ALAGUTAK (NGM-SE008-1) 9. ELŐADÁS IDEIGLENES FALAZAT MÉRETEZÉSE TALAJVÍZ SZIGETELÉS WOLF ÁKOS április 13.

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "ALAGUTAK (NGM-SE008-1) 9. ELŐADÁS IDEIGLENES FALAZAT MÉRETEZÉSE TALAJVÍZ SZIGETELÉS WOLF ÁKOS április 13."

Átírás

1 ALAGUTAK (NGM-SE008-1) 9. ELŐADÁS IDEIGLENES FALAZAT MÉRETEZÉSE TALAJVÍZ SZIGETELÉS WOLF ÁKOS április 13.

2 2 Ideiglenes falazat méretezése

3 Kőzetkörnyezet 3

4 Kőzetkörnyezet 4

5 Kőzettest geomechanikai értékelése 5 Értékelési szempontok Kőzettömbök kőzetmechanikai tulajdonságai Nyomószilárdság Rugalmassági modulus Diszkontinuitás, tagoltság A repedés-rendszerek száma Repedések folytonossága Repedések iránya Repedések távolsága, repedés-frekvencia, blokkméret, RQD Repedések felületi érdessége és illeszkedése Repedések nyitottsága és kitöltöttsége Egyéb paraméterek Talajvíznyomás és áramlási viszonyok In-situ feszültségállapot

6 Repedésrendszer száma 6 Egy repedésrendszer Kettős repedésrendszer Hármas repedésrendszer

7 Repedésrendszerek száma 7 ISRM (International Society of Rock Mechanics) ajánlása I II III IV V VI VII VIII IX Masszív kőzet, esetleges véletlenszerű repedések Egy repedésrendszer Egy repedésrendszer és véletlenszerű repedések Két repedésrendszer Két repedésrendszer és véletlenszerű repedések Három repedésrendszer Három repedésrendszer és véletlenszerű repedések Négy vagy több repedésrendszer Töredezett, teljesen mállott kőzet

8 Repedés folytonossága 8 ISRM által javasolt osztályozás Felületen meghatározható repedéshossz (m) Nagyon kevéssé összefüggő < 1 Kevéssé összefüggő 1 3 Közepesen összefüggő 3 10 Jellemzően összefüggő Nagyon összefüggő > 20 repedések területi és hosszirányú kiterjedése a nyitott kőzetfelületen megfigyelhető repedéshosszak Befolyásolja kialakuló csúszólapokat, az esetleges lépcsőzetes tönkremenetelt,

9 Repedések iránya 9 Csapás N Függőleges sík N Tagolósík szöge A függőleges síkon mérve: 55 Tagolósík maximális dőlése Tagolósík iránya Vízszintes sík Órajárással megfelelő irányban az északi irányhoz képes: 220 Tagolósík leírása: Irány / Dőlésszög 220/55

10 Repedések iránya 10 Analóg geológiai iránytű Digitális geológiai iránytű Grafikus félgömb vetítés

11 Repedéstávolság, repedés-sűrűség, blokkméret 11 Látszólagos repedéstávolság Látszólagos repedéstávolság x, y és z irányban Valós Repedéstávolság Repedéstávolság: tagoló felületek merőleges távolsága

12 Repedéstávolság, repedés-sűrűség, blokkméret 12 Repedéstávolság osztályozása Leírás Repedéstávolság (m) Extrém sűrű repedés < 0.02 Nagyon sűrű repedés Sűrű repedés Közepes repedés Nagy repedéstávolság Nagyon nagy repedéstávolság 2 6 Extrém nagy repedéstávolság > 6 Repedéssűrűség (): az egy méterre eső repedések száma. Repedéssűrűség a repedéstávolság inverze (s j ), = 1 / s j

13 Repedéstávolság, repedés-sűrűség, blokkméret 13 RQD (Rock Quality Designation) azon fúrómag darabok összességének aránya, amelyeknek a hosszúsága meghaladja a 4 -t (vagyis kb. 10 cm-t) a módosított magkihozatal RQD = (L1 + L2 + + Ln) / L x 100% <10 cm <10 cm <10 cm core loss L1 L2 L3 X L4 X X L5 Li X X Ln RQD Rock Mass Quality < 25 Nagyon gyenge Gyenge Megfelelő Jó Kiváló L

14 Repedéstávolság, repedés-sűrűség, blokkméret 14

15 Repedéstávolság, repedés-sűrűség, blokkméret 15

16 Repedéstávolság, repedés-sűrűség, blokkméret 16 Tömbméret értékelés ISRM alapján Designation egységnyi térfogatra jutó repedésszám, repedésszám / m 3 Nagyon nagy tömbök < 1 Nagy tömbök 1 3 Közepes tömbök 3 10 Kis tömbök Nagyon kis tömbök > 30 Zúzottkő > 60

17 Tagolófelület érdesség, illeszkedés 17 Tagolófelület: két szomszédos kőzettömb érintkező felülete Felület: Nagyobb kiterjedés lépcsős, hullámos sík Kisebb kiterjedés Durva Sima Egyenletes Kapcsolat: jó, illeszkedő nyílt, nem illeszkedő

18 Tagolófelület érdessége 18 Tagoló felület leírása lépcsős durva sima egyenletes hullámos durva sima Érdességi mérőszám (JRC) JRC 20 : 20cm hosszon mért érdesség JRC 100 :1 m-en mért érdesség. egyenletes durva sík sima egyenletes

19 Tagolófelület illeszkedése 19 Illeszkedési tényező (JMC) JMC = 1 pontosan, teljes felületen illeszkedés JMC = 0 nem, vagy csak pontszerűen illeszkedő felület esetén

20 Repedés nyíltsága 20 Zárt Nyílt Kitöltött Réstágasság Réstágasság Réstávolság Leírás < 0.1 mm Nagyon zárt 0.1 ~ 0.25 mm Zárt 0.25 ~ 0.5 mm Részben nyitott 0.5 ~ 2.5 mm Nyitott 2.5 ~ 10 mm Tág 1 ~ 10 cm Széles 10 ~ 100 cm Nagyon széles > 1 m Üreges Víz, levegő Zárt" Hézagos" Nyílt" Szilárd anyag

21 Kőzetszilárdság 21 Alagútfúró gép előrehaladása Fejtőszerszámok kopása Fejtési módok optimalizálása

22 100 mm Kőzetszilárdság mm

23 Kőzetszilárdság 23 Osztály Megnevezés s c [MPa] A Igen nagy szilárdságú kőzet > 220 B Nagy szilárdságú kőzet C Közepes szilárdságú kőzet D Kis szilárdságú kőzet 27,5 55 E Igen kis szilárdságú kőzet < 27,5 Osztály Megnevezés E/s c A Nagy modulus viszonyszám > 500 B Közepes modulus viszonyszám E Kis modulus viszonyszám < 200 Brinke féle szám B = s c / s t > 1

24 Kőzetszilárdság 24 PLI: pontszerű terhelési teszt (I s(50) ) PLI és a tényleges szilárdság kapcsolata s c 22 I s(50) A korrelációs tényező 10 és 30 között változhat. s t 1.25 I s(50) I s(50) mind független szilárdsági index is használható. Granite 5 15 Gabbro 6 15 Andesite Basalt 9 15 Sandstone 1 8 Mudstone Limestone 3 7 Gneiss 5 15 Schist 5 10 Slate 1 9 Marble 4 12 Quartzite 5 15

25 Kőzetteher tényező (rock load factor) 25

26 Kőzetteher tényező (rock load factor) 26 Terzaghi Keskeny alagutak (<6 (9) m)

27 RMR (Geomechanikai osztályozás) 27 A vizsgálandó paraméterek: 1. A kőzet egyirányú nyomószilárdsága (r σ ) 2. RQD tényező (r RQD ) 3. A tagoltságok távolsága ( sűrűsége ) (r x ) 4. A tagoltságok állapota (r a ) 5. Réteg- és talajvizek (r G ) 6. A tagoltságok iránya (r d ) Bieniavski, 1973, 1989

28 RMR Kőzetszilárdság (r s ) 2. RQD (r RQD )

29 RMR Tagoltság távolsága (r x ) 4. Tagoltság állapota (r a )

30 RMR 30 4a. Tagoltság felülete, kitöltöttsége 4b. Tagoltság megnyílása

31 RMR 31 4c. Tagoló felületek folytonossága 4d. Tagoltsági felületek mállottsága

32 RMR Réteg és talajvízek (r g )

33 RMR Tagoltság iránya (r d )

34 RMR 34 Értékelés

35 RMR 35 az egytengelyű nyomószilárdság (σ c ) %, átlag 14 %, súllyal az RQD %, átlag 30 % súllyal a tagoltság távolsága (r x ) %, átlag 30 % súllyal a tagolófelületek állapota (r a ) 0-36 %, átlag 18 % súllyal vízviszonyok (r G ) 0-15 %, átlag 7 % súllyal

36 RMR 36

37 RMR 37 Módosított RMR érték Eredeti RMR érték > >50 a a a a b b b b c, d c, d c, d, e d, e g f, g f, g, j f, h, j i i h, i, j h, j 0-10 k k l l

38 RMR 38 a) Általában nincs szükség megtámasztásra, de helyi horgonyzásra igény lehet b) Szisztematikus, injektált kőzetcsavarok, 1.0 m-enként. c) Szisztematikus, injektált kőzetcsavarok, 0.75 m-enként. d) Szisztematikus, injektált kőzetcsavarok, 1.0 m-enként, és 100 mm vastag lőttbeton. e) Szisztematikus, injektált kőzetcsavarok, 1.0 m-enként, és 300 mm vastag masszív lőttbeton; csak abban az esetben, ha a helyi feszültségviszonyok nem haladják meg a függőleges feszültséget f) Szisztematikus, injektált kőzetcsavarok, 0.75 m-enként, és 100 mm vastag lőttbeton. g) Szisztematikus, injektált kőzetcsavarok, 0.75 m-enként, és 100 mm vastag lőttbeton betonacél háló erősítéssel.

