6. fejezet: Transzformátorok
|
|
- László Veres
- 9 évvel ezelőtt
- Látták:
Átírás
1 6. Fejezet Transzformátorok Transzformátorok/1
2 TARTALOMJEGYZÉK 6. FEJEZET TRANSZFORMÁTOROK Egyfázisú transzformátorok Működési elv és helyettesítő kapcsolás Fázorábra. Feszültségkényszer A transzformátor feszültségváltozása A rövidzárási állapot. 18 Transzformátorok/
3 Bevezetés Az erőátviteli transzformátorok - alapvetően csak ilyenekkel foglalkozunk - adott áramú és feszültségű teljesítményt más áramú és feszültségű teljesítménnyé alakítanak. Közben a frekvencia - és a fázisszám - nem változik. Alkalmazásuk azért szükséges, mert a villamos energia előállítása, szállítása és felhasználása más-más feszültségen - több lépcsőben - célszerű ill. gazdaságos. Nagy generátorok 15-0(5)kV feszültségen állítják elő az energiát. A joule-veszteség az áram négyzetével arányos ezért a szállítás - és elosztás - minél kisebb árammal, azaz minél nagyobb feszültséggel (nálunk 750, 400, 0, 10, 35, (3) kv) célszerű. A fogyasztók különböző kisebb feszültségeken - a kommunális fogyasztók 400/31V-al, az ipariak többnyire néhány kv-al működnek. A transzformátorok tehát az energiarendszerek fontos - többszörös generátor teljesítményt kitevő - elemei. De talán még ennél is nagyobb elméleti jelentőségük. Forgó gépeinket - így az indukciós motort - majd visszavezetjük a transzformátor nyugvó áramkörére. Így aki a transzformátor elméletét elsajátította részben pl. az indukciós motorokat is ismeri. Itt célszerű három előzetes megjegyzés: 1. Az erőátviteli transzformátor feszültségtranszformátor - feszültséggenerátoros táplálású. Az energetikai hálózatok állandó feszültségűek és frekvenciájuak. Ez vizsgálataink meghatározó tényezője. Röviden majd az állandó áramú áramtranszformátorral is találkozunk.. A gépnagyság hatásait bemutató, minőségi tájékoztató törvények a növekedési törvények. Gépeink vasmagból és tekercselésből állnak. Előbbi vezeti a fluxust, utóbbi az áramot és a gép látszólagos teljesítménye a kettő szorzatával mérhető. Ha a gép lineáris mérete L akkor látszólagos teljesítménye 4 S fluxus áram vaskeresztmetszet tekercskeresztmetszet L L = L míg a gép köbtartalma K ~ L 3 A gép ára köbtartalmával arányos így a teljesítményre vonatkoztatott fajlagos ár Ár K ár ~ Telj. ~ S ~ 1 L ~ 1 4 S Tehát egy 10-szeres teljesítményű gép viszonylagos ára =,, azaz 44%-kal kisebb. A gépnagysággal az ellenállás az Transzformátorok/3
4 L R = ρ l 1 ~ = A L L összefüggés szerint - ahol l a vezetőhossz A a keresztmetszet - csökken míg Am L L= ΛN Λ = µ ~ = L l m L értelmében - ahol Λ a mágneses vezetés A m a mágneses keresztmetszet és l m az út hossz - a gépteljesítmény növekedésével az induktivitás így a reaktancia értéke nő. 3. A váltakozó áramú motorok működésének alapja a forgó mágneses mező, amelynek előállításához többfázisú tekercselés kell. Erőátviteli hálózataink ezért a legkisebb vezetőszámot igénylő háromfázisú felépítésüek. Vizsgálatainkat mégis az egyfázisú transzformátorokkal kezdjük. Két okból. Egyrészről az pl. a kommunális fogyasztóknál széleskörüen alkalmazott, másrészről vizsgálataink többsége szempontjából a háromfázisú transzformátor egyfázisú transzformátorok együttesének tekinthető Egyfázisú transzformátorok