3. Vetülettan (3/6., 8., 10.) Unger

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "3. Vetülettan (3/6., 8., 10.) Unger János. @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan"

Átírás

1 Kartográfia (GBN309E) Térképészet (GBN317E) előadás 3. Vetülettan (3/6., 8., 10.) Unger szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi Tanszék képfelület alapfelület 3/6. Képzetes hengervetületek hengerpalástnak tekinthető gömb poláris elhelyezés! ált. jellemzők - paralelkörök képei egymással párhuzamos egyenesek - meridiánok képei v.milyen választott törvényszerűségen alapulnak (ált. görbe vonalak) - kezdőmeridián képe mindig egyenes erre a paralelkörök képei -ek és szimmetrikusak, a többi meridiánkép is szimmetrikus rá - a meridiánok és a paralelkörök képeinek hálózata nem derékszögű nem szögtartóak - területtartó, vagy egyes vonalai mentén hossztartó képzetes hengervetület létezik 1

2 1. Mercator-Sanson Sanson-Flamsteed-féle (szinuszoidális)) vetület kezdőmeridián képe paralelkörök képei pólusok képei paralelkörök képeinek egyenletes beosztása meridiánok képei harmonikus görbék pontok hossztartó egymással, = távolságra egymástól, hossztartók területtartó A szinuszoidális vetület fokhálózata poláris helyzetben - francia Cossin (1570) egy világtérkép alapjául - németalföldi Hondius a Mercator Mercator-atlasz es kiadásaiban - francia Sanson (1650) kontinensek ábrázolására - angol Flamsteed (~1680) csillagászati atlaszban - amerikai Goode (1916) több kezdőmeridiánnal (torz. torz.-okok lecsök.) - manapság is igen kedvelt vetület Jodocus Hondius ( ) 1612) Nicolas Sanson ( ) 1667) térképe É-Amerikáról É (1650) John Flamsteed ( ) 1719) 2

3 2. Mollweide-féle (elliptikus) vetület félgömb felülete r =? félgömb felszíne = 2 (R/m)2 π képfelületi kör területe = r2 π 2 (R/m)2 π = r2 π r = 2 0,5 ( (R/m) egyenlítő képe = 4r4 kezdőmeridián képe = 2r2 pólusok képei paralelkörök képei körre (felület = terület) pontok egyenletes beosztásukkal keletkező meridiánok képei ell.. ívek egyenesek (t.tartás( t.tartás!) területtartó Föld(gömb) ) felszíne egy 4r4 2r ellipszisre képződik le kezdőmeridián,, paralelkörök képei nem hossztartóak - német Mollweide (1805) óta széles körben használják - amerikai Goode (1916) több kezdőmeridiánnal A Mollweide-féle le vetület fokhálózata poláris helyzetben Világtérkép elliptikus vetületben 3

4 3. Eckert I. vetülete Föld(gömb) egyenlítő képe kezdőmeridián képe pólus képe meridiánok képei paralelkörök képei kettős trapéz hossztartó = 4a4 4a = 2 (R/m) ) π fele akkora = 2a, hossztartó pólusvonal, = és k.meridián csak GBN317E!!!!! szakaszok (egyenlítő képe, pólusvonal egyenközű beosztása) egymással, egyenlő távolságra a = (R/2( /2m) π általános német Eckert (1906) Eckert I. vetület letének fokhálózata poláris helyzetben 3. Eckert II. vetülete hasonló I-hez, I de területtartás! egyenlítő képe = 4a4 kezdőmeridián képe pólus képe fele akkora = 2a pólusvonal, = és k.meridián (4a+2 +2a) ) a = 4 (R/m)2 π csak GBN317E!!!!! a = (R/m) (2( ) (2π/3) /3) 0,5 meridiánok képei paralelkörök képei szakaszok (egyenlítő képe, pólusvonal egyenközű beosztása) egymással, távolságuk területtartó t.tartás (pólusok felé sűrűsödnek) - német Eckert (1906) - megtörő meridiánképek - kedvezőtlen torzulási viszonyok ritkán használatos (pl. Földet ábrázoló kisméretarányú tematikus melléktérképek) Eckert II. I vetület letének fokhálózata poláris helyzetben 4

5 minden olyan képzetes vetület vannak 3/8. Egyéb képzetes vetületek paralelkörök képei nem koncentrikus körívek és nem párhuzamos egyenesek - keverék vetületek, amelyek vetületi egyenletei két másik vetület egyenleteiből számítódnak valamilyen szabály alapján - összetett vetületek, amelyek a felszín egy részét egyfajta, a másik m részét egy másfajta vetületben képezik le 1. Érdi-Krausz vetülete 0-60 (70 ) szinuszoidális vetület 60 (70 ) - 90 elliptikus vetület területtartó - Érdi-Krausz György (1960) - atlaszokban használják 1. Goode-féle vetület 0-40 szinuszoidális vetület elliptikus vetület érintkezésnél a meridiánok képei megtörnek kontinenseknek külön kezdőmeridiánok az ábrázolás az óceánokon megszakad Európa 30 K É-Amerika 100 Ny D-Amerika 60 Ny, Afrika 20 K Ausztrália 140 K Csendes-óceán 160 Ny területtartó - amerikai Goode (1923) - világtérképekhez és tematikus térképekhez is használják - tengerészeti térképként A Goode-féle vetület fokhálózata kezdőmeridiánokat az óceánokon az ábrázolás a szárazföldeken megszakad 5

6 Világtérkép Goode-féle vetületben 3/10. Vetületi rendszerek vetületi rendszer - országok részletes felmérésére, az egységes térképezés céljából jelentéktelen hossztorzulású, több képfelülettel rendelkező vetületek 1. Sztereografikus vetületi rendszer Mo.-i telekfelmérés egyik szakaszától (1865) kezdődően Bessel-féle ellipszoid hossztorzulás: 1± 1 1/ vetületi kezdőponttól 127 km akkori Gauss-gömb kettős vetítés (világon először) sík (sztereografikus vetítés) több vetületi kezdőpontra is szükség volt A sztereografikus vetületi rendszer 6

