEGES PROFESSZOR KÍSÉRLETEI KERETÉBEN
XXI. Századi Közoktatás (fejlesztés, koordináció) II. szakasz TÁMOP-3.1.1-11/1-2012-0001 A FELFEDEZTETŐ TANULÁS ELEMEI EGY KONKRÉT MODUL AZ ÖVEGES PROFESSZOR KÍSÉRLETEI KERETÉBEN Tóth Enikő Debreceni Gönczy
Fizika feladatok - 2. gyakorlat
Fizika feladatok - 2. gyakorlat 2014. szeptember 18. 0.1. Feladat: Órai kidolgozásra: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel s 1 utat, második szakaszában
12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY
MATEMATIK A 9. évfolyam 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 12. modul: ABSZOLÚTÉRTÉK-FÜGGVÉNY Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály
Quadkopter szimulációja LabVIEW környezetben Simulation of a Quadcopter with LabVIEW
Quadkopter szimulációja LabVIEW környezetben Simulation of a Quadcopter with LabVIEW T. KISS 1 P. T. SZEMES 2 1University of Debrecen, kiss.tamas93@gmail.com 2University of Debrecen, szemespeter@eng.unideb.hu
MATEMATIKA EMELT SZINTŰ SZÓBELI VIZSGA TÉMAKÖREI (TÉTELEK) 2005
2005 1. * Halmazok, halmazműveletek, nevezetes ponthalmazok 2. Számhalmazok, halmazok számossága 3. Hatványozás, hatványfüggvény 4. Gyökvonás, gyökfüggvény 5. A logaritmus. Az exponenciális és a logaritmus
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása.
A mérés célkitűzései: A matematikai inga lengésidejének kísérleti vizsgálata, a nehézségi gyorsulás meghatározása. Eszközszükséglet: Bunsen állvány lombik fogóval 50 g-os vasból készült súlyok fonál mérőszalag,
Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó
Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:
Matematikai képletek az interaktív táblán. Matijevics Éva. Szabadkai Műszaki Szakfőiskola. meva@vts.su.ac.rs
Matematikai képletek az interaktív táblán Matijevics Éva Szabadkai Műszaki Szakfőiskola meva@vts.su.ac.rs Absztrakt A matematika oktatását vonzóvá lehet tenni különböző korszerű oktatási eszközökkel. Egy
1. Katona János publikációs jegyzéke
1. Katona János publikációs jegyzéke 1.1. Referált, angol nyelvű, nyomtatott publikációk [1] J.KATONA-E.MOLNÁR: Visibility of the higher-dimensional central projection into the projective sphere Típus:
Matematika emelt szint a 11-12.évfolyam számára
Német Nemzetiségi Gimnázium és Kollégium Budapest Helyi tanterv Matematika emelt szint a 11-12.évfolyam számára 1 Emelt szintű matematika 11 12. évfolyam Ez a szakasz az érettségire felkészítés időszaka
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Fakultációs lehetőségek szeptemberétől az Erkel Ferenc Gimnáziumban
Érettségi felkészítés Fakultációs lehetőségek 2012. szeptemberétől az Erkel Ferenc Gimnáziumban Alapvető információk Az iskola az alaptantervi órákon a középszintű érettségi vizsgához nyújt képzést, a
10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK
MATEMATIK A 9. évfolyam 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 10. modul: FÜGGVÉNYEK, FÜGGVÉNYTULAJDONSÁGOK Tanári útmutató 2 MODULLEÍRÁS A modul
ACTA CAROLUS ROBERTUS
ACTA CAROLUS ROBERTUS Károly Róbert Főiskola tudományos közleményei Alapítva: 2011 3 (1) ACTA CAROLUS ROBERTUS 3 (1) Módszertan szekció FELZÁRKÓZTATÓ KURZUS A GAZDASÁGI MATEMATIKA OKTATÁSBAN KOLLÁR JUDIT
Matematika A 9. szakiskolai évfolyam. 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK
Matematika A 9. szakiskolai évfolyam 7. modul EGYENES ARÁNYOSSÁG ÉS A LINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 7. modul: Egyenes arányosság és a lineáris függvények Tanári útmutató 2 A
Nemzetközi perspektívából a statisztika oktatásáról
Nemzetközi perspektívából a statisztika oktatásáról statisztikai jártasság és oktatás problémák és kihívások Dr. Kovács Péter Szegedi Tudományegyetem Gazdaságtudományi Kar pepe@eco.u-szeged.hu Tartalom
FAGYI-TUDOMÁNY FAKULTATÍV INTEGRÁLT PROJEKT KÖZÉPISKOLÁSOKNAK ICE-CREAM SCIENCE FACULTATIVE SCIENCE PROJECT FOR HIGH SCHOOL STUDENTS
FAGYI-TUDOMÁNY FAKULTATÍV INTEGRÁLT PROJEKT KÖZÉPISKOLÁSOKNAK ICE-CREAM SCIENCE FACULTATIVE SCIENCE PROJECT FOR HIGH SCHOOL STUDENTS Szente Judit 1, Juhász András 2 1 Eötvös Lóránt Tudományegyetem, Természettudományi
