Nyomtatta és kötötte: Felelős vezető: A nyomdai megrendelés törzsszáma: Európai Szociális Alap
|
|
- Lili Kelemenné
- 6 évvel ezelőtt
- Látták:
Átírás
1 A kiadvány tól tankönyvvé nyilvánítási engedélyt kapott a TKV/8 14/017. számú határozattal. A kiadvány megfelel az 51/01. (II. 1.) EMMI-rendelet:. sz. melléklet: Kerettanterv az általános iskolák 5 8. évfolyama számára..03. előírásainak. A tankönyvvé nyilvánítási eljárásban közreműködő szakértők: Kónya István, Zarubay Attila Tananyagfejlesztők: Számadó László, Gedeon Veronika, Urbán Z. János, dr. Wintsche Gergely Alkotószerkesztő: dr. Wintsche Gergely Vezető szerkesztő: Tóthné Szalontay Anna Tudományos szakmai lektor: Rózsahegyiné dr. Vásárhelyi Éva Pedagógiai lektor: Beck Zsuzsanna Nyelvi lektor: Szőnyi László Gyula Fedélterv: Slezák Ilona, Orosz Adél Látvány- és tipográ iai terv: Orosz Adél Illusztráció: Létai Márton Szakábrák: Szalóki Dezső, Szalókiné Tóth Annamária Fotók: Wikimedia Commons; Pixabay; Public Domain Pictures; Morgue File; Flickr Digitális tananyagfejlesztés: Pájer Boróka, Horváth Márta, Duchon Jenő, Alföldi Katalin, Királyné Porer Katalin, Fried Katalin, Pintér Mária, Tóthné Szalontay Anna A tankönyv szerkesztői köszönetet mondanak a korábban készült tankönyvek szerzőinek. Az ő általuk megteremtett módszertani kultúra ösztönzést és példát adott e munkafüzet készítőinek is. Ugyancsak köszönetet mondunk azoknak az íróknak, költőknek, képzőművészeknek, akiknek alkotásai tankönyveinket gazdagítják. Köszönjük azoknak a tanároknak és diákoknak a munkáját, akik hasznos észrevételeikkel és javaslataikkal hozzájárultak e munkafüzet végső változatának kialakításához. Eszterházy Károly Egyetem (Oktatáskutató és Fejlesztő Intézet), 017 ISBN Eszterházy Károly Egyetem 3300 Eger, Eszterházy tér 1. Tel.: (+3-1) Fax: (+3-1) Vevőszolgálat: vevoszolgalat@o i.hu Kiadásért felel: dr. Liptai Kálmán rektor Raktári szám: FI /1 Műszakiiroda-vezető: Horváth Zoltán Ákos Műszaki szerkesztő: Orosz Adél Gra ikai szerkesztő: Kováts Borbála, Orosz Adél Nyomdai előkészítés: Kardos Gábor, Gados László Terjedelem: 1,48 A/5 ív, tömeg: 37 gramm 1. kiadás, 017 A kísérleti tankönyvek az Új Széchenyi Terv Társadalmi Megújulás Operatív Program 3.1.-B/ számú, A Nemzeti alaptantervhez illeszkedő tankönyv, taneszköz és Nemzeti Köznevelési Portál fejlesztése című projektje keretében készült. A projekt az Európai Unió támogatásával, az Európai Szociális Alap társ inanszírozásával valósult meg. Nyomtatta és kötötte: Felelős vezető: A nyomdai megrendelés törzsszáma: Európai Szociális Alap
2 JÁTÉKOS FELADATOK SUDOKU A 9 darab 3 3-as négyzetbe 1-től 9-ig írhatsz be számokat úgy, hogy minden szám csak egyszer szerepelhet benne, és a nagy négyzet soraiban és oszlopaiban is minden szám csak egyszer fordulhat elő A KERT Samu vetemé nyeskertjében min denféle földi jó meg talál ha tó. Samu fele sége Bori, a ( 1; 4)-ből és a (3; 3)-ból fog levest főzni, a (5; )-ből pedig még tortát is süt hozzá. A kilenc gyerek kedvence a ( 5; 4) lekvár, és a kis Dóri rajong a (3; 4)-ért, de nem eszi meg a ( 1; 4)-et. a) Miből lesz a leves? b) Miből készül a gyerekek kedvenc lekvárja? c) Mi Dóri kedvence? Mit nem szeret Dóri? d) A zöldségeskertben 4 katicabogár mászkál. Hol vannak most? e) Mik találhatók a ( 1; 1), (3; 5), ( 3; 1), (7; 3) helyeken? f) Hol vannak a -k? g) Hol helyezkednek el az -k? h) Miből van több a kertben -ból, vagy -ből? i) A kert 1 -át Samu gondozza, a többit a nagyobb gyerekek, Tóni, Kata, Zsiga és Rózsa egyenlő arányban. Mekkora rész jut egy-egy gyerekre?
3 JÁTÉKOS FELADATOK TORPEDÓ, avagy hol rejtőzik az ellenséges lotta? A torpedójátékot ketten játszhatjátok. Helyezzetek el a -os táblán egy db 3 egység hosszú, két db egység hosszú és három db 1 mezőt elfoglaló hajót! Ezek egymással még átlósan sem érintkezhetnek. Az helyen egy hajó tartózkodik. Takarjátok el saját tábláitokat, és felváltva tippelhettek. Keresd meg a társad 1, vagy 3 mezős hajóit! A társad tábláját az elején hagyd üresen, ebben jelölheted, hol fogod az ő hajóit elsüllyeszteni. Például: a társad azt mondja: a4, mire te azt, hogy: nem talált, és tippelsz egyet: d3. A társad válaszol, és azt mondja: d1, mire te azt válaszolod, hogy talált, süllyedt. (És így tovább.) Ha a te táblád: a b c d e f A te táblád (Töltsd ki!) a b c d e f Tippjeid a társad hajóiról a b c d e f a b c d e f a b c d e f HÁNYAN ÉLÜNK A FÖLDÖN? Míg 010-ben körülbelül 7 milliárd ember élt a Földön, addig 1950-ben még csak volt a Föld lakosainak a száma. Szakemberek szerint 050-ig bolygónk lélekszáma megközelítheti a Milliárd fő 1 A világ népessége régiók szerint (tény) (010. évi ENSZ előreszámítás, közepes változat) kilencmilliárdot Afrika Ázsia Európa Észak-Amerika Dél- és Közép-Amerika Ausztrália és Óceánia a) Mennyivel nőtt a Föld lakóinak száma 1950 és 010 között? b) Valószínűleg mennyivel fog nőni a Föld lakosainak a száma 010 és 050 között? c) A gra ikon alapján melyik földrész lakosainak a száma fog nőni a leggyorsabban 100-ig? d) Körülbelül hányan éltek a Földön, amikor te megszülettél?