7 3/10. Vetületi rendszerek vetületi rendszer - országok részletes felmérésekor az egységes térképezés céljából jelentéktelen hossztorzulású, több képfelülettel rendelkező vetületek alkalmazása 1. Sztereografikus vetületi rendszer Mo.-i telekfelmérés egyik szakaszától (1865) kezdődően kettős vetítés (világon először) Bessel-féle ellipszoid akkori Gauss-gömb sík (sztereografikus vetítés) hossztorzulás: 1± 1 1/ vetületi kezdőponttól 127 km több vetületi kezdőpontra is szükség volt (1) a gellérthegyi volt csillagvizsgáló keleti kupolájának középpontja (2) Ivanics (Horvátország számára) (3) Marosvásárhely (Erdély számára) - az ország első megbízható kataszteri felmérésének térképei - a két világháború között (kat( kat.) topográfiai térképek 2. Hengervetületi rendszer csak GBN317E!!!!! - Bessel-féle ellipszoid - három szögtartó hengervetület - ferdehelyzetű hengerek akkori Gauss-gömb meridiánsíkban - henger gömb gömb érintés e ponton átmenő meridiánra főkörök mentén egy-egy vetület sávszélessége 180 km hengerek tengelyük a gellérthegyi ponton átmenő - henger középső rendszer (HKR) a 46 22' és a 47 55' földrajzi szélességek közötti területet öleli fel - ettől északra - délre északi rendszer (HÉR) déli rendszer (HDR) - a 20. század elején alakították ki Mo.-on on - szabatos kataszteri térképek készültek A Magyarországon gon alkalmazott hengervetületi rendszer 7

8 3. Gauss-Krüger vetületi rendszer (GK) alapfelület képfelület ellipszoid henger érintés Kraszovszkij-féle ellipszoid transzverzális elliptikus hengerek vetület Mercator-féle szögtartó vetület leképezés egy-egy meridián mentén középmeridián ±3 középmeridiánok hossztartóak a térképek egymás mellé sorakoztatásával az egész Földet egységes, s, átfogó rendszerben lehet feldolgozni oldal szemben felül poláris területek ábrázolása poláris sztereografikus síkvetület 30+2 képfelk pfelületlet - II. világháború után a kelet-európai európai országok topográfiai térképeinek alapja - Magyarországon (1949), elsősorban katonai célokra 4. Univerzális Transzverzális Mercator vetületi rendszer (UTM) alapfelület képfelület ellipszoid henger ellipszoid henger metszés (sarkoknál érintés!) Hayford-féle féle ellipszoid transzverzális elliptikus hengerek vetület Mercator-féle szögtartó vetület oldal két ellipszoidi hosszúsági kör mentén leképezés szemben ezek hossztartóak középmeridián ±3 felül a térképek egymás mellé sorakoztatásával az egész Földet egységes, s, átfogó rendszerben lehet feldolgozni poláris területek ábrázolása poláris sztereografikus síkvetület 30+2 képfelk pfelületlet sok nemzetközi térképműnek az alapja 8

9 UTM-szelvények 9

10 5. Egységes Országos Vetület (EOV) Mo.-i állami földmérés és térképészet keretében készülő alaptérképek és általában a térinformatikai adatok egységes rendszereként szolgál - IUGG 67 ellipszoid henger mai Gauss-gömb szögtartó ferdetengelyű metsző hengervetület metszés két (hossztartó) s.paralelkör mentén metszi Az EOV származtat rmaztatása - x tengely a gellérthegyi háromszögelési ponton áthaladó meridián képe - y tengely az ország középső szélességi vonala közelében haladó és az előbbi bi meridiánra legnagyobb gömbi kör képe előjelhibák elkerülése végett a rendszer kezdőpontja a vetületi kezdőponthoz képest - D-re 200 km - Ny-ra 650 km-re áthelyezték x < 400 km y > 400 km pontok koordinátái + Az EOV koordináta ta-tengelyeitengelyei - (1975) Egységes Országos Térképrendszer (EOTR) vetületét képezi - szabatos nagyméretarányú térképek, polgári topográfiai, 1: nál nagyobb méretarányú földrajzi és tematikus térképek alapja 10

3. Vetülettan (3/3-5.) Unger szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi Tanszék

3. Vetülettan (3/3-5.) Unger  szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi Tanszék Kartográfia (GBN309E) Térképészet (GBN317E) előadás 3. Vetülettan (3/3-5.) Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan SZTE Éghajlattani és Tájföldrajzi

Részletesebben

II. A TÉRKÉPVETÜLETEK RENDSZERES LEÍRÁSA 83

II. A TÉRKÉPVETÜLETEK RENDSZERES LEÍRÁSA 83 T A R T A L O M J E G Y Z É K I. A TÉRKÉPVETÜLETEKRŐL ÁLTALÁBAN 13 VETÜLETTANI ALAPFOGALMAK 15 A térkép mint matematikai leképezés eredménye 15 Az alapfelület paraméterezése földrajzi koordinátákkal 18

Részletesebben

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága

Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Földrajzi koordináták Egy pont földfelszíni helyzetét meghatározzák: a pont alapfelületi földrajzi koordinátái a pont tengerszint feletti magassága Topo-Karto-2 1 Földrajzi koordináták pólus egyenlítő

Részletesebben

2. fejezet. Vetületi alapfogalmak. Dr. Mélykúti Gábor

2. fejezet. Vetületi alapfogalmak. Dr. Mélykúti Gábor 2. fejezet Dr. Mélykúti Gábor Nyugat-magyarországi Egyetem Geoinformatikai Kar 2010 2.1 Bevezetés A modul a Térképtan és a Topográfia c. tantárgyak részét képezi. A modul a térképek készítése és használata

Részletesebben

Topográfia 2. Vetületi alapfogalmak Mélykúti, Gábor

Topográfia 2. Vetületi alapfogalmak Mélykúti, Gábor Topográfia 2. Vetületi alapfogalmak Mélykúti, Gábor Topográfia 2. : Vetületi alapfogalmak Mélykúti, Gábor Lektor : Alabér, László Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel a GEO-ért

Részletesebben

Koordináta-rendszerek

Koordináta-rendszerek Koordináta-rendszerek Térkép: a Föld felszín (részletének) ábrázolása síkban Hogyan határozható meg egy pont helyzete egy síkon? Derékszögű koordináta-rendszer: a síkban két, egymást merőlegesen metsző

Részletesebben

A ferdetengelyű szögtartó hengervetület és magyarországi alkalmazásai

A ferdetengelyű szögtartó hengervetület és magyarországi alkalmazásai A ferdetengelyű szögtartó hengervetület magyarországi alkalmazásai Perspektív hengervetületek A perspektív hengervetületek a gömb alapfelületet egy forgáshenger palástjára képezik le középpontos geometriai

Részletesebben

A sztereografikus vetület és magyarországi alkalmazása

A sztereografikus vetület és magyarországi alkalmazása A sztereografikus vetület és magyarországi alkalmazása Perspektív síkvetületek A perspektív síkvetületek a gömb alapfelületet síkra képezik le középpontos geometriai vetítéssel. A vetítés Q középpontja

Részletesebben

Térképészeti alapismeretek. Mit jelent egy térkép léptéke?