Városi légszennyezettség vizsgálata térinformatikai és matematikai statisztikai módszerek alkalmazásával
Pannon Egyetem Vegyészmérnöki Tudományok és Anyagtudományok Doktori Iskola Városi légszennyezettség vizsgálata térinformatikai és matematikai statisztikai módszerek alkalmazásával DOKTORI (Ph.D.) ÉRTEKEZÉS
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / tanév
9. évfolyam I. Halmazok Osztályozó- és javítóvizsga témakörei MATEMATIKA tantárgyból 2016 / 2017. tanév 1. Halmaz, részhalmaz fogalma, részhalmazok száma, jelölések 2. Intervallumok 3. Halmazműveletek
Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ
Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?
13. modul: MÁSODFOKÚ FÜGGVÉNYEK
MATEMATIK A 9. évfolyam 13. modul: MÁSODFOKÚ FÜGGVÉNYEK KÉSZÍTETTE: CSÁKVÁRI ÁGNES Matematika A 9. évfolyam. 13. modul: MÁSODFOKÚ FÜGGVÉNYEK Tanári útmutató 2 A modul célja Időkeret Ajánlott korosztály
Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.
Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg
FIZIKA II. Dr. Rácz Ervin. egyetemi docens
FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés
MATEMATIKA. 9 10. évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,
2. hét (Ea: ): Az egyváltozós valós függvény definíciója, képe. Nevezetes tulajdonságok: monotonitás, korlátosság, határérték, folytonosság.
Ütemterv az Analízis I. c. tárgyhoz (GEMAN510B, 510-B) Járműmérnöki, logisztikai mérnöki, műszaki menedzser, villamosmérnöki, ipari termék- és formatervező mérnöki alapképzési szak 2019/20. tanév I. félév
Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint
TÁMOP-3.1.4-08/-009-0011 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Trigonometrikus függvények és transzformációik MATEMATIKA 11. évfolyam középszint Készítette:
INTERAKTÍV MATEMATIKA MINDENKINEK GEOGEBRA MÓDRA. Papp-Varga Zsuzsanna ELTE IK, Média- és Oktatásinformatika Tanszék vzsuzsa@elte.
INTERAKTÍV MATEMATIKA MINDENKINEK GEOGEBRA MÓDRA Papp-Varga Zsuzsanna ELTE IK, Média- és Oktatásinformatika Tanszék vzsuzsa@elte.hu Abstract/Absztrakt A GeoGebra egy olyan világszerte 190 országban ismert,
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 12 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Emelt
Debreceni Egyetem. Feladatok a Matematika II. tárgy gyakorlataihoz. Határozatlan integrál
Debreceni Egyetem Közgazdaságtudományi Kar Feladatok a Matematika II. tárgy gyakorlataihoz Határozatlan integrál. z alapintegrálok, elemi átalakítások és lineáris helyettesítések segítségével számítsuk
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév:
Matematika osztályozó vizsga témakörei 9. évfolyam II. félév: 7. Függvények: - függvények fogalma, megadása, ábrázolás koordináta- rendszerben - az elsőfokú függvény, lineáris függvény - a másodfokú függvény
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA
MATEMATIKA TANMENET 9.B OSZTÁLY FIZIKA TAGOZAT HETI 6 ÓRA, ÖSSZESEN 216 ÓRA A TÁMOP 3.1.4. EU-s pályázat megvalósításához a matematika (9. b/fizika) tárgy tanmenete a matematika kompetenciaterület A típusú
SAJÁT (BYOD), MOBIL ESZKÖZÖK HASZNÁLATA A
SAJÁT (BYOD), MOBIL ESZKÖZÖK HASZNÁLATA A FELSŐOKTATÁSBAN Dr. Jarosievitz Beáta Főiskolai tanár Alap- és Műszaki Tudományi Intézet A Magyar Tudomány Napja Budapest, 2016.11.24. 1. Előzmények célkitűzések,
Publikációs lista. Dr. Molnárka-Miletics Edit Széchenyi István Egyetem Matematika és Számítástudományi Tanszék
Publikációs lista Dr. Molnárka-Miletics Edit Széchenyi István Egyetem Matematika és Számítástudományi Tanszék Folyóirat cikkek: E. Miletics: Energy conservative algorithm for numerical solution of ODEs
AZ OFI KÍNÁLATA TERMÉSZETTUDOMÁNYOK
Pedagógusképzés támogatása TÁMOP-3.1.5/12-2012-0001 AZ OFI KÍNÁLATA TERMÉSZETTUDOMÁNYOK MATEMATIKA FIZIKA BIOLÓGIA FÖLDRAJZ KÉMIA Az OFI kínálata - természettudományok Matematika Matematika Ajánlatunk:
rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika
Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó
Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.
Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember
I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek, a halmazelmélet elemei, a logika elemei. 1. Számfogalom, műveletek (4 óra)
MATEMATIKA NYEK-humán tanterv Matematika előkészítő év Óraszám: 36 óra Tanítási ciklus 1 óra / 1 hét Részletes felsorolás A tananyag felosztása: I. Gondolkodási módszerek: (6 óra) 1. Gondolkodási módszerek,
Matematika tanmenet 10. osztály (heti 3 óra) A gyökvonás 14 óra
Matematika tanmenet 10. osztály (heti 3 óra) Tankönyv: Ábrahám Gábor Dr. Kosztolányiné Nagy Erzsébet Tóth Julianna: Matematika 10. Példatárak: Fuksz Éva Riener Ferenc: É rettségi feladatgyűjtemény matematikából
W = F s A munka származtatott, előjeles skalármennyiség.
Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem
GEOMATECH @ Élményszerű természettudomány
GEOMATECH @ Élményszerű természettudomány A KÉPZÉS RÖVID ISMERTETÉSE A GEOMATECH matematikai és természettudományos feladattár és képzés-támogatási portál olyan korszerű, digitális, a Nemzeti alaptantervhez
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 5 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Követelmény a 7. évfolyamon félévkor matematikából
Követelmény a 7. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Elemek halmazba rendezése több szempont alapján. Halmazok ábrázolása. A nyelv logikai elemeinek helyes használata.
Matematika. Specializáció. 11 12. évfolyam
Matematika Specializáció 11 12. évfolyam Ez a szakasz az eddigi matematikatanulás 12 évének szintézisét adja. Egyben kiteljesíti a kapcsolatokat a többi tantárggyal, a mindennapi élet matematikaigényes
Petőfi Sándor Általános Művelődési Központ és Könyvtár, Pedagógiai Szakszolgálat
Petőfi Sándor Általános Művelődési Központ és Könyvtár, Pedagógiai Szakszolgálat 4765 Csenger, Ady Endre u. 13-17.Tel.: 44/341-135, Tel./Fax.:341-806 www.csengeriskola.sulinet.hu E-mail:petofi-sandor@csengeriskola.sulinet.hu
Sztehlo Gábor Evangélikus Óvoda, Általános Iskola és Gimnázium. Osztályozóvizsga témakörök 1. FÉLÉV. 9. osztály
Osztályozóvizsga témakörök 1. FÉLÉV 9. osztály I. Testek mozgása 1. Egyenes vonalú egyenletes mozgás 2. Változó mozgás; átlagsebesség, pillanatnyi sebesség 3. Gyorsulás 4. Szabadesés, szabadon eső test
NULLADIK MATEMATIKA szeptember 13.
A NULLADIK MATEMATIKA ZÁRTHELYI 0. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható nálható. Válaszait csak az üres mezőkbe írja! A javítók
Számítástudományi Tanszék Eszterházy Károly Főiskola.