4 I. MŰVELETEK, OSZTHATÓSÁG. ISMÉTLÉS 1 A 0-tól indulva kövesd soronként a lépéseket! Minden egyes műveletet új sorban hajthatsz végre. Például: +3 (+) ( 4) = a) 4 (+3) + 10 = b) + 8 ( 3) c) ( 3) Számolj fejben! Indulj nulláról! A megfejtendő szöveg egy könyv címe, amely egy híres mondásra utal. Fejtsd meg a szöveget! Nézz utána az interneten a mondás eredetének! START N N Y I T! L R S K C I Á Ú I CÉL
5 . ISMÉTLÉS 3 Számold ki! a) b) 1 ( 345) c) 47 ( ) Tekintsd a feladatokban lévő pozitív számokat évszámoknak! Milyen történelmi eseményeket tudsz hozzájuk kötni? 4 a) Ellenőrizd, hogy bűvös négyzet-e! b) Írd be a hiányzó egész számokat a bűvös négyzetbe! Apa rendszeresen a levetett ruháinak zsebeiben felejti az aprópénzt. Azt mondta Hannának, Annának és Lórinak, hogy a zakó- és nadrágzsebeiben talált pénz az övék lehet. Az egyes zsebekből előkerült összegeket kis tálkákban gyűjtötték. A következő összegek kerültek elő. 355 Ft, 70 Ft, 430 Ft, 490 Ft, 450 Ft, 15 Ft, 55 Ft, 170 Ft. El tudják e osztani a pénzt maguk között egyenlően, ha az egyes tálak tartalmát nem osztják tovább?
6 . AZ EGÉSZ SZÁMOK SZORZÁSA 1 Párosítsd a számokat az ellentettjükkel! Nem biztos, hogy mindegyiknek lesz párja. a) Ábrázold a számegyenesen a szorzatokat! A: ( 3) ( 1); B: ( 4) (+); C: ( 18); D: 7 ( 3); E: ( 3) ( 8); F: 3 11; G: ( 1) ( 4); H: (0) ( 5) b) Karikázd be kék ceruzával azokat a szorzatokat, amelyek az abszolút értékük ellentettjével egyenlők! c) Karikázd be piros ceruzával azokat a szorzatokat, amelyek megegyeznek abszolút értékükkel! 3 Állítsd növekvő sorrendbe a következő szorzatokat! A: ( 3) (5); B: ( 3) ( 4) ( 1); C: ( ) ( 10); D: 13 ( 3); E: ( 7) ( ); F: 1 4. < < < < < 4 A levegő hőmérséklete 500 méterenként 3 C-kal csökken. a) Ha a Föld felszínén 0 C a hőmérséklet, akkor mekkora a hőmérséklet 000 méter magasságban? b) Ha a földfelszínen 5 C a hőmérséklet, akkor mekkora a hőmérséklet 3500 méter magasságban? 5 Sötétedés előtt a levegő hőmérséklete 4 C. Este 8-kor lemegy a Nap. Sötétedés után a levegő hőmérséklete óránként két fokkal csökken. a) Mennyivel lesz hidegebb 4 óra múlva? b) Mennyi lesz a hőmérséklet óra múlva? c) Mennyi lesz a hőmérséklet 1 óra múlva?
7 . AZ EGÉSZ SZÁMOK SZORZÁSA Javítsd ki a dolgozatokat! Húzd alá a rossz eredményt, és pipáld ki a jókat! 7 Az egyik gleccser évente 70 métert csúszik lefelé. Mennyit tesz meg 1 év alatt? 8 Milyen magasra jut a kiránduló család 3 óra alatt, ha óránként 00 métert tesznek meg felfelé? Amikor ereszkednek, óránként 50 méterrel csökken a magasságuk. Mennyivel jutnak lejjebb óra alatt?
8 . AZ EGÉSZ SZÁMOK SZORZÁSA 9 Az áruk berakodása után az uszályok merülési mélysége 1,4-szeresre változott. a) Milyen mélyre merültek? b) Az uszályok mekkora magasságú része áll ki a vízből? 3, m 5, m 1, m 1, m 10 Kösd a pozitív eredményű műveleteket tartalmazó bójákat a pozitív jelű, a negatívakat a negatív jelű, a 0 eredményűeket pedig a 0 jelű cölöphöz! 0 ( ( )) (3 ( 4)) (( 4) ( 5)) ( )04 4 ( 3) ( ) (3 ( ) ( 7)) 5 ( 1) 3 ( 4) ( 4) ( 5) ( ) 11 Írd be az 1,, 3 számokat a 3 3-as táblázatba úgy, hogy minden sorban és minden oszlopban egy szám csak egyszer szerepelhet, de igyelj arra, hogy a vastagabb vonallal határolt tartományokban a megadott műveleteknek is igaznak kell lenniük! Például a 3/ azt jelenti, hogy az abban a részben álló két szám hányadosa 3. Nemcsak 3 3-as, hanem 4 4-es, 5 5-ös, es táblázatot is szoktak készíteni, ezekbe természetesen 1-től 4-ig..., 1-től 9-ig kell beírni a számokat. Segítségül egy kitöltött táblát megadtunk, a többit töltsd ki te! A Mathdoku játékot megtalálod az interneten is.
9 . AZ EGÉSZ SZÁMOK OSZTÁSA 1 Végezd el az osztásokat! a) ( 04):( 1) b) ( 35):(+8) c) 459 :( 9) d) ( 57): 1 e) ( 308):( 11) f) 13 : 41 g) ( 103):( 31) h) 0 :( 5) Párosítsd a számokat az ellentettjükkel! Nem biztos, hogy mindegyiknek lesz párja. 3 a) Ábrázold a számegyenesen a hányadosokat! A: ( 180):( 5); B: 54 :( 4); C: ( 7): 3; D: ( 57): 3; E: 0 :( 3); F: 58 : 1; G: (483):( 3); H: ( 305): b) Karikázd be kék ceruzával azokat a hányadosokat, amelyek az abszolút értékük ellentettjei! c) Karikázd be piros ceruzával azokat a hányadosokat, amelyek megegyeznek az abszolút értékükkel! 4 Állítsd növekvő sorrendbe a hányadosokat! A: ( 105) : 5 = B: ( 80) : ( 5) : ( 4) = C: ( 40) : ( 8) = D: 4 : ( 3) = E: ( 7) : ( 3) = F: 1 : 4 = < < < < < 5 A levegő hőmérséklete 500 méterenként 3 C-kal csökken. a) Milyen magasságban lesz a hőmérséklet 18 C-kal hidegebb a földfelszíni hőmérséklethez képest? b) Ha a földfelszínen 30,5 C a hőmérséklet, akkor milyen magasságban lesz 3,5 C a hőmérséklet?