Térképészeti alapismeretek. Mit jelent egy térkép léptéke? Térképészeti alapismeretek Mi a térkép? A föld felszínén illetve azzal kapcsolatban álló anyagi vagy elvont dolgoknak általában kicsinyített, generalizált, síkbeli megjelenítése. Térképészeti absztrakció

Részletesebben

Bevezetés a geodéziába

Bevezetés a geodéziába Bevezetés a geodéziába 1 Geodézia Definíció: a földmérés a Föld alakjának és méreteinek, a Föld fizikai felszínén, ill. a felszín alatt lévő természetes és mesterséges alakzatok geometriai méreteinek és

Részletesebben

9. előadás: A gömb valós hengervetületei

9. előadás: A gömb valós hengervetületei A valós hengervetületek általános tulajdonságai A hengervetületek (cilindrikus vetületek) jellemzője hogy normális elhelyezésben az egyenlítő és a paralelkörök képei párhuzamos egyenesek. A valós hengervetületnek

Részletesebben

7. előadás: Lineármodulus a vetületi főirányokban és a területi modulus az azimutális vetületeken

7. előadás: Lineármodulus a vetületi főirányokban és a területi modulus az azimutális vetületeken 7 előadás: Lineármodulus a vetületi főirányokban és a területi modulus az azimutális vetületeken Mivel az azimutális vetületeken normális elhelyezésben a meridiánok és a paralelkörök, más elhelyezésben

Részletesebben

Térképészet gyakorlatok anyaga Szerkesztői megjegyzés: Sokkal többet ér, mint az előadások!

Térképészet gyakorlatok anyaga Szerkesztői megjegyzés: Sokkal többet ér, mint az előadások! Térképészet gyakorlatok anyaga Szerkesztői megjegyzés: Sokkal többet ér, mint az előadások! Tanári megjegyzés: Nem ér többet, csak annak, aki hallgatta az előadásokat is! Mi a térkép? a Földfelszín arányosan

Részletesebben

TÉRKÉPTAN óravázlat 2006/07. I.félév Dr. Mélykúti Gábor

TÉRKÉPTAN óravázlat 2006/07. I.félév Dr. Mélykúti Gábor TÉRKÉPTAN óravázlat 2006/07. I.félév Dr. Mélykúti Gábor TARTALOMJEGYZÉK I. A FÖLD ALAKJA 1. A föld főbb geometriai paraméterei 2. A föld fizikai és elméleti alakja 3. Alapszintfelületek 4. A föld elméleti

Részletesebben

(térképi ábrázolás) Az egész térképre érvényes meghatározása: Definíció

(térképi ábrázolás) Az egész térképre érvényes meghatározása: Definíció Az egész térképre érvényes meghatározása: A térkép hossztartó vonalain mért távolságnak és a valódi redukált vízszintes távolságnak a hányadosa. M = 1 / m, vagy M = 1 : m (m=méretarányszám) A méretarány

Részletesebben

Kartográfia Kidolgozott tételsor

Kartográfia Kidolgozott tételsor Kartográfia Kidolgozott tételsor Szegedi Tudományegyetem Szeged, 2008 2 Tartalom A tételsor A1. Pitagorasz, Arisztotelész földalak... 6 A2. Fernel, Snellius, Pickard földalak, mérés... 6 A3. Eratosztenész

Részletesebben

A földi koordinátarendszer lehet helyi (lokális), regionális, vagy az egész Földre kiterjedő (globális).

A földi koordinátarendszer lehet helyi (lokális), regionális, vagy az egész Földre kiterjedő (globális). Vetülettan A felmérés a Föld felszínén koordinátákkal meghatározott alappontok hálózatára támaszkodik. A koordináták adják a térképezéshez szükséges egységes geometriai keretet, vázat, amelynek segítségével

Részletesebben

Jelölések. GBN304G Alkalmazott kartográfia II. gyakorlat Térképi vetületekkel kapcsolatos feladatok. Unger János. x;y) )?

Jelölések. GBN304G Alkalmazott kartográfia II. gyakorlat Térképi vetületekkel kapcsolatos feladatok. Unger János. x;y) )? GBN304G Alkalmazott kartográfia II. gyakorlat Térképi vetületekkel kapcsolatos feladatok Unger János unger@geo.u @geo.u-szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan Jelölések R/m = alapfelületi

Részletesebben

Ferdetengelyű szögtartó hengervetületek a térképészetben

Ferdetengelyű szögtartó hengervetületek a térképészetben EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Ferdetengelyű szögtartó hengervetületek a térképészetben SZAKDOLGOZAT FÖLDTUDOMÁNYI ALAPSZAK Készítette: Fülöp Dávid térképész és geoinformatikus szakirányú

Részletesebben

Átszámítások különböző alapfelületek koordinátái között

Átszámítások különböző alapfelületek koordinátái között Átszámítások különböző alapfelületek koordinátái között A különböző időpontokban, különböző körülmények között rögzített pontok földi koordinátái különböző alapfelületekre (ellipszoidokra geodéziai dátumokra)

Részletesebben

GEODÉZIA ÉS KARTOGRÁFIA

GEODÉZIA ÉS KARTOGRÁFIA GEODÉZIA ÉS KARTOGRÁFIA 55. ÉVFOLYAM 2003 10. SZÁM Az EOV-alapfelületek térbeli helyzetének vizsgálata Kratochvilla Krisztina doktorandusz BME Általános- és Felsõgeodézia Tanszék Bevezetés Az 1975-ben

Részletesebben

Matematikai geodéziai számítások 3.

Matematikai geodéziai számítások 3. Matematikai geodéziai számítások 3 Kettős vetítés és EOV szelvényszám keresése koordinátákból Dr Bácsatyai, László Matematikai geodéziai számítások 3: Kettős vetítés és EOV szelvényszám keresése koordinátákból

Részletesebben

Matematikai geodéziai számítások 3.

Matematikai geodéziai számítások 3. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 3 MGS3 modul Kettős vetítés és EOV szelvényszám keresése koordinátákból SZÉKESFEHÉRVÁR 2010 Jelen

Részletesebben

A GEOMETRIAI ADATOK VONATKOZÁSI RENDSZEREI A TÉRINFORMATIKÁBAN

A GEOMETRIAI ADATOK VONATKOZÁSI RENDSZEREI A TÉRINFORMATIKÁBAN MIHALIK JÓZSEF A téma aktualitása A GEOMETRIAI ADATOK VONATKOZÁSI RENDSZEREI A TÉRINFORMATIKÁBAN A térinformatikai rendszerek alkalmazása ma már sok területen, így a honvédelem területén is nélkülözhetetlen

Részletesebben

Matematikai geodéziai számítások 2.