Networkshop 2005 k Geda,, GáborG Számítástudományi Tanszék Eszterházy Károly Főiskola gedag@aries.ektf.hu 1 k A mérés szempontjából a számítógép aktív: mintavételezés, kiértékelés passzív: szerepe megjelenítés
Osztályozó- és javítóvizsga. Matematika tantárgyból
Osztályozó- és javítóvizsga Matematika tantárgyból 2018-2019 A vizsga 60 perces írásbeli vizsga (feladatlap) a megadott témakörökből. A megjelölt százalék (50%) nem teljesítése esetén szóbeli vizsga is,
Matematika A 9. szakiskolai évfolyam. 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK
Matematika A 9. szakiskolai évfolyam 8. modul AZ ABSZOLÚTÉRTÉK-FÜGGVÉNY ÉS MÁS NEMLINEÁRIS FÜGGVÉNYEK Matematika A 9. szakiskolai évfolyam 8. modul: Az abszolútérték-függvény és más nemlineáris függvények
4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS
Matematika A 9. szakiskolai évfolyam 4. modul EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS MATEMATIKA A 9. szakiskolai évfolyam 4. modul: EGYENES ÉS FORDÍTOTT ARÁNYOSSÁG, SZÁZALÉKSZÁMÍTÁS Tanári útmutató
Pedagógusképzés támogatása TÁMOP-3.1.5/
A természettudományos tanárképzés jelentősége és útjai Homonnay Zoltán ELTE TTK Kémiai Intézet A természettudományos tanárképzés jelentősége A tanárképzés célja nem lehet más, mint az ismeretek hatékony
Matematika 10 Másodfokú egyenletek. matematika és fizika szakos középiskolai tanár. > o < 2015. szeptember 27.
Matematika 10 Másodfokú egyenletek Juhász László matematika és fizika szakos középiskolai tanár > o < 2015. szeptember 27. copyright: c Juhász László Ennek a könyvnek a használatát szerzői jog védi. A
A PROBLÉMAMEGOLDÓ GONDOLKODÁS HELYE AZ ADATBÁZISKEZELÉS OKTATÁSÁBAN. Kupcsikné Fitus Ilona, Selmeci István SZÁMALK Zrt.
A PROBLÉMAMEGOLDÓ GONDOLKODÁS HELYE AZ ADATBÁZISKEZELÉS OKTATÁSÁBAN THE POSITION OF PROBLEM-SOLVING THINKING IN THE TEACHING OF DATABASE MANAGEMENT Kupcsikné Fitus Ilona, Selmeci István SZÁMALK Zrt. Összefoglaló
Matematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék
Kísérleti matematika-tankönyvek 9-10.
Kísérleti matematika-tankönyvek 9-10. Alkotók Barcza István Basa István Tamásné Kollár Magdolna Környei László Dr. Korányi Erzsébet Dr. Marosvári Péter Dömel András Órákra tervezett leckék A kísérleti
4 ÉVFOLYAMOS FELVÉTELI EREDMÉNYEK
71400510854-9. évfolyam Magyar nyelv 46 71400510854-9. évfolyam Matematika 31 71479247326-9. évfolyam Magyar nyelv 37 71479247326-9. évfolyam Matematika 25 71507778014-9. évfolyam Magyar nyelv 43 71507778014-9.
MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 2012
MŰSZAKI TUDOMÁNY AZ ÉSZAK-KELET MAGYARORSZÁGI RÉGIÓBAN 0 KONFERENCIA ELŐADÁSAI Szolnok 0. május 0. Szerkesztette: Edited by Pokorádi László Kiadja: Debreceni Akadémiai Bizottság Műszaki Szakbizottsága
Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)
1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú
SZAKIRÁNYOK A MISKOLCI EGYETEM MÛSZAKI INFORMATIKAI SZAKÁN
SZAKIRÁNYOK A MISKOLCI EGYETEM MÛSZAKI INFORMATIKAI SZAKÁN Dr. Vadász Dénes, vadasz@iit.uni-miskolc.hu Miskolci Egyetem, Informatikai Intézet, Általános Informatikai Tanszék Abstract Our recently established
A DESMOS MATEMATIKAI PROGRAM ALKALMAZÁSA FÜGGVÉNY ÁBRÁZOLÁSOK ALKALMÁVAL, MOBILTELEFONON NOVEMBER 15. ÓRARÉSZLET
07. NOVEMBER 5. A DESMOS MATEMATIKAI PROGRAM ALKALMAZÁSA FÜGGVÉNY ÁBRÁZOLÁSOK ALKALMÁVAL, MOBILTELEFONON ÓRARÉSZLET HORVÁTH KATALIN, MATEMATIKATANÁR BGSZC HUNFALVY JÁNOS KÉT TANÍTÁSI NYELVŰ KÖZGAZDASÁGI