39 RMR 39 h) Szisztematikus, injektált kőzetcsavarok, 1.0 m-enként, és 450 mm vastag betonhéj; csak abban az esetben, ha a helyi feszültségviszonyok nem haladják meg a függőleges feszültséget i) Szisztematikus, injektált kőzetcsavarok, 0.75 m-enként, és 100 mm vastag lőttbeton betonacél háló erősítéssel, és csúszóívek, amennyiben a helyi feszültség nagy. j) Stabilizálás kőzetcsavarokkal és betonacél hálóval, majd 450 mm vastag beton, amennyiben a helyi feszültség megengedi k) Stabilizálás kőzetcsavarokkal és betonacél hálóval, valamint mm lőttbetonnal, és csúszóívek, amennyiben a helyi feszültség nagy. l) Meg kell akadályozni a tönkremenetel kialakulását; valamint j vagy k megtámasztási rendszer

40 RMR 40 Egyéb felhasználás Kőzetfizikai paraméterek becslése Kohézió: c = 3,625 RMR Belső súrlódási szög: j = 25 [1+0,01 RMR] RMR>20 j = 1,5 RMR RMR<20 Alakváltozási paraméter Rézsűállékonyság Alapozás

41 RMR példa 1 41 Példa(a): Vízerőmű megközelítő alagútja, 20 m fesztáv, 10 m falmagasság Gránit kőzettest 3 jellemző tagolórendszerrel (1 közel vízszintes, 1 közel függőleges és 1 közel függőleges // az alagúttengelyre), átlagos RQD 88%, tagolósíkok átlagos távolsága 0,24 m, repedések felülete jellemzően lépcsős, durva, repedések zártak, nem mállottak, de helyenként elszíneződtek, a homlok nedves, de csepegés még nem figyelhető meg, jellemző UCS=160 MPa, az alagút 150 m mélyen helyezkedik el, ahol nem figyelhető meg abnormális helyi feszültség.

42 RMR példa 1 42 UCS 160 MPa 12 RQD (%) 88% 17 Tagolófelületek távolsága (m) 0.24 m 10 Tagolófelület minősége durva, ép, nem nyílt 30 Talajvíz nedves 7 RMR 76 Repedések iránya: megfelelő, nagyon kedvező, nagyon kedvezőtlen nagyon kedvezőtlen Módosító tényező = -12; Módosított RMR = 64

43 RMR példa 1 43 Módosított RMR RMR > >50 a a a a b b b b c, d c, d c, d, e d, e g f, g f, g, j f, h, j i i h, i, j h, j 0-10 k k l l a. Nincs szükség megtámasztásra, de helyi horgonyzás szükséges lehet

44 RMR példa 2 44 Példa (b): autópálya alagút, 20 m fesztáv, 10 m magas Homokkő, jellemzően 2 tagolórendszerrel tagolva (1 // alagúttengellyel, 30 dőléssel, 1 alagúttengelyre 70 dőléssel), néhol véletlenszerű repedések figyelhetőek meg, átlagos RQD 70%, jellemző repedéstávolság 0.11 m, repedések felülete enyhén durva, nagyon mállott, elszíneződött, de a repedések idegen anyaggal nincsenek kitöltve, a repedések zártak, nyitottságuk kisebb mint 1 mm, jellemző kőzetszilárdság 85 MPa, 80 m a legnagyobb takarás, talajvízszint -10 m-en található.

45 RMR példa 2 45 UCS 85 MPa 7 RQD (%) 70% 13 Tagolófelületek távolsága (m) 0.11 m 8 Tagolófelület minősége Enyhén durva, nagyon mállott, nyitottság < 1mm 20 Talajvíz Víznyomás / feszültség = 0,32 4 RMR 52 Repedések iránya: megfelelő, kedvezőtlen kedvezőtlen Módosító tényező = - 10; Módosított RMR = 42

46 RMR példa 2 46 Módosított RMR RMR > >50 a a a a b b b b c, d c, d c, d, e d, e g f, g f, g, j f, h, j i i h, i, j h, j 0-10 k k l l b. Teljes felületű injektált horgonyzás, 1.0 m horgonytávolsággal

47 RMR példa 3 47 Példa (c): 10 m átmérőjű vasúti alagút Nagyon töredezett palás kőzet, 2 jellemző tagolórendszerrel (1 vízszintes, 1 függőleges // az alagúttengellyel ), de sok véletlenszerű repedéssel, átlagos RQD 41%, az alagútban a repedések folyamatosnak tűnnek, a repedések felülete sima, hullámos, erősen mállott, a repedések 3-5 mm-re kinyíltak, jellemzően agyaggal telítettek, jellemző kőzetszilárdság 65 MPa, 10 m alagúthosszon 50 litre/perc vízbefolyás figyelhető meg, ami kimossa a repedéseket. Az alagút 220 m-rel található a felszín alatt.

48 RMR példa 3 48 UCS 65 MPa 7 RQD (%) 41% 8 Tagolófelületek távolsága (m) Tagolófelület minősége 0.05 m 5 folytonos, sima, nyílt 1-5mm 10 Talajvíz Vízbefolyás = 50 l/min 4 RMR 34 Repedések iránya: megfelelő, nagyon kedvezőtlen nagyon kedvezőtlen Módosító tényező = - 12; Módosított RMR = 22

49 RMR példa 3 49 Módosított RMR RMR > >50 a a a a b b b b c, d c, d c, d, e d, e g f, g f, g, j f, h, j i i h, i, j h, j 0-10 k k l l g, j. Sűrű teljes felületű horgonyzás (0.75 m), betonacél háló, 100 mm vastag lőttbeton, 450 mm vastag belső héj.

50 Q(quality)-módszer 50 RQD RQD érték (5-re kerekítve) J n tagoltság csoportjainak számát kifejező érték J r tagoltság érdességi mérőszáma J a tagoltság felületi mállottságának mérőszáma J w tagoltságban megjelenő víz mérőszáma SRF feszültség redukáló tényező (stress reduction factor) Q RQD J n J J r a J w SRF

51 Q-módszer 51 Kőzettest szerkezete RQD J n tagoltság mérőérősz tagoltság csoportjainak száma

52 Q-módszer 52 Kőzettömbök nyírószilárdsága J J r a tagoltság érdessége tagoltsági felület mállottsága

53 Q-módszer 53 Kőzettömbök nyírószilárdsága J J r a tagoltság érdessége tagoltsági felület mállottsága

54 Q-módszer 54 Feszültség érték J w SFR tagoltság érdessége feszültség redukciós tényező

55 Q-módszer 55 Feszültség érték J w SFR tagoltság érdessége feszültség redukciós tényező

56 Q-módszer 56

57 Q-módszer 57 Egyenértékű fesztáv tényleges fesztáv v. magasság D e megtámasztási érték, ESR

58 Q-módszer 58 (1): biztosítás nélküli, (2): helyenkénti kőzetcsavar; (3): szisztematikus kőzetcsavar; (4): szisztematikus kőzetcsavar mm vastag vasalatlan lőttbetonnal; (5): szálerősítésű lőttbeton (50-90 mm vastag) és kőzetcsavar; (6): szálerősítésű lőttbeton ( mm vastag) és kőzetcsavar; (7): szálerősítésű lőttbeton ( mm vastag) és kőzetcsavar; (8): szálerősítésű lőttbeton (> 150 mm) acélhálóval és kőzetcsavarral; (9): előregyártott betonelemmel megtámasztva

59 Q-módszer 59 Oldalfal esetén fal magassága = fesztáv Módosított Q index: Q > 10, Q fal = 5 Q 0.1 < Q < 10, Q fal = 2.5 Q Q < 0.1, Q fal = Q Ideiglenes megtámasztás: ESR ideiglenes = 1.5 ESR vagy Q ideiglenes = 5 Q (mind a főte, mind a fal esetén)

60 Q-módszer példa 1 60 Példa(a): Vízerőmű megközelítő alagútja, 20 m fesztáv, 10 m falmagasság Gránit kőzettest 3 jellemző tagolórendszerrel (1 közel vízszintes, 1 közel függőleges és 1 közel függőleges // az alagúttengelyre), átlagos RQD 88%, tagolósíkok átlagos távolsága 0,24 m, repedések felülete jellemzően lépcsős, durva, repedések zártak, nem mállottak, de helyenként elszíneződtek, a homlok nedves, de csepegés még nem figyelhető meg, jellemző UCS=160 MPa, az alagút 150 m mélyen helyezkedik el, ahol nem figyelhető meg abnormális helyi feszültség.