10 . AZ EGÉSZ SZÁMOK OSZTÁSA Számold ki az eredményeket, és színezd ki a pozitív végeredményű mezőket! ( 3)0 ( 4 ( 0) ( 5 ) 9 ( 10) ( 1) ( 3) ( 10) (( 4) ) ( 3)( 1) ( 30) ( 15) (30 5 ( )) (5 ( 1)) (9 ( 3)) 3 7 5( 5) ( ( 3) ( 9)) ( 1) 3 ( 5) ( ) ( ) ( ( (3 ( )))) ( ) ( 3) (3) () ( 3)( 4) 8 (1 1) 7 ( ) ( 4) ( 3) 5 4 ( 7) 8 ( (48)) ( 1)0 ( 1) 7 Sötétedés előtt a levegő hőmérséklete 5 C. Sötétedés után a levegő hőmérséklete óránként 3 fokkal csökken. Mennyi idő múlva lesz 10 C a hőmérséklet? 8 Az egyik gleccser évente 5 métert ereszkedik. Mennyi idő alatt tesz meg 1495 métert? 9 Ha a hegymászók óránként 0 métert tesznek meg felfelé, akkor mennyi idő alatt másznak 150 méterrel magasabbra? Amikor ereszkednek, óránként 380 méterrel csökken a tengerszint feletti magasságuk. Mennyi idő alatt ereszkednek 0 métert?
11 . OSZTHATÓSÁG ZEL, TEL, VEL 1 Hamupipőke azt a feladatot kapta a gonosz mostohától, hogy minden ötödik szem lencsét tegye a kék edénybe, minden másodikat pedig a pirosba, de minden tizedik szemet tegyen el magának a kis sárga lábosába. Írd bele a lábosokba, hogy hányadik lencse hová kerül! 3; 4; 45; 79; 50; 15; 4; 78; 0; 40; 93; ; 5. Írd be a halmazábrába a számokat! 15; 00; 14; 54; 850; 900; 1048; 475; 5; 705; 975; Írd be a halmazábrába a számokat! 1; ; 3; 4; 5; ; ; 8; 9; Szo i hétjegyű telefonszáma nagyobb, mint , és osztható 5-tel. Ha a kapcsolási díj 4 Ft, akkor legfeljebb hány forint költséggel hívhatjuk fel Szo it?
12 . OSZTHATÓSÁG ZEL, TEL, VEL 5 Mely számjegyek kerülhetnek az üres négyzetekbe, hogy a) -vel osztható számot kapjunk? 4: ; 1: ; 5 : ; 1 4 : ; b) 5-tel osztható számot kapjunk? 0: ; 4 1: ; 19 : ; 3 :. Jeromos házáról tudni lehet, hogy a házszáma 8 és 135 között van, osztható -vel és még a hányados is oszható -vel. Legfeljebb hány házba kell becsöngetni, hogy megtaláljuk Jeromost? 7 Anna, Bea és Celesztina választottak egy-egy háromjegyű pozitív egész számot. A következőket mondják. Anna: Az én számom százasokra kerekített értéke 900, osztható 5-tel, de nem osztható -vel. Bea: Az én számom százasokra kerekített értéke nagyobb vagy egyenlő, mint a tízesekre kerekített értéke, osztható 5-tel és az első számjegye 8. Celesztina: Az én számom tízesekre kerekített értéke ugyanannyi, mint a százasokra kerekített értéke, ezresekre kerekítve pedig 1000, ezenkívül osztható 5-tel, de nem osztható 10-zel. Mik lehettek a lányok számai? Mik lehettek a lányok számai, ha mindhárman ugyanazt a számot választották? Anna száma lehet: Bea száma lehet: Celesztina száma lehet: Mindhárom lány választhatta: 8 Igaz-e? a) Ha egy számot 10-zel megszorzunk, akkor 0-ra fog végződni. b) Ha egy páratlan számot 5-tel megszorzunk, akkor 0-ra fog végződni. c) Ha egy páros számot 5-tel megszorzunk, akkor 0-ra fog végződni. d) Két páros számot összeszorozva páros számot kapunk. e) Két páratlan számot összeszorozva páros számot kapunk. f) Egy kettővel osztható szám számjegyeinek összege páros.
13 . OSZTHATÓSÁG MAL ÉS CEL 1 Kilenc egyforma nyakláncot szeretnének készíteni a gyerekek úgy, hogy az összes gyöngy elfogyjon. Sikerülhet-e nekik a: 117 piros gyöngy; b: 135 kék gyöngy; c: 189 sárga; d: 07 arany gyöngy; e: 1 fehér gyöngy; f: 387 zöld gyöngy esetén? Írd be a számokat a halmazábrába! 5; 7; 9; 11; 1; 18; 9; 51; 05; 58; 77; 585; 943;. 3 Egy kiránduláson a 3 gyereket három egyenlő létszámú csapatra akarták osztani a számháborúhoz. Hány gyerek legyen tagja a zsűrinek, hogy ez sikerüljön? 4 Milyen számjegyek kerülhetnek az üres négyzetekbe, hogy a) 3-mal osztható számot kapjunk? 41: ; 9 4: ; 53 : ; 9 9 : b) 9-cel osztható számot kapjunk? 0: ; 78 9: ; 79 : ; 3 : c) -tal osztható számot kapjunk? 3: ; 5 4: ; 9 1: ; 1 9 : d) 15-tel osztható számot kapjunk? 5: ; 7 0: ; 8 1: ; 18 : 5 Melyik igaz? a) Ha egy szám osztható 50-nel, akkor nem osztható 3-mal. b) 3-mal osztható szám nem végződhet 0-ra. c) 9-cel osztható szám biztosan osztható 18-cal. d) 18-cal osztható szám biztosan osztható 9-cel. e) Egy 9-cel osztható szám számjegyeinek összege 9. f) Ha egy szám osztható 3-mal, akkor osztható 9-cel is.
14 . PRÍMSZÁMOK, ÖSSZETETT SZÁMOK 1 Keresd meg a prímszámokat 1-től 5-ig eratosztenészi szitát használva! a) Keress páros prímszámot! b) Írd le a prímszámokat! c) Keresd meg a leghosszabb egymást követő összetett számokból álló sorozatot! d) Keresd meg azokat a prímeket, melyek különbsége 1! e) Keresd meg azokat a prímeket, amelyek különbsége! Írd le a számpárokat! Ábrázold diagramon, hogy a megadott számtartományokba hány darab prímszám esik!