Matematikai geodéziai számítások 2. Matematikai geodéziai számítások 2. Geodéziai vonal és ábrázolása gömbön és vetületben Dr. Bácsatyai, László Matematikai geodéziai számítások 2.: Geodéziai vonal és ábrázolása Dr. Bácsatyai, László Lektor:

Részletesebben

RÉGI TÉRKÉPEK DIGITÁLIS FELDOLGOZÁSA. Bartos-Elekes Zsombor BBTE Magyar Földrajzi Intézet, Kolozsvár

RÉGI TÉRKÉPEK DIGITÁLIS FELDOLGOZÁSA. Bartos-Elekes Zsombor BBTE Magyar Földrajzi Intézet, Kolozsvár RÉGI TÉRKÉPEK DIGITÁLIS FELDOLGOZÁSA Bartos-Elekes Zsombor BBTE Magyar Földrajzi Intézet, Kolozsvár arcanum.hu (I., II., III. katonai felmérés) http://mapire.staatsarchiv.at/en/ (II. felm.) Románia Lambert

Részletesebben

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK

A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK A DIGITÁLIS TÉRKÉP ADATAINAK ELŐÁLLÍTÁSA, ADATNYERÉSI ELJÁRÁSOK - két féle adatra van szükségünk: térbeli és leíró adatra - a térbeli adat előállítása a bonyolultabb. - a költségek nagyjából 80%-a - munkaigényes,

Részletesebben

TÉRKÉPTAN óravázlat 2006/07. I.félév Dr. Mélykúti Gábor

TÉRKÉPTAN óravázlat 2006/07. I.félév Dr. Mélykúti Gábor TARTALOMJEGYZÉK I. A FÖLD ALAKJA TÉRKÉPTAN óravázlat 2006/07. I.félév Dr. Mélykúti Gábor 1. A föld főbb geometriai paraméterei 2. A föld fizikai és elméleti alakja 3. Alapszintfelületek 4. A föld elméleti

Részletesebben

Matematikai geodéziai számítások 2.

Matematikai geodéziai számítások 2. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 2. MGS2 modul Geodéziai vonal és ábrázolása gömbön és vetületben SZÉKESFEHÉRVÁR 2010 Jelen szellemi

Részletesebben

1. 1. B e v e z e t é s

1. 1. B e v e z e t é s 1. 1. B e v e z e t é s... 1-2 1.1. A földmérés helye a tudományok között... 1-2 1.2. A mérésről általában... 1-5 1.3. A térkép fogalma és méretaránya... 1-6 1.4. A Föld alakja és ábrázolása... 1-10 1.5.

Részletesebben

Magyarországi topográfiai térképek

Magyarországi topográfiai térképek Eötvös Loránd Tudományegyetem, Természettudományi Kar Juhász Péter MTA SZTAKI Magyarországi topográfiai térképek vetületének torzulási vizsgálata doktori értekezés tézisei Budapest, 2008. Témavezető: Györffy

Részletesebben

1.1. A földmérés helye a tudományok között A mérésrõl általában A térkép fogalma és méretaránya

1.1. A földmérés helye a tudományok között A mérésrõl általában A térkép fogalma és méretaránya Dr. Csepregi Szabolcs: Földmérési ismeretek Tartalomjegyzék: 1. B e v e z e t é s... 1-4 1.1. A földmérés helye a tudományok között...1-4 1.2. A mérésrõl általában...1-6 1.3. A térkép fogalma és méretaránya...1-7

Részletesebben

Kartográfia, Térképészet 2. gyakorlat

Kartográfia, Térképészet 2. gyakorlat Kartográfia, Térképészet 2. gyakorlat Szintvonalas domborzatábrázolás Dr. Sümeghy Zoltán, Rajhona Gábor sumeghy@stud.u-szeged.hu szeged.hu www.sci.u-szeged.hu/eghajlattan szeged.hu/eghajlattan SZTE Éghajlattani

Részletesebben

Hengervetületek alkalmazása a magyar topográfiában

Hengervetületek alkalmazása a magyar topográfiában EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR Hengervetületek alkalmazása a magyar topográfiában SZAKDOLGOZAT FÖLDTUDOMÁNYI ALAPSZAK Készítette: Szántó Henriett térképész és geoinformatikus szakirányú

Részletesebben

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra.

A loxodrómáról. Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1 A loxodrómáról Előző írásunkban melynek címe: A Gudermann - függvényről szó esett a Mercator - vetületről,illetve az ezen alapuló térképről 1. ábra. 1. ábra forrása: [ 1 ] Ezen a térképen a szélességi

Részletesebben

BSc szakdogozat. Természettudományi Kar Matematika BSc szak június 3.

BSc szakdogozat. Természettudományi Kar Matematika BSc szak június 3. EÖTVÖS LORÁND TUDOMÁNYEGYETEM Biszak Előd Tamás Digitalizált térképek 3-dimenziós ábrázolása Témavezető: Dr. Csikós Balázs BSc szakdogozat Természettudományi Kar Matematika BSc szak 2010. június 3. Kivonat

Részletesebben

Matematikai geodéziai számítások 4.

Matematikai geodéziai számítások 4. Matematikai geodéziai számítások 4. Vetületi átszámítások Dr. Bácsatyai, László Matematikai geodéziai számítások 4.: Vetületi átszámítások Dr. Bácsatyai, László Lektor: Dr. Benedek, Judit Ez a modul a

Részletesebben

3. fejezet. Térképek jellemző tulajdonságai. Dr. Mélykúti Gábor

3. fejezet. Térképek jellemző tulajdonságai. Dr. Mélykúti Gábor 3. fejezet Dr. Mélykúti Gábor Nyugat-magyarországi Egyetem Geoinformatikai Kar 3.1 Bevezetés A Térképek jellemzői modul a Térképtan és a Topográfia c. tantárgyak részét képezi. A modul a térképek készítése

Részletesebben

A Baranyi-vetületek explicit vetületi egyenleteinek meghatározása

A Baranyi-vetületek explicit vetületi egyenleteinek meghatározása EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR A Baranyi-vetületek explicit vetületi egyenleteinek meghatározása SZAKDOLGOZAT FÖLDTUDOMÁNYI ALAPSZAK TÉRKÉPÉSZ ÉS GEOINFORMATIKUS SZAKIRÁNY Készítette:

Részletesebben

9 TÉRKÉPVETÜLETEK ÉS KOORDINÁTARENDSZEREK Miljenko Lapaine, Horvátország és E. Lynn Usery, USA fordította és átdolgozta Gede Mátyás