61 Q-módszer példa 1 61 RQD 88% RQD 88 Tagolórendszerek száma Tagolórendszerek felülete Tagolórendszerek mállottsága 3 J n 9 Durva, lépcsős (hullámos) J r 3 Nem mállott, néhol elszíneződött J a 1 Vízviszonyok Csak nedves (száraz fejtés vagy kismértékű vízbefolyás) J w 1 Feszültségviszonyok s c /s 1 = 160/( ) = 39.5 SRF 1 Q (88/9) (3/1) (1/1) 29

62 Q-módszer Ht = 10m 1 Q wall =5Q Q = 29, ESR = 1.3, Fesztáv = 20m, D e = 15.4m 3

63 Q-módszer példa 1 63 Példa(a): Vízerőmű megközelítő alagútja, 20 m fesztáv, 10 m falmagasság, gránit, Q=29 Főtemegtámasztás a Q-index szerint: Teljes felületű horgonyzás 2,5 m horgonytávolság 4,5 m horgonyhossz Vékony lőttbeton réteg (kb 2 cm) a főtében Alagútfal megtámasztása: Nincs szükség megtámasztásra

64 Q-módszer példa 2 64 Példa (b): autópálya alagút, 20 m fesztáv, 10 m magas Homokkő, jellemzően 2 tagolórendszerrel tagolva, néhol véletlenszerű repedések figyelhetőek meg, átlagos RQD 70%, jellemző repedéstávolság 0.11 m, repedések felülete enyhén durva, nagyon mállott, elszíneződött, de a repedések idegen anyaggal nincsenek kitöltve, a repedések zártak, nyitottságuk kisebb mint 1 mm, jellemző kőzetszilárdság 85 MPa, 80 m a legnagyobb takarás, talajvízszint -10 m-en található.

65 Q-módszer példa 2 65 RQD 70% RQD 70 Tagolórendszerek száma 2 rendszer és véletlenszerű repedések J n 6 Tagolórendszerek felülete Enyhén durva (durva, sík) J r 1.5 Tagolórendszerek mállottsága Mállott, elszíneződött, (megváltozott, de nem felpuhult ásványi réteg) J a 2 Vízviszonyok 70 m talajvíz = 7 kg/cm 2 = 7 bars J w 0.5 Feszültségviszonyok s c /s 1 = 85/( ) = 39.3 SRF 1 Q (70/6) (1.5/2) (0.5/1) 4.4

66 Q-módszer Ht = 10m 1 Q wall =2,5Q Q=4.4, ESR=1.0, Span=20m, De=20m 3

67 Q-módszer példa 2 67 Példa (b): autópálya alagút, 20 m fesztáv, 10 m magas, homokkő, Q=4.4 Főtemegtámasztás a Q-index szerint: Horgonytávolság 2.1 m Horgonyok hossza 5 m SFR 7 cm Alagútfal megtámasztása: Horgonytávolság 2.4 m Horgonyok hossza 3 m Vékony lőttbeton réteg

68 Q-módszer példa 3 68 Példa (c): 10 m átmérőjű vasúti alagút Nagyon töredezett palás kőzet, 2 jellemző tagolórendszerrel, de sok véletlenszerű repedéssel, átlagos RQD 41%, az alagútban a repedések folyamatosnak tűnnek, a repedések felülete sima, hullámos, erősen mállott, a repedések 3-5 mm-re kinyíltak, jellemzően agyaggal telítettek, jellemző kőzetszilárdság 65 MPa, 10 m alagúthosszon 50 litre/perc vízbefolyás figyelhető meg, ami kimossa a repedéseket. Az alagút 220 m-rel található a felszín alatt.

69 Q-módszer példa 3 69 RQD 41% RQD 41 Tagolórendszerek száma Tagolórendszerek felülete 2 rendszer + véletlenszerű J n 6 Sima, hullámos J r 1.5 Tagolórendszerek mállottsága Vízviszonyok Erősen méllott, 3-5 mm agyaggal kitöltve Nagy mennyiségű vízbefolyás, ami kimossa a repedéseket J a 4 J w 0.33 Feszültségviszonyok s c /s 1 = 65/( ) = 11 SRF 1 Q (41/6) (1.5/4) (0.33/1) 0.85

70 Q-módszer Ht = 10m 1 Q wall =2,5Q Q = 0.85, ESR = 1.0, Span = 10m, De = 10m 3

71 Q-módszer példa 3 71 Példa (c): 10 m átmérőjű vasúti alagút, töredezett palás kőzet, Q=0.84 Főtemegtámasztás a Q-index szerint: Horgonytávolság 1.6 m Horgonyok hossza 3 m SFR 10 cm Alagútfal megtámasztása: Horgonytávolság 1.9 m spacing SFR 6 cm

72 Q-módszer és RMR összehasonlítása 72 a) példa (20 m fesztáv) b) példa (20 m fesztáv) c) példa (10 m fesztáv) RMR Nincs szükség megtámasztásra, helyi horgonyzás Teljes felületű horgonyzás, 1.0 m horgonytávolság. Teljes felületű horgonyzás,.75 m horgonytávolság, betonacél háló 10 cm lőttbetonnal, 45 cm belső falazat Q Teljes felületű horgonyzás, 2.5 m horgonytávolság, vékony lőttbeton helyileg alkalmazva Teljes felületű horgonyzás, 2.1 m horgonytávolság, 7 cm SFR Teljes felületű horgonyzás, 1.6 m horgonytávolság, 10 cm SFR Nagy különbségek

73 Q-módszer és RMR összehasonlítása 73 RMR nem veszi figyelembe az alagút méretét, jellemzően 3-10 m fesztávra használható. RMR nem tesz különbséget a fel és főte megtámasztása között. Megfelelő és jobb kőzettest esetén az RMR és Q-módszer hasonló eredményt ad, bár a Q több lőttbetont, míg az RMR több horgonyzást ír elő (bányák). Gyenge kőzet esetén, nagy különbségek vannak: A Q-rendszert alapvetően jó minőségű kőzetre fejlesztették ki. Az RMR rendszer használata ajánlott gyenge minőségű kőzet megtámasztásának számítására

74 74 Végleges alagútfalazat méretezése

75 Végleges alagútfalazat 75 Alagútfúró gép tübbing Bányászati módszer monolit vasbeton

76 Az alagútfalazat terhei (JSCE, 1996) Vízszintes és függőleges földnyomás 2. Talajvíz terhei 3. Önsúly 4. Felszíni terhek 5. Reakcióerők (Ágyazat) 6. Belső reakcióerők 7. Építési terhek 8. Egyéb terhek (pl. földrengés, ) 9. Párhuzamos alagutak egymásra ható terhei 10. Egyéb kivitelezési munkák a környéken 11. Talajmozgás okozta terhek 12. Egyéb terhek Elsődleges terhek Másodlagos terhek Speciális terhek Az alagútfalazatot ezen terhek mértékadó kombinációjára kell tervezni

77 Alagútfalazat terhei 77 Földnyomás ~ elmozdulás Földnyomás, víznyomás: radiális vagy komponensek

78 Alagútfalazat terhei 78

79 Teherállapotok 79 Az alábbi mértékadó keresztmetszeteket kell vizsgálni az alagútfalazat méretezésekor: (1) Legnagyobb takarás (2) Legkisebb takarás (3) Legmagasabb talajvízszint (4) Legalacsonyabb talajvízszint (5) Nagyobb felszíni terhek (6) Külpontos terhelés (7) Nem vízzintes felszín (8) Jövőbeli szerkezet fog épülni az alagút környezetében

80 Teherállapotok Talajvízszint 4 4 Talajvízszint Felszíni teher Jövőbeli alagút

81 Kőzetteher tényező (rock load factor) 81 Terzaghi Keskeny alagutak (<6 (9) m)

82 Terzaghi kőzetnyomás elmélete 82

83 Protodjakonov kőzetnyomás elmélete 83

84 Szerkezet modellezés 84 Rugalmas ágyazás elve Talaj-szerkezet kölcsönhatás rugó Rugómerevség (k) függ a talaj merevségétől a falazat sugarától A falazat merevségétől Lineáris kapcsolat az elmozdulás reakció között Hibák: Ágyazási tényező nem anyagállandó Egy pont reakciója a szomszédos pontok elmozdulásától is függ Kőzetkörnyezetre nem ad információs q C á w

85 Végeselemes módszer 2D 85 2D FEM végeselem modell mértékadó keresztmetszetek síkbeli alakváltozási állapot Síkbeli feszültségek vizsgálata

86 Végeselemes módszer 3D 86

87 87 Talajvízkezelés, vízszigetelés

88 Kőzetporozitás 88 Elsődleges porozitás Másodlagos porozitás Kőzet hézagtérfogata << talaj hézagtérfogata Egyedülálló összefüggő pórusok Jellemző értékek Magmás és metamorf kőzetek: 2% Homokkő: 1-5% Üledékes pala: 5-20% Mészkő: 20-50% Kőzettest repedezettsége Összefüggő tagolórendszer vízáteresztő képesség Pórusvíz kémiai reakció Nyugalmi víz nincs reakció (telített koncentráció) Áramló víz folyamatos reakció (pl. karszt)

89 Kőzettest áteresztőképessége 89 Hatékony feszültség s = s + p Pórusvíznyomás meghatározása: Piezométer Elektromos nyomásmérő Pneumatikus nyomásmérő Darcy törvény v = K I Áteresztő képesség ~ másodlagos porozitás Áteresztő képesség meghatározása Laboratórium: állandó nyomású és változó nyomású vizsgálat Helyszínen: Lugeon vizsgálat (pakkeres teszt) Helyszínen: próbakutas vizsgálat

90 Lugeon vizsgálat (1933) 90 Furat izolált szakasza Állandó nyomás(10 perc) vízmennyiség P max : talajtörés elkerülése (s 3 ) 5 lépcső: terhelési hurok Lugeon féle áteresztő képesség ami P 0 = 1 MPa víznyomáshoz és 1 l/min/m vízáramláshoz tartozó vízáteresztő képesség

91 Próbakutas vizsgálat 91 Egy kutas vizsgálat Több kutas vizsgálat Szivattyúzás nyomáskülönbség órán keresztül mérik a reakciót Meghatározandó értékek: Kinyert víz mennyisége Hidraulikai jellemző Kút hatása