A digitális korszak kihívásai és módszerei az egyetemi oktatásban
Csapó Benő http://www.staff.u-szeged.hu/~csapo A digitális korszak kihívásai és módszerei az egyetemi oktatásban Interdiszciplináris és komplex megközelítésű digitális tananyagfejlesztés a természettudományi
MATEMATIKA évfolyam. Célok és feladatok. Fejlesztési követelmények
MATEMATIKA 9 10. évfolyam 1066 MATEMATIKA 9 10. évfolyam Célok és feladatok A matematikatanítás célja és ennek kapcsán feladata, hogy megalapozza a tanulók korszerű, alkalmazásra képes matematikai műveltségét,
SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA. matematika
SPECIÁLIS HELYI TANTERV SZAKKÖZÉPISKOLA matematika 9. évfolyam 1. Számtan, algebra 15 óra 2. Gondolkodási módszerek, halmazok, kombinatorika, valószínűség, statisztika 27 óra 3. Függvények, sorozatok,
FELADATMEGOLDÁSI SZOKÁSAINAK VIZSGÁLATA. Baranyai Tünde
Volume 3, Number 1, 2013 3. kötet, 1. szám, 2013 A SZATMÁRNÉMETI TANÍTÓ- ÉS ÓVÓKÉPZŐS HALLGATÓK FELADATMEGOLDÁSI SZOKÁSAINAK VIZSGÁLATA THE EXAMINATION OF TEACHER TRAINING COLLEGE STUDENTS PROBLEM-SOLVING
A klasszikus mechanika alapjai
A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak
9. ÉVFOLYAM. Tájékozottság a racionális számkörben. Az azonosságok ismerete és alkalmazásuk. Számok abszolútértéke, normál alakja.
9. ÉVFOLYAM Gondolkodási módszerek A szemléletes fogalmak definiálása, tudatosítása. Módszer keresése az összes eset áttekintéséhez. A szükséges és elégséges feltétel megkülönböztetése. A megismert számhalmazok
TEHETSÉGGONDOZÁS HAZAI ÉS NEMZETKÖZI PROJEKTEKKEL NURTURING THE TALENTS WITH NATIONAL AND INTERNATIONAL PROJECTS
TEHETSÉGGONDOZÁS HAZAI ÉS NEMZETKÖZI PROJEKTEKKEL NURTURING THE TALENTS WITH NATIONAL AND INTERNATIONAL PROJECTS Dr. Jarosievitz Beáta Ady Endre Fővárosi Gyakorló Kollégium, SEK Budapest Ált. Isk. és Gimnázium
Felvételi tájékoztató
Felvételi tájékoztató Szent-Györgyi Albert Általános Iskola és Gimnázium (OM azonosító: 035282) Györgyi Albert) Az iskola dolga, hogy megtanítsa vélünk, hogyan kell tanulni, hogy felkeltse a tudás iránti
PARADIGMAVÁLTÁS A KÖZOKTATÁSBAN MOST VAGY SOHA?!
PARADIGMAVÁLTÁS A KÖZOKTATÁSBAN MOST VAGY SOHA?! ÁDÁM PÉTER NEMZETI PEDAGÓGUS KAR TANÉVNYITÓ SZAKMAI NAP 2016. AUGUSZTUS 29. Előzmények 1868 Eötvös József kötelező népoktatás (66 %) 1928 Klebelsberg K.
értelmezéséhez, leírásához és kezeléséhez. Ezért a tanulóknak rendelkezniük kell azzal a képességgel és készséggel, hogy alkalmazni tudják
A Baktay Ervin Gimnázium alap matematika tanterve a 6 évfolyamos gimnáziumi osztályok számára 7. 8. 9. 10. 11. 12. heti óraszám 3 cs. 3 cs. 3 cs. 4 4 4 éves óraszám 108 108 108 144 144 120 (cs.: csoportbontásban)
Matematika 11. évfolyam
Matematika 11. évfolyam Tanmenet Másodfokúra visszavezethető magasabb rendű egyenletek, másodfokú egyenletrendszerek 1. Másodfokú egyenletek (ismétlés) 2. Másodfokú egyenletrendszerek (behelyettesítő módszer)
A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében. Dicse Jenő üzletfejlesztési igazgató
A modern e-learning lehetőségei a tűzoltók oktatásának fejlesztésében Dicse Jenő üzletfejlesztési igazgató How to apply modern e-learning to improve the training of firefighters Jenő Dicse Director of
PPKE ITK, 2014/2015 tanév. I. félév. Tantárgyi adatok és követelmények