9 TÉRKÉPVETÜLETEK ÉS KOORDINÁTARENDSZEREK Miljenko Lapaine, Horvátország és E. Lynn Usery, USA fordította és átdolgozta Gede Mátyás 9 TÉRKÉPVETÜLETEK ÉS KOORDINÁTARENDSZEREK Miljenko Lapaine, Horvátország és E. Lynn Usery, USA fordította és átdolgozta Gede Mátyás 9.1 Bevezetés Közelítés matematikai modellel FÖLD alapulnak, melyeket

Részletesebben

A FÖLD OPTIMÁLIS TORZULÁSÚ ÁBRÁZOLÁSA PÓLUSPONTOS KÉPZETES HENGERVETÜLETBEN, EKVIDISZTÁNS PARALLELKÖRÖKKEL GYÖRFFY JÁNOS 28

A FÖLD OPTIMÁLIS TORZULÁSÚ ÁBRÁZOLÁSA PÓLUSPONTOS KÉPZETES HENGERVETÜLETBEN, EKVIDISZTÁNS PARALLELKÖRÖKKEL GYÖRFFY JÁNOS 28 A FÖLD OPTIMÁLIS TORZULÁSÚ ÁBRÁZOLÁSA PÓLUSPONTOS KÉPZETES HENGERVETÜLETBEN, EKVIDISZTÁNS PARALLELKÖRÖKKEL GYÖRFFY JÁNOS 8 REPRESENTING THE WHOLE EARTH IN A BEST PSEUDOCYLINDRICAL PROJECTION WITH POLE

Részletesebben

A térképészek problémája

A térképészek problémája Vass Gergely A térképészek problémája A számítógépes grafikában gyakran szükséges gömbfelületekre textúrát feszítenünk. Ez a feladat a 3D gömb minden egyes pontja és a 2D textúra pontjai közötti megfeleltetést

Részletesebben

PTE PMMIK Infrastruktúra és Mérnöki Geoinformatika Tanszék

PTE PMMIK Infrastruktúra és Mérnöki Geoinformatika Tanszék Az eddigiek során többször említettük az objektumok térbeli helyzetével kapcsolatban a koordináta fogalmat, ami a térinformatikai rendszerek tekintetében tulajdonképpen a vonatkozási (referencia- ) rendszerrel

Részletesebben

Környezeti informatika

Környezeti informatika Környezeti informatika Dr. Utasi Zoltán Alkalmazható természettudományok oktatása a tudásalapú társadalomban TÁMOP-4.1.2.A/1-11/1-2011-0038 Előszó A Környezeti informatika című jegyzet a Térinformatikai

Részletesebben

Vetülettan. 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14. előadás. 1. előadás

Vetülettan. 1., 2., 3., 4., 5., 6., 7., 8., 9., 10., 11., 12., 13., 14. előadás. 1. előadás Vetülettan 1.,., 3., 4., 5., 6., 7., 8., 9., 10., 11., 1., 13., 14. előadás Bevezetés A vetítés fogalma 1. előadás Geodéziai méréseinket általában a Föld felszínén (egyes esetekben, pl. földalatti létesítményekben

Részletesebben

TÉRINFORMATIKA Kulcsár Balázs

TÉRINFORMATIKA Kulcsár Balázs TÉRINFORMATIKA Kulcsár Balázs Debreceni Egyetem Műszaki Kar Műszaki Alaptárgyi Tanszék Mi a térinformatika? Térinformatika, geoinformatika: digitális térképekre épülő informatika. interdiszciplináris terület,

Részletesebben

Vetülettani és térképészeti alapismeretek

Vetülettani és térképészeti alapismeretek Vetülettani és térképészeti alapismeretek A geodéziában - mint ismeretes - a földalak első megközelítője a geoid. Geoidnak nevezzük a nehézségi erőtér potenciáljának azt a szintfelületét, amelynek potenciálértéke

Részletesebben

Gazdasági folyamatok térbeli elemzése. 3. elıadás

Gazdasági folyamatok térbeli elemzése. 3. elıadás Gazdasági folyamatok térbeli elemzése 3. elıadás Helymeghatározás a mindennapokban Szituáció I. Gyakorta hallani Budapesten: Hol vagyok? Piros hetesen, most hagytuk el a Móriczot, megyek a Keletibe. A

Részletesebben

Vetületi rendszerek és átszámítások

Vetületi rendszerek és átszámítások Vetületi rendszerek és átszámítások PhD értekezés tézisei Dr. Varga József egyetemi adjunktus Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar Általános- és Felsőgeodézia Tanszék Budapest,

Részletesebben

Juhász Péter. Magyarországi topográfiai térképek vetületének. torzulási vizsgálata

Juhász Péter. Magyarországi topográfiai térképek vetületének. torzulási vizsgálata Eötvös Loránd Tudományegyetem, Természettudományi Kar Juhász Péter MTA SZTAKI Magyarországi topográfiai térképek vetületének torzulási vizsgálata doktori értekezés Témavezető: Györffy János, kandidátus,

Részletesebben

Matematikai geodéziai számítások 1.

Matematikai geodéziai számítások 1. Matematikai geodéziai számítások 1 Ellipszoidi számítások, ellipszoid, geoid és terep metszete Dr Bácsatyai, László Created by XMLmind XSL-FO Converter Matematikai geodéziai számítások 1: Ellipszoidi számítások,

Részletesebben

Környezeti informatika

Környezeti informatika Tartalom 1. Környezeti informatika... 1 1. Előszó... 1 2. Térképészeti alapismeretek... 1 2.1. A térképészet alapkérdése... 2 2.2. A Föld alakja... 4 2.2.1. A Föld valós alakja... 4 2.2.2. A Föld elméleti

Részletesebben

Térinformatika. A vonatkozási és koordináta rendszerek szerepe. Vonatkozási és koordináta rendszerek. Folytonos vonatkozási rendszer

Térinformatika. A vonatkozási és koordináta rendszerek szerepe. Vonatkozási és koordináta rendszerek. Folytonos vonatkozási rendszer Térinformatika Vonatkozási és koordináta rendszerek Dr. Szabó György BME Fotogrammetria és Térinformatika Tanszék A vonatkozási és koordináta rendszerek szerepe Heterogén jelenségek közös referencia kerete

Részletesebben

A budapesti sztereografikus, illetve a régi magyarországi hengervetületek és geodéziai dátumaik paraméterezése a térinformatikai gyakorlat számára