92 Talajvíz veszélye 92 Nagy víztartalmú kőzet vízbetörés veszélye elárasztás, talajtörés veszélye Vízbetörés az építés alatt Magas áramlási érték (1000 l/s) idővel csökken (vízutánpótlódás elapad)

93 Talajvíz probléma 93 Karsztos kőzet

94 Talajvíz probléma 94 Alagútfenntartási problémák

95 Talajvíz probléma 95 Egyéb problémakörök Tenger alatti alagutak (tavak, folyók) Lefele történő alagútépítés (a víz az alagút homlokán gyűlik össze) Alagútépítés süllyedésre érzékeny területen (városi alagutak) Környezetvédelem (források, ökoszisztéma sérül, stb) Alacsony talajállékonyság etc

96 Talajvíz probléma kezelése 96 Injektálás Áramló víz injektálás hatása csökken Víznyomás előzetes csökkentése hatékonyságnövekedés Anyag: 10% szilikáttartalmú cementhabarcs vagy poliuretán habok Előinjektálás: karsztok, üregek feltöltése, nagy áteresztő képességű vetőzónák biztosítása

97 Alagút vízszigetelése 97 Drénezés Vízzáróság Vízbeszivárgás Vízbeszivárgás nincsen Falazatra ható víznyomás csökken Folyamatos üzemelés Falazatra víznyomás hat 60 m mélységig alkalmazható

98 Drénezés, esernyő módszer 98 Nyugalmi talajvízszint felett Fentről beáramló víz ellen Főte+oldalfal szigetelése fal lábánál vagy ellenboltozatban vízgyűjtése Drénezés víznyomás csökkenés Folyamatos üzem: karbantartás Veszély: források, termál kutak veszélyeztetése

99 Drénezés, esernyő módszer 99

100 Drénezés, esernyő módszer Ideiglenes lőttbeton vízáteresztő: mikrorepedések, direkt furatok 2. Vízzárás, víz összegyűjtése: ideiglenes és végleges biztosítás között: vízzáró membrán Nagy mennyiségű vízfolyás közvetlen bekötés Víz levezetése a hosszanti dréncsőbe 3. Központi vízelvezető csatornába való bekötés

101 Drénezés, esernyő módszer 101

102 Drénezés, esernyő módszer 102 Süllyedés a víztelenítés hatására

103 Vízszigetelés: «tengeralattjáró módszer» 103 A nyugalmi talajvízszint alatt, a talajvíz nyomásának ellenálló teljes felületi szigetelést kell alkalmazni - Vízzáró beton: víznyomás <3 bar - Vízzáró membránok: víznyomás 3 és 15 között - Injektálás: Kiegészítve a vízzáró membránt, ha a víznyomás nagyobb, mint 15 bar

104 Vízzáró beton 104 Vízzáró alagútfalazat: technológia, betonreceptúra (vízcement tényező, szemeloszlás, falvastagság, utókezelés, stb) Hőmérsékletingadozás, zsugorodás mikrorepedések vasalással (részben) kezelhető Rövid betonozási egység zsugorodási repedés csökkenthető növeli a munkahézagok számát (potenciális veszélyforrás) Ideiglenes végleges alagútfalazat elválasztása Lokális vízszivárgás jól azonosítható, javítható

105 Fólia 105 Ideiglenes megtámasztásra felerősítve Geomembrán szigetelés Szigetelés védelme: geotextília membrán és lőttbeton között Fólia csatlakozás heggesztéssel. Nem alkalmazható: Poliészter - hidrolóizis roncsolja, PVC - égés során felszabaduló mérgező gázok.

106 Szórt szigetelés 106 Száraz (kéznedves, nincs csepegés) alagútfalazat Szabálytalan geometria

107 Injektálás 107 Nagy víznyomás (>15 bar) injektálással csökkenthető Alpesi alagutaknál elterjedt Alagútfúrás előtti injektálás vízmozgás még nincsen technológia alkalmazása könnyebb

108 Köszönöm a figyelmet

ALAGUTAK (LGM-SE008-1) 4. ELŐADÁS IDEIGLENES FALAZAT MÉRETEZÉSE TALAJVÍZ SZIGETELÉS WOLF ÁKOS. 2016. április 16.

ALAGUTAK (LGM-SE008-1) 4. ELŐADÁS IDEIGLENES FALAZAT MÉRETEZÉSE TALAJVÍZ SZIGETELÉS WOLF ÁKOS. 2016. április 16. ALAGUTAK (LGM-SE008-1) 4. ELŐADÁS IDEIGLENES FALAZAT MÉRETEZÉSE TALAJVÍZ SZIGETELÉS WOLF ÁKOS 2016. április 16. 2 Ideiglenes falazat méretezése Kőzetkörnyezet 3 Kőzetkörnyezet 4 Kőzettest geomechanikai

Részletesebben

Szádfal szerkezet ellenőrzés Adatbev.

Szádfal szerkezet ellenőrzés Adatbev. Szádfal szerkezet ellenőrzés Adatbev. Projekt Dátum : 8.0.05 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : Acél szerkezetek : Acél keresztmetszet teherbírásának

Részletesebben

Előregyártott fal számítás Adatbev.

Előregyártott fal számítás Adatbev. Soil Boring co. Előregyártott fal számítás Adatbev. Projekt Dátum : 8.0.0 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : CSN 0 R Fal számítás Aktív földnyomás számítás

Részletesebben

Szádfal szerkezet tervezés Adatbev.

Szádfal szerkezet tervezés Adatbev. Szádfal szerkezet tervezés Adatbev. Projekt Dátum : 0..005 Beállítások (bevitel az aktuális feladathoz) Nyomás számítás Aktív földnyomás számítás : Passzív földnyomás számítás : Földrengés számítás : Ellenőrzési

Részletesebben

Jellemző szelvények alagút

Jellemző szelvények alagút Alagútépítés Jellemző szelvények alagút 50 50 Jellemző szelvény - alagút 51 AalagútDél Nyugati járat Keleti járat 51 Alagúttervezés - geotechnika 52 Technológia - Új osztrák építési módszer (NÖT) 1356

Részletesebben

Alagútfalazat véges elemes vizsgálata

Alagútfalazat véges elemes vizsgálata Magyar Alagútépítő Egyesület BME Geotechnikai Tanszéke Alagútfalazat véges elemes vizsgálata Czap Zoltán mestertanár BME Geotechnikai Tanszék Programok alagutak méretezéséhez 1 UDEC 2D program, diszkrét

Részletesebben

Alagutakra ható kőzetnyomások:

Alagutakra ható kőzetnyomások: Alagutakra ható kőzetnyomások: Kőzetnyomások keletkezése: kőzettömeg fellazulásából. az alagút feletti kőzettömeg súlya tektonikus erők kőzettömeg térfogatnövekedése, kémiai vagy fizikai okokból bekövetkező

Részletesebben

SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ

SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ 2008 PJ-MA SOIL MECHANICS BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM GEOTECHNIKAI TANSZÉK KONSZOLIDÁCIÓ Tanszék: K épület, mfsz. 10. & mfsz. 20. Geotechnikai laboratórium: K épület, alagsor 20. BME

Részletesebben

Munkatérhatárolás szerkezetei. programmal. Munkagödör méretezés Geo 5

Munkatérhatárolás szerkezetei. programmal. Munkagödör méretezés Geo 5 MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése 2 Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 Munkagödör méretezés Geo 5 programmal Tartalom 3 Alapadatok Geometria

Részletesebben

MUNKAGÖDÖR TERVEZÉSE

MUNKAGÖDÖR TERVEZÉSE MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Bevezetés Munkagödör méretezése Plaxis programmal Munkagödör méretezése Geo 5 programmal MUNKAGÖDÖR TERVEZÉSE Bevezetés Wolf Ákos BEVEZETÉS Napjaink mélyépítési

Részletesebben

M0 autópálya szélesítése az Anna-hegyi csúszás WOLF ÁKOS

M0 autópálya szélesítése az Anna-hegyi csúszás WOLF ÁKOS 1 M0 autópálya szélesítése az Anna-hegyi csúszás térségében WOLF ÁKOS 2 HELYSZÍN HELYSZÍN 3 TÖRÖKBÁLINT ANNA-HEGYI PIHENŐ ÉRD DIÓSD ELŐZMÉNY, KORÁBBI CSÚSZÁS 4 1993. október 5. ELŐZMÉNY, KORÁBBI CSÚSZÁS

Részletesebben

Geometriai adatok. réteghatárok magassági helyzete földkiemelési szintek geotechnikai szerkezet méretei

Geometriai adatok. réteghatárok magassági helyzete földkiemelési szintek geotechnikai szerkezet méretei 24. terepmagasság térszín hajlása vízszintek Geometriai adatok réteghatárok magassági helyzete földkiemelési szintek geotechnikai szerkezet méretei a d =a nom + a a: az egyes konkrét szerkezetekre vonatkozó

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 2010. szeptember X. Budapesti Műszaki és Gazdaságtudományi Egyetem Geotechnikai Tanszék Alapozás Rajzfeladatok Hallgató Bálint részére Megtervezendő egy 30 m 18 m alapterületű épület síkalapozása és a

Részletesebben

Földstatikai feladatok megoldási módszerei

Földstatikai feladatok megoldási módszerei Földstatikai feladatok megoldási módszerei Földstatikai alapfeladatok Földnyomások számítása Általános állékonyság vizsgálata Alaptörés parciális terhelés alatt Süllyedésszámítások Komplex terhelési esetek

Részletesebben

Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk be.

Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk be. 2. számú mérnöki kézikönyv Frissítve: 2016. Február Szögtámfal tervezése Program: Szögtámfal File: Demo_manual_02.guz Feladat: Ebben a fejezetben egy szögtámfal tervezését, és annak teljes számítását mutatjuk

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Épület alapozása síkalappal (1. rajz feladat) Minden építmény az önsúlyát és a rájutó terheléseket az altalajnak adja át, s állékonysága, valamint tartóssága attól függ, hogy sikerült-e az építmény és

Részletesebben

GEOTECHNIKA III. (LGB SE005-3) FÖLDALATTI MŰTÁRGYAK, ALAGÚTÉPÍTÉS

GEOTECHNIKA III. (LGB SE005-3) FÖLDALATTI MŰTÁRGYAK, ALAGÚTÉPÍTÉS GEOTECHNIKA III. (LGB SE005-3) FÖLDALATTI MŰTÁRGYAK, ALAGÚTÉPÍTÉS 49 Zárt építési eljárás bányászati módszer Az alagút részei főte kalott mag Régi bányászati eljárások 51 NÖT alapelvei 52 A kőzet bevonása

Részletesebben

MUNKAGÖDÖR TERVEZÉSE

MUNKAGÖDÖR TERVEZÉSE MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Munkatérhatárolás szerkezetei Munkagödör méretezés Plaxis programmal Munkagödör méretezés Geo 5 programmal Tartalom Bevezetés VEM - geotechnikai alkalmazási területek

Részletesebben

Tartószerkezetek modellezése

Tartószerkezetek modellezése Tartószerkezetek modellezése 16.,18. elıadás Repedések falazott falakban 1 Tartalom A falazott szerkezetek méretezési módja A falazat viselkedése, repedései Repedések falazott szerkezetekben Falazatok

Részletesebben

SÍKALAPOK TERVEZÉSE. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

SÍKALAPOK TERVEZÉSE. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés SÍKALAPOK TERVEZÉSE SÍKALAPOK TERVEZÉSE síkalap mélyalap mélyített síkalap Síkalap, ha: - megfelelő teherbírású és vastagságú talajréteg van a felszín közelében; - a térszín közeli talajréteg teherbírása

Részletesebben

Kőzetállapot-előrejelzés mélyfúrás-geofizikai mérések alapján vágathajtás irányítás céljából. Tartalom

Kőzetállapot-előrejelzés mélyfúrás-geofizikai mérések alapján vágathajtás irányítás céljából. Tartalom Bányászati Geológus Fórum Mátrafüred, Kőzetállapot-előrejelzés vágathajtás irányítás céljából Szongoth Gábor Tartalom Bevezetés Az alkalmazott mélyfúrás-geofizikai módszerek RMR/Q rendszerű kőzettest-osztályozás

Részletesebben

Alépítményi és felszíni vízelvezetések

Alépítményi és felszíni vízelvezetések Alépítményi és felszíni vízelvezetések A vízelvezetésről általában A talajban és a felszínen megtalálható különbözõ megjelenési formájú vizek veszélyt jelenthetnek az épületeinkre. Az épületet érõ nedvességhatások

Részletesebben

A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából

A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából A HDPE és EPDM geomembránok összehasonlító vizsgálata környezetvédelmi alkalmazhatóság szempontjából Dr SZABÓ Imre SZABÓ Attila GEOSZABÓ Bt IMRE Sándor TRELLEBORG Kft XVII. Országos Környezetvédelmi Konferencia

Részletesebben

Alagútépítés 3. Előadásanyag 3.2 rész Ideiglenes biztosítás

Alagútépítés 3. Előadásanyag 3.2 rész Ideiglenes biztosítás Alagútépítés 3. Előadásanyag 3.2 rész Ideiglenes biztosítás Tóth Ákos Szepesházi Róbert 1 Megtámasztási rendszerek 1. A biztosítás és a kőzetdeformáció összefüggenek. A biztosításra ható teher függ a kőzet

Részletesebben

Dr. Fenyvesi Olivér Dr. Görög Péter Megyeri Tamás. Budapest, 2015.

Dr. Fenyvesi Olivér Dr. Görög Péter Megyeri Tamás. Budapest, 2015. BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM ÉPÍTŐMÉRNÖKI KAR ÉPÍTŐANYAGOK ÉS MAGASÉPÍTÉS TANSZÉK GEOTECHNIKA ÉS MÉRNÖKGEOLÓGIA TANSZÉK Készítette: Konzulensek: Csanády Dániel Dr. Lublóy Éva Dr. Fenyvesi

Részletesebben

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező

A= a keresztmetszeti felület cm 2 ɣ = biztonsági tényező Statika méretezés Húzás nyomás: Amennyiben a keresztmetszetre húzó-, vagy nyomóerő hat, akkor normálfeszültség (húzó-, vagy nyomó feszültség) keletkezik. Jele: σ. A feszültség: = ɣ Fajlagos alakváltozás:

Részletesebben

2011.11.08. 7. előadás Falszerkezetek

2011.11.08. 7. előadás Falszerkezetek 2011.11.08. 7. előadás Falszerkezetek Falazott szerkezetek: MSZ EN 1996 (Eurocode 6) 1-1. rész: Az épületekre vonatkozó általános szabályok. Falazott szerkezetek vasalással és vasalás nélkül 1-2. rész:

Részletesebben

Talajmechanika II. ZH (1)

Talajmechanika II. ZH (1) Nev: Neptun Kod: Talajmechanika II. ZH (1) 1./ Az ábrán látható állandó víznyomású készüléken Q = 148 cm^3 mennyiségű víz folyt keresztül 5 perc alatt. A mérőeszköz adatai: átmérő [d = 15 cm]., talajminta

Részletesebben

A módosított Hoek-Brown törési kritérium

A módosított Hoek-Brown törési kritérium A módosított Hoek-Brown törési kritérium DR. VÁSÁRHELYI BALÁZS okl. építõmérnök (FÕMTERV Rt., Talajmechnikai Iroda, Budapest) A cikk célja a már Magyarországon is bemutatott Hoek-Brown törési elmélet általánosított

Részletesebben

ALAPOZÁSOK MEGERŐSÍTÉSE

ALAPOZÁSOK MEGERŐSÍTÉSE 6. előadás ALAPOZÁSOK MEGERŐSÍTÉSE 2. 1. ALAPTEST ANYAGÁNAK MEGERŐSÍTÉSE, JAVÍTÁSA 2. FELSZERKEZET MEREVÍTÉSE, MEGERŐSÍTÉSE 3. ALAPTEST ANYAGÁNAK RÉSZLEGES CSERÉJE 4. ALÁTÁMASZTÁSI FELÜLET NÖVELÉSE, ALAPSZÉLESÍTÉS

Részletesebben

Földtani alapismeretek

Földtani alapismeretek Földtani alapismeretek A Földkérget alakító hatások és eredményük A Föld felépítése és alakító hatásai A Föld folyamatai Atmoszféra Belső geoszférák A kéreg felépítése és folyamatai A mállás típusai a

Részletesebben

Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását.

Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését és elfordulását. 10. számú mérnöki kézikönyv Frissítve: 2016. Február Síkalap süllyedése Program: Fájl: Síkalap Demo_manual_10.gpa Ebben a mérnöki kézikönyvben azt mutatjuk be, hogyan számoljuk egy síkalap süllyedését

Részletesebben

Földalatti mőtárgyak, alagútépítés II.

Földalatti mőtárgyak, alagútépítés II. Földalatti mőtárgyak, alagútépítés II. Zárt építési eljárás bányászati módszerekkel Az alagút részei fıte kalott mag Régi bányászati eljárások belga német aláfogásos magvahagyó módszer módszer Alagúthajtás

Részletesebben

A geotechnikai tervezés alapjai az Eurocode 7 szerint

A geotechnikai tervezés alapjai az Eurocode 7 szerint A geotechnikai tervezés alapjai az Eurocode 7 szerint Tartószerkezeti Eurocode-ok EN 1990 EC-0 A tartószerkezeti tervezés alapjai EN 1991 EC-1: A tartószerkezeteket érő hatások EN 1992 EC-2: Betonszerkezetek

Részletesebben

GEOTECHNIKA III. (LGB-SE005-3) TÁMFALAK

GEOTECHNIKA III. (LGB-SE005-3) TÁMFALAK GEOTECHNIKA III. (LGB-SE005-3) TÁMFALAK Bevezetés 2 Miért létesítünk támszerkezeteket? földtömeg és felszíni teher megtámasztása teherviselési típusok támfalak: szerkezet és/vagy kapcsolt talaj súlya (súlytámfal,

Részletesebben

Cölöpalapozások - bemutató

Cölöpalapozások - bemutató 12. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpalapozások - bemutató Ennek a mérnöki kézikönyvnek célja, hogy bemutassa a GEO 5 cölöpalapozás számításra használható programjainak gyakorlati

Részletesebben

Mikrocölöp alapozás ellenőrzése

Mikrocölöp alapozás ellenőrzése 36. számú mérnöki kézikönyv Frissítve: 2017. június Mikrocölöp alapozás ellenőrzése Program: Fájl: Cölöpcsoport Demo_manual_en_36.gsp Ennek a mérnöki kézikönyvnek a célja, egy mikrocölöp alapozás ellenőrzésének

Részletesebben

A beton kúszása és ernyedése

A beton kúszása és ernyedése A beton kúszása és ernyedése A kúszás és ernyedés reológiai fogalmak. A reológia görög eredetű szó, és ebben az értelmezésben az anyagoknak az idő folyamán lejátszódó változásait vizsgáló műszaki tudományág

Részletesebben

Alagútépítés Ideiglenes megtámasztás tervezése Példafeladat TÓTH Ákos

Alagútépítés Ideiglenes megtámasztás tervezése Példafeladat TÓTH Ákos Alagútépítés Ideiglenes megtámasztás tervezése Példafeladat TÓTH Ákos 2015.05.14 1 RMR Geomechanikai Osztályozás, RMR Az RMR rendszer 6 paraméterre alapul: 1. A kőzet egyirányú nyomószilárdsága; (r σ )

Részletesebben

Mérnökgeológia. 3. előadás. Szepesházi Róbert

Mérnökgeológia. 3. előadás. Szepesházi Róbert Mérnökgeológia 3. előadás Szepesházi Róbert 1 Geológia irodalomkutatás (desk study) Topográfiai térképek Geológiai térképek Geotechnikai térképek Geológiai, földrajzi leírások Felszínrendezési tervek Meglévő

Részletesebben

RÉSZLETEZŐ OKIRAT (1) a NAH /2018 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (1) a NAH /2018 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (1) a NAH-1-1743/2018 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki Kar Geotechnika

Részletesebben

A talajok összenyomódásának vizsgálata

A talajok összenyomódásának vizsgálata A talajok összenyomódásának vizsgálata Amit már tudni kellene Összenyomódás Konszolidáció Normálisan konszolidált talaj Túlkonszolidált talaj Túlkonszolidáltsági arányszám,ocr Konszolidáció az az időben

Részletesebben

SZERETETTEL KÖSZÖNTÖM ÖNÖKET!