15 . PRÍMSZÁMOK, ÖSSZETETT SZÁMOK 3 A halmazábrán megadtunk két számot. Prímtényezős alakban írtuk fel őket. Írd be a felsorolt számokat a halmazábra megfelelő helyére! 1; ; 3; 4, 5; ; 7; 8; 9; 10; 11; 1; 13; 14; 15; 1; 17; 18; 19; 0; 1; ; 3; 4; 5; ; 7; 8; 9; 30; 31; 3; 33; 34; 35; 3; 37; 38; 39; 40; 41; 4; 43; 44; 45; 4; 47; 48; 49; A szerencsekeréken igaz és hamis állítások találhatók. Színezd ki zölddel, ami igaz, pirossal, ami hamis! 5 A nála kisebb pozitív osztói az 1,, 3 és =. Keress ugyanilyen tulajdonságú számokat 0 és 30 között! A osztható 3-mal. A 39 összetett szám. Az 1 prímszám. A 7-tel osztható számok összetett számok. A -vel osztható szám 4-gyel is osztható. A 0 prímszám. A prím csak páratlan lehet. A -tal osztható szám -vel is osztható. Két prímszám szorzata mindig pár atlan. A 3 prímtényezős felbontásában 3 prímtényező van. A 10-zel osztható szám A 0 páros szám. minden számmal osztható. Írd fel 1-től 0-ig azokat a számokat, amelyeknek a) pontosan egy osztójuk van: b) pontosan két osztójuk van: c) pontosan három osztójuk van: d) pontosan négy osztójuk van: e) négynél több osztójuk van: 7 Készítsd el a következő számok prímtényezős felbontását! a) 1 b) 40 c) 4 d) 3 e) 7 f) 98
16 . KÖZÖS TÖBBSZÖRÖS, LEGKISEBB KÖZÖS TÖBBSZÖRÖS 1 Sorold fel a számok pozitív osztóit! a) 10 b) 1 c) 15 d) 1 e) 0 f) 0 Jelöld a számegyenesen a) a 3 és a 4 közös többszöröseit! b) a 4 és a közös többszöröseit! Mindkét esetben pirossal jelöld a legkisebb közös többszöröst! 3 Keresd meg a legkisebb közös többszöröst! a) [; 8] = b) [5; 10] = c) [; 8] = d) [7; 11] = e) [3; 5] = f) [4; 8; 1] = g) [; 3; ] = h) [; 3; 4] = i) [4; 5; ] = 4 A legkisebb közös többszörös felhasználásával hozd közös nevezőre a következő törteket, és végezd el a kijelölt műveleteket! a) 5 + = b) = 4 c) = d) = a) Írd be a halmazábrába a természetes számokat 1-től 3-ig! b) Írd be a halmazábrába a természetes számokat 1-től 3-ig! Mit állíthatsz az üresen maradt rész alapján?
Én is tudok számolni 2.
Én is tudok számolni 2. ELSŐ KÖTET A kiadvány 2018. november 11-én tankönyvi engedélyt kapott a TKV/3490-11/2018. számú határozattal. A tankönyv megfelel az 51./2012. (XII. 21.) számú EMMI-rendelet 11.
Matematika munkafüzet
Matematika munkafüzet osztályosoknak II. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Engedélyszám: TKV/36-10/2017 (2017.015.-20208.31.) A tankönyv megfelel az 51/201 (XII. 21.) számú
Matematika. 2. osztályosoknak. II. kötet. Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet
Matematika osztályosoknak II. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Engedélyszám: TKV/34-10/2017 (2017.015.-20208.31.) A tankönyv megfelel az 51/201 (XII. 21.) számú EMMI-rendelet
Matematika. 2. osztályosoknak. I. kötet. Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet
Matematika osztályosoknak I. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Engedélyszám: TKV/33-0/207 (207.05.-20208.3.) A tankönyv megfelel az 5/20 (XII. 2.) számú EMMI-rendelet.
Matematika munkafüzet
Matematika munkafüzet osztályosoknak I. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Engedélyszám: TKV/35-10/2017 (2017.015.-20208.31.) A tankönyv megfelel az 51/201 (XII. 21.) EMMI-rendelet
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 6. évfolyam eszközök diákok és csoportok részére 1. félév A kiadvány KHF/4632-14/2008. engedélyszámon 2008.12.16. időponttól tankönyvi engedélyt kapott Educatio
7. Számelmélet. 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel?
7. Számelmélet I. Nulladik ZH-ban láttuk: 1. Lehet-e négyzetszám az a pozitív egész szám, amelynek tízes számrendszerbeli alakjában 510 darab 1-es és valahány 0 szerepel? ELTE 2006. október 27. (matematika
OSZTHATÓSÁG. Osztók és többszörösök : a 3 többszörösei : a 4 többszörösei Ahol mindkét jel megtalálható a 12 többszöröseit találjuk.
Osztók és többszörösök 1783. A megadott számok elsõ tíz többszöröse: 3: 3 6 9 12 15 18 21 24 27 30 4: 4 8 12 16 20 24 28 32 36 40 5: 5 10 15 20 25 30 35 40 45 50 6: 6 12 18 24 30 36 42 48 54 60 1784. :
2005_01/1 Leírtunk egymás mellé hét racionális számot úgy, hogy a két szélső kivételével mindegyik eggyel nagyobb a két szomszédja szorzatánál.
Számolásos feladatok, műveletek 2004_1/1 Töltsd ki az alábbi bűvös négyzet hiányzó mezőit úgy, hogy a négyzetben szereplő minden szám különböző legyen, és minden sorban, oszlopban és a két átlóban is ugyanannyi
Matematika. munkafüzet. okosportál.hu. ÚJGENERÁCIÓS tankönyv. Kattanj a tudásra! A teljes tankönyv az Okosportálon is megtekinthető.
ÚJGENERÁCIÓS tankönyv R.sz.: FI-503010602/1 ISBN 978-963-436-028-5 9 789634 360285 6 Matematika munkafüzet A teljes tankönyv az Okosportálon is megtekinthető. okosportál.hu Kattanj a tudásra! 6 A kiadvány
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb
Számelmélet, műveletek, egyenletek, algebrai kifejezések, egyéb 2004_02/4 Tegyél * jelet a táblázat megfelelő rovataiba! Biztosan Lehet hogy, de nem biztos Lehetetlen a) b) c) Négy egymást követő természetes
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 4. évfolyam mérőlapok A kiadvány KHF/2569-5/2009. engedélyszámon 2009.05.13. időponttól tankönyvi engedélyt kapott Educatio Kht. Kompetenciafejlesztő oktatási
Számelmélet. 4. Igazolja, hogy ha hat egész szám összege páratlan, akkor e számok szorzata páros!
Számelmélet - oszthatóság definíciója - oszthatósági szabályok - maradékos osztás - prímek definíciója - összetett szám definíciója - legnagyobb közös osztó definíciója - legnagyobb közös osztó meghatározása
Egész számok. pozitív egész számok: 1; 2; 3; 4;... negatív egész számok: 1; 2; 3; 4;...