A budapesti sztereografikus, illetve a régi magyarországi hengervetületek és geodéziai dátumaik paraméterezése a térinformatikai gyakorlat számára A budapesti sztereografikus, illetve a régi magyarországi hengervetületek és geodéziai dátumaik paraméterezése a térinformatikai gyakorlat számára Timár Gábor 1, Molnár Gábor 1, Márta Gergely 2 1ELTE Geofizikai

Részletesebben

Matematika a térképészetben

Matematika a térképészetben Matematika a térképészetben SZAKDOLGOZAT Készítette: Madár Otília Matematika BSc - tanári szakirány Témavezet : dr. Naszódi Márton, adjunktus ELTE TTK, Geometriai Tanszék Eötvös Loránd Tudományegyetem

Részletesebben

MUNKAANYAG. Matula Györgyi. Topográfiai térképek és egyéb térképek. A követelménymodul megnevezése: Földmérési alapadatok feladatai

MUNKAANYAG. Matula Györgyi. Topográfiai térképek és egyéb térképek. A követelménymodul megnevezése: Földmérési alapadatok feladatai Matula Györgyi Topográfiai térképek és egyéb térképek A követelménymodul megnevezése: Földmérési alapadatok feladatai A követelménymodul száma: 2239-06 A tartalomelem azonosító száma és célcsoportja: SzT-006-50

Részletesebben

Térképismeret ELTE TTK Földtudományi és Földrajz BSc. 2007

Térképismeret ELTE TTK Földtudományi és Földrajz BSc. 2007 Térképismeret ELTE TTK Földtudományi és Földrajz BSc. 2007 Török Zsolt, Draskovits Zsuzsa ELTE IK Térképtudományi és Geoinformatikai Tanszék http://lazarus.elte.hu 4. Előadás Magyarországi topográfiai

Részletesebben

Szemléletes tematikus világtérképek vetületi fokhálózat-elforgatással. A vetületi torzulások csökkentése

Szemléletes tematikus világtérképek vetületi fokhálózat-elforgatással. A vetületi torzulások csökkentése Földrajzi Értesítő XLIV. évf. 1995. 1-2.füzet, pp. 91-100. Szemléletes tematikus világtérképek vetületi fokhálózat-elforgatással GYÖRFFY JÁNOS-KLINGHAMMER ISTVÁN A természet- és gazdaságföldrajz gyakran

Részletesebben

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek

A Föld alakja TRANSZFORMÁCIÓ. Magyarországon még használatban lévő vetületi rendszerek. Miért kell transzformálni? Főbb transzformációs lehetőségek TRANSZFORMÁCIÓ A Föld alakja -A föld alakja: geoid (az a felület, amelyen a nehézségi gyorsulás értéke állandó) szabálytalan alak, kezelése nehéz -A geoidot ellipszoiddal közelítjük -A földfelszíni pontokat

Részletesebben

3. KOORDINÁTA-RENDSZEREK, VETÜLETI RENDSZEREK, TÉRKÉPEK

3. KOORDINÁTA-RENDSZEREK, VETÜLETI RENDSZEREK, TÉRKÉPEK 3. KOORDINÁTA-RENDSZEREK, VETÜLETI RENDSZEREK, TÉRKÉPEK 67 3.1. Vízszintes és magassági alapponthálózatok 3.1.1. Vízszintes alapponthálózat Az ország egységes térképének elkészítéséhez olyan alapponthálózat

Részletesebben

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Mélykúti Gábor. Topográfia 3. TOP3 modul. Térképek jellemző tulajdonságai

Nyugat-magyarországi Egyetem Geoinformatikai Kara. Mélykúti Gábor. Topográfia 3. TOP3 modul. Térképek jellemző tulajdonságai Nyugat-magyarországi Egyetem Geoinformatikai Kara Mélykúti Gábor Topográfia 3. TOP3 modul Térképek jellemző tulajdonságai SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról szóló 1999. évi LXXVI.

Részletesebben

Térképészet-előadások

Térképészet-előadások Térképészet-előadások Térképek: Pillanatot, állapotot mutatnak be (a dinamikus térképek is, mint a fedélzeti számítógépek). Eszközökben forradalmi változás, megújulás következett be. A Földön, más égitesten

Részletesebben

A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI

A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI Detrekői Ákos Keszthely, 2003. 12. 11. TARTALOM 1 Bevezetés 2 Milyen geometriai adatok szükségesek? 3 Néhány szó a referencia rendszerekről 4 Geometriai adatok forrásai

Részletesebben

A Föld geokartográfiai ábrázolása pillangó típusú oktaéder vetületekben

A Föld geokartográfiai ábrázolása pillangó típusú oktaéder vetületekben EÖTVÖS LORÁND TUDOMÁNYEGYETEM TERMÉSZETTUDOMÁNYI KAR A Föld geokartográfiai ábrázolása pillangó típusú oktaéder vetületekben SZAKDOLGOZAT FÖLDTUDOMÁNYI ALAPSZAK Készítette: Kerkovits Krisztián András térképész

Részletesebben

100 év a katonai topográfiai térképeken

100 év a katonai topográfiai térképeken 100 év a katonai topográfiai térképeken MFTTT vándorgyűlés 2019. július 04-05. Békéscsaba Koós Tamás alezredes MH Geoinformációs Szolgálat főmérnök (szolgálatfőnök-helyettes) 100 éves az Önálló Magyar

Részletesebben

Forgáshenger normálisának és érintősíkjának megszerkesztése II/1

Forgáshenger normálisának és érintősíkjának megszerkesztése II/1 Forgáshenger normálisának és érintősíkjának megszerkesztése II/1 Adott egy forgáshenger: t főegyenes tengelye két vetületi képével t: 0, 110,170-től jobb felső sarokig egy felületi pontjának második vetületi

Részletesebben

Térképismeret 1 ELTE TTK Földtudományi és Földrajz BSc. 2007

Térképismeret 1 ELTE TTK Földtudományi és Földrajz BSc. 2007 Térképismeret 1 ELTE TTK Földtudományi és Földrajz BSc. 2007 Török Zsolt, Draskovits Zsuzsa ELTE IK Térképtudományi és Geoinformatikai Tanszék http://lazarus.elte.hu Ismerkedés a térképekkel 1. Miért van

Részletesebben

Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont.