SZERETETTEL KÖSZÖNTÖM ÖNÖKET! SZERETETTEL KÖSZÖNTÖM ÖNÖKET! Kartellben a természettel etikusan A kartell konkurens (versenytárs) vállalatok írásbeli vagy szóbeli megállapodása az egymás közti verseny korlátozására. (forrás: WIKIPÉDIA)

Részletesebben

GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI

GEOTECHNIKA I. LGB-SE TALAJOK SZILÁRDSÁGI JELLEMZŐI GEOTECHNIKA I. LGB-SE005-01 TALAJOK SZILÁRDSÁGI JELLEMZŐI Wolf Ákos Mechanikai állapotjellemzők és egyenletek 2 X A X 3 normál- és 3 nyírófeszültség a hasáb oldalain Y A x y z xy yz zx Z A Y Z ZX YZ A

Részletesebben

Mechanikai stabilizációs réteg a vasútépítésben

Mechanikai stabilizációs réteg a vasútépítésben Mechanikai stabilizációs réteg a vasútépítésben Szengofszky Oszkár Bük, 2017 Tartalom Rövid történeti áttekintés Fejlesztés -> TriAx Miért? TriAx Stabilizációs réteg TriAx georácsokkal Számítási mintapéldák

Részletesebben

A STATIKUS ÉS GEOTECHNIKUS MÉRNÖKÖK EGYMÁSRA UTALTSÁGA EGY SZEGEDI PÉLDÁN KERESZTÜL. Wolf Ákos

A STATIKUS ÉS GEOTECHNIKUS MÉRNÖKÖK EGYMÁSRA UTALTSÁGA EGY SZEGEDI PÉLDÁN KERESZTÜL. Wolf Ákos A STATIKUS ÉS GEOTECHNIKUS MÉRNÖKÖK EGYMÁSRA UTALTSÁGA EGY SZEGEDI PÉLDÁN KERESZTÜL Wolf Ákos Bevezetés 2 Miért fontos a geotechnikus és statikus mérnök együttm ködése? Milyen esetben kap nagy hangsúlyt

Részletesebben

MUNKAGÖDÖR TERVEZÉSE

MUNKAGÖDÖR TERVEZÉSE MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Bevezetés Munkagödör méretezése Plaxis programmal Munkagödör méretezése Geo 5 programmal MUNKAGÖDÖR TERVEZÉSE Bevezetés BEVEZETÉS Napjaink mélyépítési feladatainak

Részletesebben

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6.

TARTALOMJEGYZÉK. 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1.2 Anyagminőségek 6. 2. ALKALMAZOTT SZABVÁNYOK 6. statikai számítás Tsz.: 51.89/506 TARTALOMJEGYZÉK 1. KIINDULÁSI ADATOK 3. 1.1 Geometria 3. 1. Anyagminőségek 6.. ALKALMAZOTT SZABVÁNYOK 6. 3. A VASBETON LEMEZ VIZSGÁLATA 7. 3.1 Terhek 7. 3. Igénybevételek

Részletesebben

Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János

Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János Tartószerkezetek I. (Vasbeton szilárdságtan) Szép János VASBETON SZERKEZETEK TERVEZÉSE 2 Szabvány A tartószerkezetek tervezése jelenleg Magyarországon és az EU államaiban az Euronorm szabványsorozat alapján

Részletesebben

BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. Dr. Móczár Balázs

BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. Dr. Móczár Balázs Dr. Móczár Balázs 1 Az előadás célja MSZ EN 1997 1 szabvány 6. fejezetében és egyes mellékleteiben leírt síkalapozással kapcsolatos előírások lényegesebb elemeinek, a szabvány elveinek bemutatása Az eddig

Részletesebben

STATIKAI SZÁMÍTÁS (KIVONAT) A TOP Társadalmi és környezeti szempontból fenntartható turizmusfejlesztés című pályázat keretében a

STATIKAI SZÁMÍTÁS (KIVONAT) A TOP Társadalmi és környezeti szempontból fenntartható turizmusfejlesztés című pályázat keretében a Kardos László okl. építőmérnök 4431 Nyíregyháza, Szivárvány u. 26. Tel: 20 340 8717 STATIKAI SZÁMÍTÁS (KIVONAT) A TOP-6.1.4.-15 Társadalmi és környezeti szempontból fenntartható turizmusfejlesztés című

Részletesebben

A falazott szerkezetek méretezési lehetőségei: gravitációtól a földrengésig. 2.

A falazott szerkezetek méretezési lehetőségei: gravitációtól a földrengésig. 2. A falazott szerkezetek méretezési leetőségei: gravitációtól a földrengésig. 2. Dr. Sajtos István BME, Építészmérnöki Kar Szilárdságtani és Tartószerkezeti Tanszék 2. Vasalatlan falazott szerkezetek méretezési

Részletesebben

Síkalap ellenőrzés Adatbev.

Síkalap ellenőrzés Adatbev. Síkalap ellenőrzés Adatbev. Projekt Dátu : 02.11.2005 Beállítások (bevitel az aktuális feladathoz) Anyagok és szabványok Beton szerkezetek : EN 199211 szerinti tényezők : Süllyedés Száítási ódszer : Érintett

Részletesebben

Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez

Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez Erőtani számítás Szombathely Markusovszky utcai Gyöngyös-patak hídjának ellenőrzéséhez Pécs, 2015. június . - 2 - Tartalomjegyzék 1. Felhasznált irodalom... 3 2. Feltételezések... 3 3. Anyagminőség...

Részletesebben

GYŐR ARÉNA, Győr-Kiskút liget, Tóth László utca 4. Hrsz.:5764/1. multifunkcionális csarnok kialakításának építési engedélyezési terve

GYŐR ARÉNA, Győr-Kiskút liget, Tóth László utca 4. Hrsz.:5764/1. multifunkcionális csarnok kialakításának építési engedélyezési terve GYŐR ARÉNA, Győr-Kiskút liget, Tóth László utca 4. Hrsz.:5764/1 multifunkcionális csarnok kialakításának építési engedélyezési terve STATIKAI SZÁMÍTÁSOK Tervezők: Róth Ernő, okl. építőmérnök TT-08-0105

Részletesebben

MSZ EN 1610. Zárt csatornák fektetése és vizsgálata. Dr.Dulovics Dezső Ph.D. egyetemi docens. Dulovics Dezsőné dr főiskolai tanár

MSZ EN 1610. Zárt csatornák fektetése és vizsgálata. Dr.Dulovics Dezső Ph.D. egyetemi docens. Dulovics Dezsőné dr főiskolai tanár MSZ EN 1610 Zárt csatornák fektetése és vizsgálata Dr. Dulovics Dezső Ph.D. egyetemi docens, Dulovics Dezsőné dr. főiskolai tanár, Az előadás témakörei: -alkalmazási terület, fogalom meghatározások, általános

Részletesebben

GEOTECHNIKAI MONITORING AZ ALAGÚTÉPÍTÉSNÉL

GEOTECHNIKAI MONITORING AZ ALAGÚTÉPÍTÉSNÉL GEOTECHNIKAI MONITORING AZ ALAGÚTÉPÍTÉSNÉL 08.001 Alagútépítés Dr. Horváth Tibor Oktatási segédanyag. Budapest 2009. Budapesti Műszaki és Gazdaságtudományi Egyetem Mérnöktovábbképző Intézet Ezt a tananyagot

Részletesebben

10. előadás Kőzettani bevezetés

10. előadás Kőzettani bevezetés 10. előadás Kőzettani bevezetés Mi a kőzet? Döntően nagy földtani folyamatok során képződik. Elsősorban ásványok keveréke. Kőzetalkotó ásványok építik fel. A kőzetalkotó komponensek azonban nemcsak ásványok,

Részletesebben

Alagútépítés Előadásanyag 3.1 Előadás Ideiglenes biztosítás

Alagútépítés Előadásanyag 3.1 Előadás Ideiglenes biztosítás Alagútépítés Előadásanyag 3.1 Előadás Ideiglenes biztosítás TÓTH Ákos 2015.04.11 1 Megtámasztási rendszerek Alapfeltevések 1. A biztosítás és a kőzet deformációja közvetlen hatással van egymásra. A biztosításra

Részletesebben

Alagútépítés, földalatti műtárgyak

Alagútépítés, földalatti műtárgyak Alagútépítés, földalatti műtárgyak 1. Előadás Jövőkép Tervezés alapelvei Geológia 1 Föld feletti terek bővítése 2 Föld alatti terek hasznosítása 3 Budapest Fővámtéri Metróállomás 4 5 Földalatti létesítmények

Részletesebben

RÉSZLETEZŐ OKIRAT (1) a NAH /2017 nyilvántartási számú akkreditált státuszhoz

RÉSZLETEZŐ OKIRAT (1) a NAH /2017 nyilvántartási számú akkreditált státuszhoz RÉSZLETEZŐ OKIRAT (1) a NAH-1-1736/2017 nyilvántartási számú akkreditált státuszhoz 1) Az akkreditált szervezet neve és címe: FUGRO Consult Kft Geotechnikai Vizsgálólaboratórium 1115 Budapest, Kelenföldi

Részletesebben

Konszolidáció-számítás Adatbev.