Egész számok természetes számok ( ) pozitív egész számok: 1; 2; 3; 4;... 0 negatív egész számok: 1; 2; 3; 4;... egész számok ( ) 1. Írd a következõ számokat a halmazábra megfelelõ helyére! 3; 7; +6 ; (
Számelmélet Megoldások
Számelmélet Megoldások 1) Egy számtani sorozat második tagja 17, harmadik tagja 1. a) Mekkora az első 150 tag összege? (5 pont) Kiszámoltuk ebben a sorozatban az első 111 tag összegét: 5 863. b) Igaz-e,
MATEMATIKA VERSENY
Vonyarcvashegyi Eötvös Károly Általános Iskola 2016. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
MATEMATIKA VERSENY
Vonyarcvashegyi Eötvös Károly Általános Iskola 2015. 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen, majd oldd meg a feladatokat! A részeredményeket
Műveletek egész számokkal
Mit tudunk az egész számokról? 1. Döntsd el, hogy igazak-e a következő állítások az A halmaz elemeire! a) Az A halmaz elemei között 3 pozitív szám van. b) A legkisebb szám abszolút értéke a legnagyobb.
Kedves harmadik osztályosok!
Kedves harmadik osztályosok! Köszöntünk titeket a matematika birodalmában! 3. osztályban is folytatjuk a barangolást. Ismét új kalandok, új felfedezések és rejtvényes feladatok várnak rátok. tankönyv mellett
;3 ; 0; 1 7; ;7 5; 3. pozitív: ; pozitív is, negatív is: ;
. A racion lis sz mok A tanult sz mok halmaza A) Ábrázold számegyenesen az alábbi számokat! 8 + + 0 + 7 0 7 7 0 0. 0 Válogasd szét a számokat aszerint, hogy pozitív: pozitív is, negatív is: negatív: sem
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Matematika. munkafüzet. ÚJGENERÁCIÓS tankönyv. Kattanj a tudásra! A teljes tankönyv az okosportálon is megtekinthető.
ÚJGENERÁCIÓS tankönyv R.sz.: FI-503010602/1 ISBN 978-963-436-028-5 9 789634 360285 6 Matematika munkafüzet A teljes tankönyv az okosportálon is megtekinthető. Kattanj a tudásra! 6 TARTALOMJEGYZÉK Játékos
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Számelmélet A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc
1. Írd le számjegyekkel illetve betűkkel az alábbi számokat! Tízezer-hétszáztizenkettő Huszonhétmillió-hétezer-nyolc 10 325 337 30 103 000 002 2. Végezd el az alábbi műveleteket, ahol jelölve van ellenőrizz!
MATEMATIKA VERSENY --------------------
Eötvös Károly Közös Fenntartású Általános Iskola 2013. és Alapfokú Művészetoktatási Intézmény 831 Vonyarcvashegy, Fő u. 8/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
MATEMATIKA 6. MUNKAFÜZET
MATEMATIKA 6. MUNKAFÜZET Oktatáskutató és Fejlesztő Intézet A kiadvány megfelel az 51/2012. (XII. 21.) EMMI rendelet: 2. sz. melléklet: Kerettanterv az általános iskolák 5 8. évfolyama számára 2.2.03.
MATEMATIKA 6. MUNKAFÜZET Megoldások
MATEMATIKA 6. MUNKAFÜZET Megoldások Oktatáskutató és Fejlesztő Intézet A kiadvány megfelel az 51/01. (XII. 1.) EMMI rendelet:. sz. melléklet: Kerettanterv az általános iskolák 5 8. évfolyama számára..0.
0645. MODUL SZÁMELMÉLET. Gyakorlás, mérés KÉSZÍTETTE: PINTÉR KLÁRA
0645. MODUL SZÁMELMÉLET Gyakorlás, mérés KÉSZÍTETTE: PINTÉR KLÁRA 0645. Számelmélet Gyakorlás, mérés Tanári útmutató 2 MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály Modulkapcsolódási pontok A
MATEMATIKA VERSENY ABASÁR, 2018
MATEMATIKA VERSENY ABASÁR, 2018 1. osztály 2018 /55 pont 1. Folytasd a sort! 0 1 1 2 3 5 /4 pont 2. Melyik ábra illik a kérdőjel helyére? Karikázd be a betűjelét! (A) (B) (C) (D) (E) 3. Számold ki a feladatokat,
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Számelmélet I.
Számelmélet I. DEFINÍCIÓ: (Osztó, többszörös) Ha egy a szám felírható egy b szám és egy másik egész szám szorzataként, akkor a b számot az a osztójának, az a számot a b többszörösének nevezzük. Megjegyzés:
Matematika munkafüzet 3. osztályosoknak
Matematika munkafüzet 3. osztályosoknak I. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted I. kötetét tartod a kezedben,
MATEMATIKAI KOMPETENCIATERÜLET A
MATEMATIKAI KOMPETENCIATERÜLET A Matematika 7. évfolyam eszközök tanárok részére 1. félév A kiadvány az Educatio Kht. Kompetenciafejlesztő oktatási program kerettanterve alapján készült. A kiadvány a Nemzeti
Oszthatóság. Oszthatóság definíciója (az egészek illetve a természetes számok halmazán):
Oszthatóság Oszthatóság definíciója (az egészek illetve a természetes számok halmazán): Azt mondjuk, hogy az a osztója b-nek (jel: a b), ha van olyan c egész, amelyre ac = b. A témakörben a betűk egész
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500
1. Mit nevezünk egész számok-nak? Válaszd ki a következő számok közül az egész számokat: 3 ; 3,1 ; 1,2 ; -2 ; -0,7 ; 0 ; 1500 2. Mit nevezünk ellentett számok-nak? Ábrázold számegyenesen a következő számokat
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez
NÉGYOSZTÁLYOS FELVÉTELI Részletes megoldás és pontozás a Gyakorló feladatsor I-hez Számadó László (Budapest) 1. Számold ki! a) 1 2 3 + 4 5 6 ; b) 1 2 3 + 4 5 6. 2 3 4 5 6 7 2 3 5 6 7 a) 1 2 3 4 2 3 4 +5
MATEMATIKA VERSENY
Eötvös Károly Közös Fenntartású Óvoda, Általános Iskola 2012. és Alapfokú Művészetoktatási Intézmény 8314 Vonyarcvashegy, Fő u. 84/1. 2. osztály MATEMATIKA VERSENY -------------------- név Olvasd el figyelmesen,
b) Melyikben szerepel az ezres helyiértéken a 6-os alaki értékű szám? c) Melyik helyiértéken áll az egyes számokban a 6-os alaki értékű szám?