Minden jó válasz 4 pontot ér, hibás válasz 0 pont, ha üresen hagyja a válaszmezőt, 1 pont. 1. 1. Név: NEPTUN kód: Tanult középiskolai matematika szintje: közép, emelt szint. Munkaidő: 50 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. A feladatlap üresen

Részletesebben

A tér lineáris leképezései síkra

A tér lineáris leképezései síkra A tér lineáris leképezései síkra Az ábrázoló geometria célja: A háromdimenziós térben elhelyezkedő alakzatok helyzeti és metrikus viszonyainak egyértelmű és egyértelműen rekonstruálható módon történő ábrázolása

Részletesebben

10. Török Zsolt, Draskovits Zsuzsa ELTE IK Térképtudományi és Geoinformatikai Tanszék

10. Török Zsolt, Draskovits Zsuzsa ELTE IK Térképtudományi és Geoinformatikai Tanszék Térképszaurusz vs. Garmin GPS NASA World Wind (3D) Megint hétfő (vagy szerda)... Térképismeret 1 ELTE TTK Földtudományi és Földrajz BSc. 2007 10. Török Zsolt, Draskovits Zsuzsa ELTE IK Térképtudományi

Részletesebben

Helyvektorok, műveletek, vektorok a koordináta-rendszerben

Helyvektorok, műveletek, vektorok a koordináta-rendszerben Helyvektorok, műveletek, vektorok a koordináta-rendszerben. Rajzold meg az alábbi helyvektorokat a derékszögű koordináta-rendszerben, majd számítsd ki a hosszúságukat! a) (4 ) b) ( 5 ) c) ( 6 ) d) (4 )

Részletesebben

Az EOV-koordináták nagypontosságú közelítése Hotine-féle ferdetengelyû Mercator-vetülettel

Az EOV-koordináták nagypontosságú közelítése Hotine-féle ferdetengelyû Mercator-vetülettel Az EOV-koordináták nagypontosságú közelítése Hotine-féle ferdetengelyû Mercator-vetülettel Molnár Gábor Timár Gábor ELTE Geofizikai Tanszék, Ûrkutató Csoport 1 Hotine (1947) vetületi leírása a Gauss-gömböt

Részletesebben

Térképismeret. A méter egységnél kisebb és nagyobb egységekre is szükség van, amelyet a tízes rendszernek megfelelıen képzünk (mm cm dm m hm km).

Térképismeret. A méter egységnél kisebb és nagyobb egységekre is szükség van, amelyet a tízes rendszernek megfelelıen képzünk (mm cm dm m hm km). Térképismeret Oktatási segédanyag a vadgazda MSc levelezı hallgatók számára az EG520 Geomatikai és térinformatikai ismeretek címő tárgyhoz Készítette: Bazsó Tamás Kiegészítette: Király Géza 1. A GEODÉZIAI

Részletesebben

9. előadás. Térbeli koordinátageometria

9. előadás. Térbeli koordinátageometria 9. előadás Térbeli koordinátageometria Koordinátageometria a térben Descartes-féle koordinátarendszerben dolgozunk. A legegyszerűbb alakzatokat fogjuk vizsgálni. Az ezeket leíró egyenletek első-, vagy

Részletesebben

T É R I N F O R M A T I K A

T É R I N F O R M A T I K A T É R I N F O R M A T I K A Előadási jegyzet Készítette: Dr. Katona Endre SZTE Képfeldolgozás és Számítógépes Grafika Tanszék Ellenőrizte: Dr. Mucsi László SZTE Természeti Földrajzi és Geoinformatikai

Részletesebben

A második katonai felmérés térképeinek közelítõ vetületi és alapfelületi leírása a térinformatikai alkalmazások számára

A második katonai felmérés térképeinek közelítõ vetületi és alapfelületi leírása a térinformatikai alkalmazások számára A második katonai felmérés térképeinek közelítõ vetületi és alapfelületi leírása a térinformatikai alkalmazások számára Timár Gábor Molnár Gábor ELTE Geofizikai Tanszék Ûrkutató Csoport 1. Bevezetés A

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 19 XIX A HATÁROZOTT INTEGRÁL ALkALmAZÁSAI 1 TERÜLET ÉS ÍVHOSSZ SZÁmÍTÁSA Területszámítás Ha f az [a,b] intervallumon nemnegatív, folytonos függvény, akkor az görbe, az x tengely,

Részletesebben

SZLOVÁKIA ÁLLAMHATÁRA

SZLOVÁKIA ÁLLAMHATÁRA SZLOVÁKIA ÁLLAMHATÁRA Hedviga Májovská okleveles földmérő mérnök Szlovák Köztársaság Honvédelmi Minisztériuma IX. TAVASZI MÉRNÖKNAP, NÓGRÁD - 2017 Salgótarján, 2017. április 4. Az államhatár 1918-1920

Részletesebben

Volt-e Ivanicsi (Ivaniè) Sztereografikus Vetületi Rendszer?

Volt-e Ivanicsi (Ivaniè) Sztereografikus Vetületi Rendszer? Volt-e Ivanicsi (Ivaniè) Sztereografikus Vetületi Rendszer? Dr. Varga József egyetemi adjunktus BME Általános- és Felsõgeodézia Tanszék Bevezetés Vetülettani tanulmányainkból mindannyian emlékszünk arra,

Részletesebben

Jegyzet a Térinformatika tantárgyhoz

Jegyzet a Térinformatika tantárgyhoz Jegyzet a Térinformatika tantárgyhoz Tantárgyfelelős oktató: A jegyzetet szerkesztette: Lektorálta: Honfi Vid, egyetemi tanársegéd Kaposvár 2004. 1 Tartalomjegyzék Tartalomjegyzék... 2 Előszó... 3 1. A

Részletesebben

Amit az ingatlan-nyilvántartási térképről tudni kell

Amit az ingatlan-nyilvántartási térképről tudni kell FÖLDMÉRÉS Varga Tibor Amit az ingatlan-nyilvántartási térképről tudni kell Az ingatlan-nyilvántartási térkép az egységes ingatlan-nyilvántartás alapja és része. A földhivatali gyakorlatban a tulajdonilap-másolatok

Részletesebben

Alkalmazott GIS. 5. gyakorlat. Grafikus és numerikus adatok

Alkalmazott GIS. 5. gyakorlat. Grafikus és numerikus adatok Alkalmazott GIS 5. gyakorlat Grafikus és numerikus adatok Térinformatikai rendszerek térképi vonatkozásai (grafikus állományok) Vonatkoztatási (referencia) rendszerek Állandó használatra a helymeghatározás

Részletesebben

2. előadás: A mérnöki gyakorlatban használt térkép típusok és tartalmuk

2. előadás: A mérnöki gyakorlatban használt térkép típusok és tartalmuk 2. előadás: A mérnöki gyakorlatban használt térkép típusok és tartalmuk Magyarországon számos olyan térkép létezik, melyek előállítását, karbantartását törvények, utasítások szabályozzák. Ezek tartalma