Konszolidáció-számítás Adatbev. Tarcsai út. 57/8 - Budapest Konszolidáció-számítás Adatbev. Projekt Dátum : 7.0.0 Beállítások Cseh Köztársaság - régi szabvány CSN (7 00, 7 00, 7 007) Süllyedés Számítási módszer : Érintett zóna korlátozása

Részletesebben

SZENDVICSPANELEK. Szendvicspanelek

SZENDVICSPANELEK. Szendvicspanelek Szendvicspanelek SZENDVISPNELEK PUR-habos szendvicspanelek PUR-habos falszendvicspanel látszódó rögzítéssel PUR-habos falszendvicspanel rejtett rögzítéssel Eco tetőszendvicspanel PUR-habos tetőszendvicspanel

Részletesebben

Cölöpcsoport elmozdulásai és méretezése

Cölöpcsoport elmozdulásai és méretezése 18. számú mérnöki kézikönyv Frissítve: 2016. április Cölöpcsoport elmozdulásai és méretezése Program: Fájl: Cölöpcsoport Demo_manual_18.gsp A fejezet célja egy cölöpcsoport fejtömbjének elfordulásának,

Részletesebben

BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. Dr. Móczár Balázs

BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés. Dr. Móczár Balázs Dr. Móczár Balázs 1 Az előadás célja MSZ EN 1997 1 szabvány 6. fejezetében és egyes mellékleteiben leírt síkalapozással kapcsolatos előírások lényegesebb elemeinek, a szabvány elveinek bemutatása Az eddig

Részletesebben

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Tartószerkezet-rekonstrukciós Szakmérnöki Képzés 1. Bevezetés Falazott szerkezetek Tartalom Megnevezések, fal típusok Anyagok Mechanikai jellemzők 1 Falazott szerkezetek alkalmazási területei: 20. század: alacsony és középmagas épületek kb. 100 évvel

Részletesebben

TALAJOK OSZTÁLYOZÁSA ÉS MEGNEVEZÉSE AZ EUROCODE

TALAJOK OSZTÁLYOZÁSA ÉS MEGNEVEZÉSE AZ EUROCODE TALAJOK OSZTÁLYOZÁSA ÉS MEGNEVEZÉSE AZ EUROCODE ALAPJÁN Dr. Móczár Balázs BME Geotechnikai Tanszék Szabványok MSz 14043/2-79 MSZ EN ISO 14688 MSZ 14043-2:2006 ISO 14689 szilárd kőzetek ISO 11259 talajtani

Részletesebben

Töltésalapozások tervezése II.

Töltésalapozások tervezése II. Töltésalapozások tervezése II. Talajmechanikai problémák 2 alaptörés állékonyságvesztés vastag gyenge altalaj deformációk, elmozdulások nagymértékű, egyenlőtlen, időben elhúzódó süllyedés szétcsúszás vastag

Részletesebben

Korai vasbeton építmények tartószerkezeti biztonságának megítélése

Korai vasbeton építmények tartószerkezeti biztonságának megítélése Korai vasbeton építmények tartószerkezeti biztonságának megítélése Dr. Orbán Zoltán, Dormány András, Juhász Tamás Pécsi Tudományegyetem Műszaki és Informatikai Kar Építőmérnök Tanszék A megbízhatóság értelmezése

Részletesebben

VÍZZÁRÓSÁG, VÍZZÁRÓSÁG VIZSGÁLAT

VÍZZÁRÓSÁG, VÍZZÁRÓSÁG VIZSGÁLAT 1 VÍZZÁRÓSÁG, VÍZZÁRÓSÁG VIZSGÁLAT Az MSZ 47981:2004 (az MSZ EN 2061:2002 európai betonszabvány magyar nemzeti alkalmazási dokumentuma) szabvány érvényre lépésével a beton vízzáróságának régi, MSZ 4719:1982

Részletesebben

MUNKAGÖDÖR TER VEZÉSE TER Bevezetés

MUNKAGÖDÖR TER VEZÉSE TER Bevezetés MUNKAGÖDÖR TERVEZÉSE Munkagödör tervezése Bevezetés Munkagödör méretezése é Plaxis programmal Munkagödör méretezése é Geo 5 programmal MUNKAGÖDÖR TERVEZÉSE Bevezetés BEVEZETÉS Napjaink mélyépítési feladatainak

Részletesebben

Talajmechanika. Aradi László

Talajmechanika. Aradi László Talajmechanika Aradi László 1 Tartalom Szemcsealak, szemcsenagyság A talajok szemeloszlás-vizsgálata Természetes víztartalom Plasztikus vizsgálatok Konzisztencia határok Plasztikus- és konzisztenciaindex

Részletesebben

Boltozott vasúti hidak élettartamának meghosszabbítása Rail System típusú vasbeton teherelosztó szerkezet

Boltozott vasúti hidak élettartamának meghosszabbítása Rail System típusú vasbeton teherelosztó szerkezet Hatvani Jenő Boltozott vasúti hidak élettartamának meghosszabbítása Rail System típusú vasbeton teherelosztó szerkezet Fejér Megyei Mérnöki Kamara 2018. november 09. Az előadás témái Bemutatom a tégla-

Részletesebben

TALAJVIZSGÁLATI JELENTÉS TALAJMECHANIKAI SZAKVÉLEMÉNY SZÚRÓPONT

TALAJVIZSGÁLATI JELENTÉS TALAJMECHANIKAI SZAKVÉLEMÉNY SZÚRÓPONT TALAJVIZSGÁLATI JELENTÉS TALAJMECHANIKAI SZAKVÉLEMÉNY Besenyszög, Jászladányi út 503/3 hrsz. SZÚRÓPONT tervezéséhez Nagykörű 2013 december 07. Horváth Ferenc okl. építőmérnök okl. geotechnikai szakmérnök

Részletesebben

SZERKEZETI MŰSZAKI LEÍRÁS + STATIKAI SZÁMÍTÁS

SZERKEZETI MŰSZAKI LEÍRÁS + STATIKAI SZÁMÍTÁS 454 Iváncsa, Arany János utca Hrsz: 16/8 Iváncsa Faluház felújítás 454 Iváncsa, Arany János utca Hrsz.: 16/8 Építtető: Iváncsa Község Önkormányzata Iváncsa, Fő utca 61/b. Fedélszék ellenőrző számítása

Részletesebben

KŐZETESTEK MECHANIKAI ÁLLANDÓINAK VÁLTOZÁSA A KŐZET ÁLLAPOTÁNAK ÉS TAGOLTSÁGI RENDSZERÉNEK FÜGGVÉNYÉBEN

KŐZETESTEK MECHANIKAI ÁLLANDÓINAK VÁLTOZÁSA A KŐZET ÁLLAPOTÁNAK ÉS TAGOLTSÁGI RENDSZERÉNEK FÜGGVÉNYÉBEN OTKA 48645 ZÁRÓJELENTÉSE KŐZETESTEK MECHANIKAI ÁLLANDÓINAK VÁLTOZÁSA A KŐZET ÁLLAPOTÁNAK ÉS TAGOLTSÁGI RENDSZERÉNEK FÜGGVÉNYÉBEN Vásárhelyi Balázs, PhD. okleveles építőmérnök BME Építőmérnöki Kar Építőanyagok

Részletesebben

Közlekedési létesítmények víztelenítése geoműanyagokkal

Közlekedési létesítmények víztelenítése geoműanyagokkal geoműanyagokkal Vízelvezető geokompozitok Szatmári Tamás alkalmazás mérnök Bonar Geosynthetics Kft. XVII. KÖZLEKEDÉSFEJLESZTÉSI ÉS BERUHÁZÁSI KONFERENCIA 2016. 04. 20-22. BÜKFÜRDŐ Tartalom Az előadás tartalma

Részletesebben

Dr. Móczár Balázs. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés

Dr. Móczár Balázs. BME Szilárdságtani és Tartószerkezeti Tanszék. Tartószerkezet-rekonstrukciós Szakmérnöki Képzés Dr. Móczár Balázs 1 A z e l ő a d á s c é l j a MSZ EN 1997-1 szabvány 6. fejezetében és egyes mellékleteiben leírt síkalapozással kapcsolatos előírások lényegesebb elemeinek, a szabvány elveinek bemutatása

Részletesebben

befogadó kőzet: Mórágyi Gránit Formáció elhelyezési mélység: ~200-250 m (0 mbf) megközelítés: lejtősaknákkal

befogadó kőzet: Mórágyi Gránit Formáció elhelyezési mélység: ~200-250 m (0 mbf) megközelítés: lejtősaknákkal Új utak a földtudományban előadássorozat MBFH, Budapest, 212. április 18. Hidrogeológiai giai kutatási módszerek m Bátaapátibantiban Molnár Péter főmérnök Stratégiai és Mérnöki Iroda RHK Kft. A tárolt

Részletesebben

Betonpadlók a betontechnológus elképzelése és az új MSZ 4798 : 2014 betonszabvány lehetőségei szerint

Betonpadlók a betontechnológus elképzelése és az új MSZ 4798 : 2014 betonszabvány lehetőségei szerint Betonpadlók a betontechnológus elképzelése és az új MSZ 4798 : 2014 betonszabvány lehetőségei szerint Hódmezővásárhely 2014. november 6. Kovács József BTC Kft. Speciális betonok: Piaci igények alacsonyabb

Részletesebben

Építészeti tartószerkezetek II.