A term szetes sz mok 1. Helyi rt kes r s, sz mk rb v t s 1 Monddkihangosanakövetkezőszámokat! a = 1 426 517; b = 142 617; c = 1 426 715; d = 1 042 657; e = 1 402 657; f = 241 617. a) Állítsd a számokat
A pillangóval jelölt feladatok mindenki számára könnyen megoldhatók. a mókussal jelölt feladatok kicsit nehezebbek, több figyelmet igényelnek.
Kedves második osztályos tanuló! Bizonyára te is szívesen tanulod a matematikát. A 2. osztályban is sok érdekes feladattal találkozhatsz. A Számoljunk! című munkafüzetünk segítségedre lesz a gyakorlásban.
Matematika munkafüzet 3. osztályosoknak
Matematika munkafüzet 3. osztályosoknak II. kötet Eszterházy Károly Egyetem Oktatáskutató és Fejlesztő Intézet Bevezető Kedves Harmadik Osztályos Tanuló! A matematika-munkafüzeted II. kötetét tartod a
6 ; 5 6 ; 4 3 ; 4 3 ; 3 2 ; 9 6 ; 1 2 ; 7 5 ; 3 10 ; 8 4 ; 10 8 ; 2
T rtek. ttekint s A) Ábrázold a törteket az adott számegyenesen! Rendezd nagyság szerint növekvő sorrendbe őket! a) ; 6 ; ; 6 ; ; 6 ; ; 6 ; 7 6 ; ; 9 6 ; 6. 0 b) ; 0 ; ; 7 0 ; ; ; 0 ; 8 0 ; 8 ; ; 0 ; 0.
91 100% kiválóan megfelelt 76 90% jól megfelelt 55 75% közepesen megfelelt 35 54% gyengén megfelelt 0 34% nem felelt meg
Kedves Kollégák! A Negyedik matematikakönyvem tankönyvekhez készítettük el a matematika felmé rőfüzetünket. Az első a tanév eleji tájékozódó felmérés, amelynek célja az előző tanév során megszerzett ismeretek
4,5 1,5 cm. Ezek alapján 8 és 1,5 cm lesz.
1. Tekintse az oldalsó ábrát! a. Mekkora lesz a 4. sor téglalap mérete? b. Számítsa ki az ábrán látható három téglalap területösszegét! c. Mekkora lesz a 018. sorban a téglalap oldalai? d. Hány téglalapot
0644. MODUL SZÁMELMÉLET. Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA
0644. MODUL SZÁMELMÉLET Közös osztók, közös többszörösök KÉSZÍTETTE: PINTÉR KLÁRA 0644. Számelmélet Közös osztók, közös többszörösök Tanári útmutató MODULLEÍRÁS A modul célja Időkeret Ajánlott korosztály
Hatványozás. A hatványozás azonosságai
Hatványozás Definíció: a 0 = 1, ahol a R, azaz bármely szám nulladik hatványa mindig 1. a 1 = a, ahol a R, azaz bármely szám első hatványa önmaga a n = a a a, ahol a R, n N + n darab 3 4 = 3 3 3 3 = 84
Köszöntünk titeket a negyedik osztályban!
Köszöntünk titeket a negyedik osztályban! Ez a számolófüzet a tankönyv és feladatgyûjtemény mellett segítségetekre lesz abban, hogy használatával gyakoroljátok a matematikaórán tanultakat. A következô
1. TÁJÉKOZÓDÁS A SAKKTÁBLÁN 1
TÁJÉKOZÓDÁS A SAKKTÁBLÁN Egy híres sakkozó nevét kapod, ha jó úton jársz. Írd át színessel a név betûit! P O V G P O L G J Á R D U J T U T D I I T 2. Moziba mentek a bábok. Nézz körül a nézôtéren, és válaszolj
A 5-ös szorzó- és bennfoglalótábla
A 5-ös szorzó- és bennfoglalótábla 1. Játsszátok el, amit a képen láttok! Hány ujj van a magasban, ha 1 kezet 3 kezet 4 kezet 0 kezet 6 kezet 8 kezet látsz? 1 @ 5 = 3 @ 5 = 4 @ 5 = 0 @ 5 = 0 2. Építsd
Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária. sokszínû. 5 gyakorló. kompetenciafejlesztõ munkafüzet. 2.
Dudás Gabriella Hetényiné Kulcsár Mária Machánné Tatár Rita Sós Mária sokszínû gyakorló kompetenciafejlesztõ munkafüzet. kötet Mozaik Kiadó Szeged, Színesrúd-készlet. Törtek bõvítése és egyszerûsítése
TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez
TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika
Számelmélet. Oszthatóság
Számelmélet Oszthatóság Egy szám mindazok az egész számok, amelyek az adott számban maradék nélkül megvannak. Pl: 12 osztói: 12=1x12=(-1)x(-12)=2x6=(-2)x(-6)=3x4=(-3)x(- 4) Azt is mondhatjuk, hogy 12 az
KÉSZÍTSÜNK ÁBRÁT évfolyam
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör 2018/2019.
Írásbeli szorzás. a) b) c)
Írásbeli szorzás 96 100 1. Számítsd ki a szorzatokat! a) 321 2 432 2 112 3 222 3 b) 211 2 142 2 113 3 112 4 c) 414 2 222 2 221 4 243 2 2. Becsüld meg a szorzatokat! Számítsd ki a feladatokat! a) 216 2
Oszthatósági problémák
Oszthatósági problémák Érdekes kérdés, hogy egy adott számot el lehet-e osztani egy másik számmal (maradék nélkül). Ezek eldöntésére a matematika tanulmányok során néhány speciális esetre látunk is példát,
HALMAZOK TULAJDONSÁGAI,
Halmazok definíciója, megadása HALMAZOK TULAJDONSÁGAI, 1. A következő definíciók közül melyek határoznak meg egyértelműen egy-egy halmazt? a) A: a csoport tanulói b) B: Magyarország városai ma c) C: Pilinszky
Boronkay György Műszaki Középiskola és Gimnázium Vác, Németh László u : /fax:
5. OSZTÁLY 1.) Apám 20 lépésének a hossza 18 méter, az én 10 lépésemé pedig 8 méter. Hány centiméterrel rövidebb az én lépésem az édesapáménál? 18m = 1800cm, így apám egy lépésének hossza 1800:20 = 90cm.