Részletesebben

Írta: KATONA ENDRE TÉRKÉPI ADATBÁZISOK. Egyetemi tananyag

Írta: KATONA ENDRE TÉRKÉPI ADATBÁZISOK. Egyetemi tananyag Írta: KATONA ENDRE TÉRKÉPI ADATBÁZISOK Egyetemi tananyag 2011 COPYRIGHT: 2011 2016, Dr. Katona Endre, Szegedi Tudományegyetem Természettudományi és Informatikai Kar Képfeldolgozás és Számítógépes Grafika

Részletesebben

TÉRKÉPEK, TÉRKÉPTÍPUSOK

TÉRKÉPEK, TÉRKÉPTÍPUSOK MÉRETARÁNY (M) Az egész térképre érvényes meghatározása: TÉRKÉPEK, TÉRKÉPTÍPUSOK A térkép hossztartó vonalain mért távolságnak és a valódi redukált vízszintes távolságnak a hányadosa. M = 1 / m, vagy M

Részletesebben

Koordinátarendszerek, dátumok, GPS

Koordinátarendszerek, dátumok, GPS Koordinátarendszerek, dátumok, GPS KOORDINÁTARENDSZEREK A SPATIAL-BEN Koordinátarendszer típusok 1. Descartes-féle koordinátarendszer: egy adott pontból (origó) kiinduló, egymásra merőleges egyenesek alkotják,

Részletesebben

3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél

3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél 3. Vertikális napóra szerkesztése (2009. September 11., Friday) - Szerzõ: Ponori Thewrewk Aurél A cikk két olyan eljárást mutat be, amely a függõleges napórák elkészítésében nyújt segítséget. A fal tájolásának

Részletesebben

A tételsor a 35/2016. (VIII.31.) NFM rendeletben foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/33

A tételsor a 35/2016. (VIII.31.) NFM rendeletben foglalt szakképesítés szakmai és vizsgakövetelménye alapján készült. 2/33 A vizsgafeladat ismertetése: A vizsgázó a térinformatika és a geodézia tudásterületei alapján összeállított komplex központi tételekből felel, folytat szakmai beszélgetést. Amennyiben a tétel kidolgozásához

Részletesebben

Geometriai alapok Felületek

Geometriai alapok Felületek Geometriai alapok Felületek Geometriai alapok Felületek matematikai definíciója A háromdimenziós tér egy altere Függvénnyel rögzítjük a pontok helyét Parabolavezérgörbéjű donga 4 f z x + a C Elliptikus

Részletesebben

Bevezetés a geodézia tudományába

Bevezetés a geodézia tudományába Bevezetés a geodézia tudomány nyába Geodézia Görög eredetű szó. Geos = föld, geometria = földmérés A geodézia magyarul földméréstan, a Föld felületének, alakjának, méreteinek, valamint a Föld felületén

Részletesebben

A MAI MAGYAR ANALÓG KATONAI TÉRKÉPEK MEGFELELÉSE A NATO ELVÁRÁSAINAK

A MAI MAGYAR ANALÓG KATONAI TÉRKÉPEK MEGFELELÉSE A NATO ELVÁRÁSAINAK A MAI MAGYAR ANALÓG KATONAI TÉRKÉPEK MEGFELELÉSE A NATO ELVÁRÁSAINAK SZAKDOLGOZAT FÖLDTUDOMÁNYI ALAPSZAK TÉRKÉPÉSZ-GEOINFORMATIKUS SZAKIRÁNY Készítette: Zubán Diána Erzsébet Témavezetők: Dr. Für Gáspár

Részletesebben

Geometria 1 összefoglalás o konvex szögek

Geometria 1 összefoglalás o konvex szögek Geometria 1 összefoglalás Alapfogalmak: a pont, az egyenes és a sík Axiómák: 1. Bármely 2 pontra illeszkedik egy és csak egy egyenes. 2. Három nem egy egyenesre eső pontra illeszkedik egy és csak egy sík.

Részletesebben

Matematikai geodéziai számítások 4.

Matematikai geodéziai számítások 4. Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr. Bácsatyai László Matematikai geodéziai számítások 4. MGS4 modul Vetületi átszámítások SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői jogról

Részletesebben

Űrfelvételek térinformatikai rendszerbe integrálása

Űrfelvételek térinformatikai rendszerbe integrálása Budapest, 2005. október 18. Űrfelvételek térinformatikai rendszerbe integrálása Molnár Gábor ELTE Geofizikai Tanszék Űrkutató Csoport Témavezető: Dr. Ferencz Csaba Eötvös Loránd Tudományegyetem Geofizikai

Részletesebben

4/2013. (II. 27.) BM rendelet

4/2013. (II. 27.) BM rendelet 4/2013. (II. 27.) BM rendelet Magyarország, Románia és Ukrajna államhatárai találkozási pontjának megjelölésére felállított TÚR határjelről készült Jegyzőkönyv jóváhagyásáról Az államhatárról szóló 2007.

Részletesebben

Bevezetés az elméleti zikába

Bevezetés az elméleti zikába Bevezetés az elméleti zikába egyetemi jegyzet Kúpszeletek Lázár Zsolt, Lázár József Babe³Bolyai Tudományegyetem Fizika Kar 2011 TARTALOMJEGYZÉK 6 TARTALOMJEGYZÉK Azokat a görbéket, amelyeknek egyenlete

Részletesebben

11. előadás: Az ellipszoid vetületei

11. előadás: Az ellipszoid vetületei 11. előadás: Az ellipszoid vetületei 11. előadás: Az ellipszoid vetületei Vetítés ellipszoidról a gömbre A vetítés általáos szempotjai Ha forgási ellipszoiddal helyettesítjük a Földet, de a felszíét gömbö

Részletesebben

Természetismereti- és környezetvédelmi vetélkedő

Természetismereti- és környezetvédelmi vetélkedő Miskolc - Szirmai Református Általános Iskola, Alapfokú Művészeti Iskola és Óvoda OM 201802 e-mail: refiskola.szirma@gmail.com 3521 Miskolc, Miskolci u. 38/a. Telefon: 46/405-124; Fax: 46/525-232 Versenyző

Részletesebben

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg

Síkbeli egyenesek. 2. Egy egyenes az x = 1 4t, y = 2 + t parméteres egyenletekkel adott. Határozzuk meg Analitikus mértan 3. FELADATLAP Síkbeli egyenesek 1. Írjuk fel annak az egyenesnek a paraméteres egyenleteit, amely (i) áthalad az M 0 (1, 2) ponton és párhuzamos a a(3, 1) vektorral; (ii) áthalad az origón

Részletesebben

FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Földmérés ismeretek középszint 1711 ÉRETTSÉGI VIZSGA 2017. május 17. FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Útmutató a vizsgázók teljesítményének

Részletesebben