Építészeti tartószerkezetek II. Építészeti tartószerkezetek II. Vasbeton szerkezetek Dr. Szép János Egyetemi docens 2019. 05. 03. Vasbeton szerkezetek I. rész o Előadás: Vasbeton lemezek o Gyakorlat: Súlyelemzés, modellfelvétel (AxisVM)

Részletesebben

Függőleges és vízszintes vasalás hatása a téglafalazat nyírási ellenállására

Függőleges és vízszintes vasalás hatása a téglafalazat nyírási ellenállására Függőleges és vízszintes vasalás hatása a téglafalazat nyírási ellenállására FÓDI ANITA Témavezető: Dr. Bódi István Budapesti Műszaki és Gazdaságtudományi Egyetem Építőmérnöki kar Hidak és Szerkezetek

Részletesebben

Vizsgálati eredmények értelmezése

Vizsgálati eredmények értelmezése Vizsgálati eredmények értelmezése Egyszerű mechanikai vizsgálatok Feladat: töltésépítésre alkalmasnak ítélt talajok mechanikai jellemzőinek vizsgálata Adottak: Proktor vizsgálat eredményei, szemeloszlás,

Részletesebben

Előkészítő munkák (bontás és irtás) Tereprendezés és földmunkák

Előkészítő munkák (bontás és irtás) Tereprendezés és földmunkák Előkészítő munkák (bontás és irtás) Tereprendezés és földmunkák Talajosztályok: 1 Homok, laza termőtalaj 2 Nedves homok, kavics, tömör termőföld 3 Homokas agyag, száraz lösz 4 Tömör agyag, nagyszemű kavics

Részletesebben

GEOTECHNIKA III. NGB-SE005-03

GEOTECHNIKA III. NGB-SE005-03 GEOTECHNIKA III. NGB-SE005-03 HORGONYZOTT SZERKEZETEK Wolf Ákos 2015/16 2. félév Horgony 2 horgonyfej a szabad szakasz befogási szakasz Alkalmazási terület 3 Alkalmazási terület 4 Alkalmazási terület 5

Részletesebben

A JET GROUTING ALKALMAZÁSA AZ ALAGÚTÉPÍTÉSBEN

A JET GROUTING ALKALMAZÁSA AZ ALAGÚTÉPÍTÉSBEN A JET GROUTING ALKALMAZÁSA AZ ALAGÚTÉPÍTÉSBEN 08.001 Alagútépítés Dr. György Pál Oktatási segédanyag. Budapest 2009. Budapesti Műszaki és Gazdaságtudományi Egyetem Mérnöktovábbképző Intézet Ezt a tananyagot

Részletesebben

Szilárd testek rugalmassága

Szilárd testek rugalmassága Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)

Részletesebben

Talajok osztályozása az új szabványok szerint

Talajok osztályozása az új szabványok szerint Talaj- és kőzetosztályozás Talajok osztályozása az új szabványok szerint :5 Geotechnikai vizsgálatok. 1. rész: Azonosítás és leírás. MSZ EN ISO 14688-2:5 Geotechnikai vizsgálatok. 2. rész: Osztályozási

Részletesebben

A fenntartható geotermikus energiatermelés modellezéséhez szüksége bemenő paraméterek előállítása és ismertetése

A fenntartható geotermikus energiatermelés modellezéséhez szüksége bemenő paraméterek előállítása és ismertetése A fenntartható geotermikus energiatermelés modellezéséhez szüksége bemenő paraméterek előállítása és ismertetése Boda Erika III. éves doktorandusz Konzulensek: Dr. Szabó Csaba Dr. Török Kálmán Dr. Zilahi-Sebess

Részletesebben

TARTÓ(SZERKEZETE)K. 8. Tartószerkezetek tervezésének különleges kérdései (állékonyság, dilatáció, merevítés) TERVEZÉSE II.

TARTÓ(SZERKEZETE)K. 8. Tartószerkezetek tervezésének különleges kérdései (állékonyság, dilatáció, merevítés) TERVEZÉSE II. TARTÓ(SZERKEZETE)K TERVEZÉSE II. 8. Tartószerkezetek tervezésének különleges kérdései (állékonyság, dilatáció, merevítés) Dr. Szép János Egyetemi docens 2018. 10. 15. Az előadás tartalma Szerkezetek teherbírásának

Részletesebben

ÜVEGSZÁL ERŐSÍTÉSŰ MŰANYAG BIZTONSÁGI PADLÓK GRP BIZTONSÁGI PADLÓK GRP BP 25- GRP BP 50

ÜVEGSZÁL ERŐSÍTÉSŰ MŰANYAG BIZTONSÁGI PADLÓK GRP BIZTONSÁGI PADLÓK GRP BP 25- GRP BP 50 ÜVEGSZÁL ERŐSÍTÉSŰ MŰANYAG BIZTONSÁGI PADLÓK GRP BIZTONSÁGI PADLÓK GRP BP 25- GRP BP 50 GRP BIZTONSÁGI PADLÓK A legtöbb terhelésre és bonyolult geometriai megoldásokra A GRP biztonsági padlók olyan magas

Részletesebben

Súlytámfal ellenőrzése

Súlytámfal ellenőrzése 3. számú mérnöki kézikönyv Frissítve: 2016. Február Súlytámfal ellenőrzése Program: Súlytámfal Fájl: Demo_manual_03.gtz Ebben a fejezetben egy meglévő súlytámfal számítását mutatjuk be állandó és rendkívüli

Részletesebben

TALAJVIZSGÁLATI JELENTÉS ÉS TANÁCSADÁS. Kunfehértó, Rákóczi u. 13. sz.-ú telken épülő piactér tervezéséhez 2017.

TALAJVIZSGÁLATI JELENTÉS ÉS TANÁCSADÁS. Kunfehértó, Rákóczi u. 13. sz.-ú telken épülő piactér tervezéséhez 2017. TALAJVIZSGÁLATI JELENTÉS ÉS TANÁCSADÁS Kunfehértó, Rákóczi u. 13. sz.-ú telken épülő piactér tervezéséhez 2017. 1 I. Tervezési, kiindulási adatok A talajvizsgálati jelentés a Fehértó Non-profit Kft. megbízásából

Részletesebben

Geotechnikai mérések alagútépítés során

Geotechnikai mérések alagútépítés során Geotechnikai mérések alagútépítés során Dr. Horváth Tibor GEOVIL Kft. Canterbury Engineering Association LTD. 2016.04.15. GEOVIL KFT. GEOVIL Kft. GEOTECHNIKAI IRODA 2000 Szentendre, Ady E. u. 44/b. www.geovil.hu;

Részletesebben

Alapozások (folytatás)

Alapozások (folytatás) Alapozások (folytatás) Horváth Tamás PhD építész, egyetemi tanársegéd Széchenyi István Egyetem, Győr Építészeti és Épületszerkezettani Tanszék 1 Szerkezetváltozatok Sávalapok Helyszíni pontalapok Pontalapok

Részletesebben

Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései

Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései Kiöntött síncsatornás felépítmény kialakításának egyes elméleti kérdései VII. Városi Villamos Vasúti Pálya Napra Budapest, 2014. április 17. Major Zoltán egyetemi tanársegéd Széchenyi István Egyetem, Győr

Részletesebben

Pattex CF 850. Műszaki tájékoztató

Pattex CF 850. Műszaki tájékoztató BETON / TÖMÖR KŐ HASZNÁLAT FELHASZNÁLÁSI ÚTMUTATÓ 1. ALKALMAZÁSI TERÜLETEK ALAP ANYAGA: beton, tömör kő Nehéz terhet hordozó elemek rögzítése tömör kőben, betonban, porózus betonban és könnyű betonban.

Részletesebben

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS

TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS TANTÁRGYI ADATLAP I. TANTÁRGYLEÍRÁS 1 ALAPADATOK 1.1 Tantárgy neve KŐZETMECHANIKA 1.2 Azonosító (tantárgykód) BMEEOGMAS41 1.3 A tantárgy jellege kontaktórás tanegység 1.4 Óraszámok típus óraszám előadás

Részletesebben

Ipari padlók tervezése és kivitelezése OPTIMÁLIS ÉS KÖLTSÉGHATÉKONY MŰSZAKI MEGOLDÁSOK

Ipari padlók tervezése és kivitelezése OPTIMÁLIS ÉS KÖLTSÉGHATÉKONY MŰSZAKI MEGOLDÁSOK Ipari padlók tervezése és kivitelezése OPTIMÁLIS ÉS KÖLTSÉGHATÉKONY MŰSZAKI MEGOLDÁSOK Mit kell tudni ahhoz, hogy optimális műszaki tartalmú és ezért költséghatékony padlót, kültéri betonlemezt tervezzünk?

Részletesebben

Rézsűstabilizáció megtámasztó cölöpökkel

Rézsűstabilizáció megtámasztó cölöpökkel 19. számú Mérnöki kézikönyv Frissítve: 2016. október Rézsűstabilizáció megtámasztó cölöpökkel Program: Rézsűállékonyság, Megtámasztó cölöp Fájl: Demo_manual_19.gst Bevezetés A megtámasztó cölöpöket nagyméretű

Részletesebben