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY HARMADIK OSZTÁLY
45. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló Javítási útmutató HARMADIK OSZTÁLY 1. Marci tolltartójában fekete, piros és kék ceruzák vannak, összesen 20 darab. Hány fekete ceruza van
Egész számok értelmezése, összehasonlítása
Egész számok értelmezése, összehasonlítása Mindennapi életünkben jelenlevő ellentétes mennyiségek kifejezésére a természetes számok halmazát (0; 1; 2; 3; 4; 5 ) ki kellett egészítenünk. 0 +1, +2, +3 +
MEGOLDÓKULCSOK. 1. feladatsor (1. osztály)
MEGOLDÓKULCSOK 1. feladatsor (1. osztály) 1. feladat 8 9 10 14 15 16 10 11 12 18 19 20 1. pontdoboz: Hibátlan számszomszédok írása 1 pont, hiba 0 pont. 2. feladat 20 17 14 11 8 5 2 2. pontdoboz: Szabályfelismerésért
Köszöntünk titeket a harmadik osztályban!
Köszöntünk titeket a harmadik osztályban! Ez a számolófüzet a tankönyv és feladatgyűjtemény mellett segítségetekre lesz abban, hogy használatával gyakoroljátok a matematika órán tanultakat. A következő
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY. Megyei forduló április mal, így a számjegyeinek összege is osztható 3-mal.
44. ORSZÁGOS TIT KALMÁR LÁSZLÓ MATEMATIKAVERSENY Megyei forduló - 2015. április 11. HATODIK OSZTÁLY - Javítási útmutató 1. Melyik a legkisebb 3-mal osztható négyjegyű szám, amelynek minden számjegye különböző,
SZÁMTANI SOROZATOK. Egyszerű feladatok
SZÁMTANI SOROZATOK Egyszerű feladatok. Add meg az alábbi sorozatok következő három tagját! a) ; 7; ; b) 2; 5; 2; c) 25; 2; ; 2. Egészítsd ki a következő sorozatokat! a) 7; ; 9; ; b) 8; ; ; 9; c) ; ; ;
1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége?
1. Az idei tanév a 2018/2019-es. Mindkét évszámnak pontosan négy-négy osztója van. Mennyi a két legnagyobb prímosztó különbsége? A) 1 B) 336 C) 673 D) 1009 E) 1010 2. BUdapesten a BIciklik kölcsönzésére
1. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki
Számok ezerig. Dóri, Samu és Bianka pénzt számoltak, és beváltották nagyobb egységekre. Rakd ki játék pénzzel! a) Dóri pénze: Helyiérték-táblázatba írva: Százas Tízes Egyes 5 3 százas + 5 tízes + 3 egyes
TERMÉSZETES SZÁMOK OSZTHATÓSÁGA
TERMÉSZETES SZÁMOK OSZTHATÓSÁGA A MATEMATIKA A TITKOK SZOBÁJÁBAN Természetes számokat fogsz azonosítani különböző kontextusokban: természetes számokat fogsz azonosítani egy diagramban, egy grafikonban
Elemi matematika szakkör
Elemi matematika szakkör Kolozsvár, 2015. október 5. 1.1. Feladat. Egy pozitív egész számot K tulajdonságúnak nevezünk, ha számjegyei nullától különböznek és nincs két azonos számjegye. Határozd meg az
Óravázlat Matematika. 1. osztály
Óravázlat Matematika 1. osztály Készítette: Dr. Jandóné Bapka Katalin Az óra anyaga: Számok kapcsolatai, számpárok válogatása kapcsolataik szerint Osztály: 1. osztály Készség-és képességfejlesztés: - Megfigyelőképesség
2017/2018. Matematika 9.K
2017/2018. Matematika 9.K Egész éves dolgozat szükséges felszerelés: toll, ceruza, radír, vonalzó, körző, számológép 2 órás, 4 jegyet ér 2018. május 28. hétfő 1-2. óra A312 terem Aki hiányzik, a következő
Barangolás a nagyotmondók földjén Logika 3. feladatcsomag
Logika 2.3 Barangolás a nagyotmondók földjén Logika 3. feladatcsomag Életkor: Fogalmak, eljárások: 12 16 logikai következtetés igaz, hamis állítások állítások tagadása alapműveletek alkalmazása helyi érték,
5 labda ára 5x. Ez 1000 Ft-tal kevesebb, mint a nyeremény 1p. 7 labda ára 7x. Ez 2200Ft-tal több, mint a nyeremény 1p 5 x x 2200
2014. november 28. 7. osztály Pontozási útmutató 1. Egy iskola kosárlabda csapata egy tornán sportszervásárlási utalványt nyert. A csapat edzője szeretne néhány kosárlabdát vásárolni az iskola számára.
Matematika. munkafüzet. Kísérleti tankönyv
A teljes munkafüzet interneten keresztül is megtekinthető az Oktatáskutató és Fejlesztő Intézet honlapján (ofi.hu). Kísérleti tankönyv Raktári szám: FI-503010602 ISBN 978-963-682-764-9 9 789636 827533
Matematika. 1. osztály. 2. osztály
Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,
Szakács Lili Kata megoldása
1. feladat Igazoljuk, hogy minden pozitív egész számnak van olyan többszöröse, ami 0-tól 9-ig az összes számjegyet tartalmazza legalább egyszer! Andó Angelika megoldása Áll.: minden a Z + -nak van olyan
Gál Józsefné. Tanmenetjavaslat. a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez
Gál Józsefné Tanmenetjavaslat a Matematika csodái 2. osztályos tankönyvhöz és munkafüzethez Dinasztia Tankönyvkiadó Budapest, 2002 Írta: Gál Józsefné Felelôs szerkesztô: Ballér Judit ISBN 963 657 144 9
Bevezető. Kedves Negyedik Osztályos Tanuló!
Bevezető Kedves Negyedik Osztályos Tanuló! Örülünk, hogy ismét találkozunk, és együtt folytathatjuk megkezdett utunkat a matematika varázslatos birodalmában. Jó hír, hogy a munkafüzeted idén is segít a
Számokkal kapcsolatos feladatok.
Számokkal kapcsolatos feladatok. 1. Egy tört számlálója -tel kisebb, mint a nevezője. Ha a tört számlálójához 17-et, a nevezőjéhez -t adunk, akkor a tört reciprokát kapjuk. Melyik ez a tört? A szám: 17
Írásbeli összeadás. Háromjegyű számok összeadása. 1. Végezd el az összeadásokat! 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb!
Írásbeli összeadás Háromjegyű számok összeadása 1. Végezd el az összeadásokat! 254 + 200 = 162 + 310 = 235 + 240 = 351 + 124 = 2. a) Számítsd ki, mennyibe kerül a következő 2-2 báb! 213 Ft 164 Ft 222 Ft
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
Megyei matematikaverseny évfolyam 2. forduló
Megyei matematikaverseny 0. 9. évfolyam. forduló. Mennyi a tizenkilencedik prím és a tizenkilencedik összetett szám szorzata? (A) 00 (B) 0 (C) 0 (D) 04 (E) Az előző válaszok egyike sem helyes.. Az 000
Matematika 7. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Hat évfolyamos képzés Matematika 7. osztály III. rész: Számelmélet Készítette: Balázs Ádám Budapest, 2018 2. Tartalomjegyzék Tartalomjegyzék III.