PPKE ITK, 2014/2015 tanév I. félév Tantárgyi adatok és követelmények Tantárgy neve: Óraszám: Lineáris algebra 2 óra előadás, kedd, 8-10, Simonyi terem 2 óra gyakorlat Honlap: digitus.itk.ppke.hu/~b_novak
Helyi tanterv Német nyelvű matematika érettségi előkészítő. 11. évfolyam
Helyi tanterv Német nyelvű matematika érettségi előkészítő 11. évfolyam Tematikai egység címe órakeret 1. Gondolkodási és megismerési módszerek 10 óra 2. Geometria 30 óra 3. Számtan, algebra 32 óra Az
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM
SZAKKÖZÉPISKOLA ÉRETTSÉGI VIZSGRA FELKÉSZÍTŐ KK/12. ÉVFOLYAM A vizsga szerkezete: A vizsga írásbeli és szóbeli vizsgarészből áll. 1.) Írásbeli vizsga Időtartama: 45 perc Elérhető pontszám: 65 pont Feladattípusok:
SZERZŐ: Kiss Róbert. Oldal1
A LEGO MindStorms NXT/EV3 robot grafikus képernyőjét és programozási eszközeit használva különböző dinamikus (időben változó) ábrákat tudunk rajzolni. A képek létrehozásához koordináta rendszerben adott
9-12 évfolyam ismertető
9-12 évfolyam ismertető ISB gimnáziumi tájékoztató: A tanterv ISB Budapesti Nemzetközi Iskola 9-12. osztályos tanulók számára két tanítási nyelvű nemzetközi oktatási programot kínál. Ez a program az ISB
AVASI GIMNÁZIUM FELVÉTELI TÁJÉKOZTATÓ 2014/2015-ÖS TANÉV. Általános kerettantervű képzés, emelt szintű nyelvoktatással (Tagozatkód: 13)
AVASI GIMNÁZIUM FELVÉTELI TÁJÉKOZTATÓ 2014/2015-ÖS TANÉV Cím: 3524 Miskolc, Klapka Gy. u. 2. OM kód: 029264 Telefon: 46/562-289; 46/366-620 E-mail: titkarsag@avasi.hu Honlap: www.avasi.hu I. A 2014/2015.
2018/2019. Matematika 10.K
Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép, függvénytáblázat 2 órás, 4 jegyet ér 2019. május 27-31. héten Aki hiányzik, a következő héten írja meg, e nélkül
A tantárgytömbösített oktatás megszervezése és az órarend összeállítása a 2009/2010 es tanév elején.
A tantárgytömbösített oktatás megszervezése és az órarend összeállítása a 2009/2010 es tanév elején. Budapest, 2009. október 7. Bögös István Közoktatási szakértő csbogos@gmail.com 1 A pályp lyázat alapvető
Dr. Cserhátiné Vecsei Ildikó
E-learning a felzárkóztatásért Dr. Cserhátiné Vecsei Ildikó KFRTKF Debrecen Előzmények Kreditrendszer bevezetése (csoport fogalma) Új szakok megjelenése (Pl. régi szakpár, új önálló szak illetve új szakképzés,
MATEMATIKA TANTERV Bevezetés Összesen: 432 óra Célok és feladatok
MATEMATIKA TANTERV Bevezetés A matematika tanítását minden szakmacsoportban és minden évfolyamon egységesen heti három órában tervezzük Az elsı évfolyamon mindhárom órát osztálybontásban tartjuk, segítve
KÁOSZKÍSÉRLETEK A KÖZÉPISKOLAI FIZIKA OKTATÁSÁBAN CHAOS EXPERIMENTS IN HIGH SCHOOL PHYSICS EDUCATION
KÁOSZKÍSÉRLETEK A KÖZÉPISKOLAI FIZIKA OKTATÁSÁBAN CHAOS EXPERIMENTS IN HIGH SCHOOL PHYSICS EDUCATION Szatmáry-Bajkó Ildikó 1 1 Petőfi Sándor Általános Iskola és Gimnázium, Vecsés; ELTE PhD-hallgató, Neveléstudományi
2. A választott kerettanterv feletti óraszám, a nem kötelező tanórai foglalkozások
2. A választott kerettanterv feletti óraszám, a nem kötelező tanórai foglalkozások Iskolánk nevelőtestülete úgy döntött, hogy a 10%-os szabad órakeretet osztálytípusoktól függően osztja fel a tantárgyak
Fakultációs lehetőségek 2013. szeptemberétől az Erkel Ferenc Gimnáziumban
Érettségi felkészítés Fakultációs lehetőségek 2013. szeptemberétől az Erkel Ferenc Gimnáziumban Alapvető információk Az iskola az alaptantervi órákon a középszintű érettségi vizsgához nyújt képzést, a