A Zöld Matek blogon november augusztus. között megjelent. ingyenes feladatlapok. 1. osztályosoknak.
A Zöld Matek blogon 2014. november 2017. augusztus között megjelent ingyenes feladatlapok 1. osztályosoknak. 1. Színezz a minta szerint! 2. Milyen sorrendben történt a növény fejlődése? Rajzold be a nyilakat!
Curie Matematika Emlékverseny 5. évfolyam Országos döntő Megoldása 2017/2018.
Feladatokat írta: Tóth Jánosné Szolnok Kódszám: Lektorálta: Kis Olga Szolnok 08.04.07. Curie Matematika Emlékverseny. évfolyam Országos döntő Megoldása 07/08... Feladat.. 3. 4... összesen Elérhető 4 7
1. melléklet: A tanárokkal készített interjúk főbb kérdései
12. Mellékletek 1. melléklet: A tanárokkal készített interjúk főbb kérdései 1. Mikor tanít számelméletet és hány órában? (Pl. 9. osztályban a nevezetes azonosságok után 4 órában.) 2. Milyen könyvet használnak
PYTAGORIÁDA. 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó?
Az iskolai forduló feladatai 2006/2007-es tanév Kategória P 3 1. Két szám összege 156. Az első összeadandó a 86 és a 34 különbsége. Mekkora a másik összeadandó? 2. Számítsd ki: 19 18 + 17 16 + 15 14 =
Sorba rakva majd kijön! (A szerialitás fejlesztése) Válogatott témák válogatott feladatok 6. feladatcsomag
KOMPLEX ELADATOK Válogatott témák válogatott megoldások 3.6 Sorba rakva majd kijön! (A szerialitás fejlesztése) Válogatott témák válogatott feladatok 6. feladatcsomag Életkor: ogalmak, eljárások: 10 14
SZÁMTANI SOROZATOK. Egyszerű feladatok. 1. Egy számtani sorozatban:
SZÁMTANI SOROZATOK Egyszerű feladatok. Egy számtani sorozatban: a) a, a 29, a? 0 b) a, a, a?, a? 80 c) a, a 99, a?, a? 0 20 d) a 2, a2 29, a?, a90? 2 e) a, a, a?, a00? 2. Hány eleme van az alábbi sorozatoknak:
TUDOMÁNYOS ISMERETTERJESZTŐ TÁRSULAT
88 Budapest, Bródy Sándor u. 6. ostacím: Budapest, f. 76 Telefon: 8-5, 7-89, Fax: 7-89 Nyilvántartásba vételi szám: E-6/ Javítókulcs. osztály megyei. Titkos üzenetet kaptál. Szerencsére a titkosírás kulcsa
BOLYAI MATEMATIKA CSAPATVERSENY ORSZÁGOS DÖNTŐ SZÓBELI (2011. NOVEMBER 26.) 3. osztály
3. osztály Egy fa tövétől a fára mászik fel egy csiga. Nappalonként 3 métert mászik felfelé, de éjszakánként 2 métert visszacsúszik. Az indulástól számított 10. nap délutánjáig felér a csúcsra. Milyen
33. modul 1. melléklet 3. évfolyam Mérőlap/1. Név:. 1. Becsüld meg az összegeket! A tagok százasokra kerekített értékeivel végezd a becslést! Majd végezd is el az összeadásokat. Számításaidat kivonással
III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló
III. osztály 1 Orchidea Iskola IV. Matematika verseny 2011/2012 II. forduló 1. Mennyi az eredmény 15+17 15+17 15+17=? A) 28 B) 35 C) 36 D)96 2. Melyik szám van a piramis csúcsán? 42 82 38 A) 168 B) 138
Sorba rendezés és válogatás
Sorba rendezés és válogatás Keress olyan betűket és számokat, amelyeknek vízszintes tükörtengelyük van! Írd le! Keress olyan szavakat, amelyeknek minden betűje tükrös (szimmetrikus), amilyen például a
7! (7 2)! = 7! 5! = 7 6 5! 5 = = ből 4 elem A lehetőségek száma megegyezik az 5 elem negyedosztályú variációjának számával:
Kombinatorika Variáció - megoldások 1. Hány kétjegyű szám képezhető a 2, 3, 5, 6, 7, 8, 9 számjegyekből. ha minden számjegyet csak egyszer használhatunk fel? A lehetőségek száma annyi, mint amennyi 7 elem
Bizonyítási módszerek - megoldások. 1. Igazoljuk, hogy menden természetes szám esetén ha. Megoldás: 9 n n = 9k = 3 3k 3 n.
Bizonyítási módszerek - megoldások 1. Igazoljuk, hogy menden természetes szám esetén ha (a) 9 n 3 n (b) 4 n 2 n (c) 21 n 3 n (d) 21 n 7 n (e) 5 n 25 n (f) 4 n 16 n (g) 15 n (3 n 5 n) 9 n n = 9k = 3 3k
A KIPRÓBÁLÁSTÓL AZ ÁTDOLGOZÁSIG
A köznevelés tartalmi szabályozóinak megfelelő tankönyvek, taneszközök fejlesztése és digitális tartalomfejlesztés EFOP-3.2.2-VEKOP-15-2016-00001 A KIPRÓBÁLÁSTÓL AZ ÁTDOLGOZÁSIG MATEMATIKA, 5-6. ÉVFOLYAM
III.7. PRÍM PÉTER. A feladatsor jellemzői
III.7. PRÍM PÉTER Tárgy, téma A feladatsor jellemzői Számelmélet: osztó, többszörös, prímtényezős felbontás, legkisebb közös többszörös, legnagyobb közös osztó. Előzmények Cél Oszthatóság, prímtényezős
Kombinatorika. Permutáció
Kombinatorika Permutáció 1. Adva van az 1, 2, 3, 4, 5, 6, 7, 8, 9 számjegy. Hány különböző 9-jegyű szám állítható elő ezekkel a számjegyekkel, ha a számjegyek nem ismétlődhetnek? Mi van akkor, ha a szám
8. OSZTÁLY ; ; ; 1; 3; ; ;.
BEM JÓZSEF Jelszó:... VÁROSI MATEMATIKAVERSENY Teremszám:... 2010. december 7-8. Hely:... 8. OSZTÁLY Tiszta versenyidő: 90 perc. A feladatokat többször is olvasd el figyelmesen! A megoldás menetét, gondolataidat
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldás
Megoldás 1. Melyik mondat állítás a következőek közül? A: Szép idő van ma? B: A 100 szép szám. C: Minden prímszám páratlan. D: Bárcsak újra nyár lenne! Az állítás olyan kijelentő mondat, melyről egyértelműen