Működési elv és helyettesítő kapcsolás A transzformátor vasmagos kölcsönös induktivitás. A cél a két tekercs minél tökéletesebb csatolása azaz a minél nagyobb kölcsönös fluxus (az un. főfluxus) és a legkisebb a csatolásban részt nem vevő fluxusok (az un. szórt fluxusok) kialakítása. Ezt a vasmaggal és azzal érjük el, hogy a két tekercs egymást körülveszi. (l. 6.1.a. ábra). A 6.1. ábra láncszem típusú transzformátorának vasmagja és tekercsei mint a lánc két szeme kapcsolódnak egymásba. 6.1 ábra Transzformátorok/4
5 Vizsgálati módszerünk: Gépeink így a transzformátor is (l. 6.1.a. ábra) bonyolult háromdimenziós térbeli elrendezések. Ezért modelezzük azokat, azaz vizsgálatainknak megfelelő elhanyagolásokkal, közelítésekkel kialakított áramkörré egyszerüsítjük őket és abban gondolkodunk. Erőátviteli, kisfrekvenciás, normál üzemű - elsősorban állandósult állapotbeli - vizsgálatokra alkalmas, egyszerű, koncentrált paraméterű helyettesítő (modellező) áramkört kívánunk kialakítani, éspedig a szuperpozíció érdekében lineáris, azaz állandó paraméterű - és galvanikus csatolású - kapcsolást. Így elhanyagoljuk a tekercsek menet- és földkapacitásait és lineáris vasmagot tételezünk fel. Utóbbi a feszültségkényszerrel nyert gyakorlatilag állandó fluxus révén - ezt látni fogjuk - normál üzemben megengedhető közelítés. Fluxusaink ψ/n úgynevezett egyenértékű menetfluxusok. További közelítéseket menet közben látunk. Kitérő: A koncentrált paraméteres áramkör: A villamos jelenségek térben és időben folynak, elektromágneses hullámok alakjában terjedve. Ha a vizsgált berendezés mérete a hullámhosszhoz képest kicsi - pl. a kis frekvenciának megfelelő nagy hullámhossz miatt - akkor a villamos és mágneses térerősség térbeli változása elhanyagolható és csak az időbeli változásokat vizsgáljuk. A 6.1.b. ábrán a szemléletesség kedvéért a transzformátor teljesítményt leadó, szekunder tekercsét a transzformátor másik oszlopára rajzoltuk. Primernek nevezzük azt a tekercset, amely teljesítményt vesz fel. "Feltranszformáláskor" a kis feszültségű tekercs a primer "letranszformáláskor" a nagyfeszültségű. Tápláljuk először a transzformátorunk primer tekercsét üresjárásban, azaz nyitott szekunder kapcsokkal. A kialakuló bonyolult fluxusképét a fluxusvonalak hatásai szerint - kissé önkényesen - két részfluxusra bonthatjuk. A vasmagban haladó mindkét tekerccsel kapcsolódó hasznos fluxus (l. 6.. ábra) létesíti az energiaátvitelt ezért azt főfluxusnak - vagy mágnesező fluxusnak - nevezzük és φ -vel, jelöljük. Mivel a vas permeabilitása a levegőének kb szerese a főfluxus sokkal nagyobb mint a levegőben záródó néhány százalékot kitevő szórt fluxus, a primer tekercs φ s1 szórt fluxusa. A 6.. ábrán rajzolt fluxusképek szimbólikusak, vázlatosak. Transzformátorok/5
6 6. ábra Ha a transzformátorra terhelést - fogyasztókat - kapcsolunk akkor a szekunder tekercsben is folyik áram. Ekkor ott is megjelenik a φ s szekunder szórt fluxus (6.. ábra). A főfluxust a két tekercs eredő gerjesztése hozza létre. Hogyan, azt később látjuk. Kitérő: Itt újabb kitérők - emlékeztetők - szükségesek. 1. A következőkben az un. "fogyasztói" vonatkozási vagy pozitív irányrendszert használjuk. A 6.3. ábra szimbolikus T termelő és F fogyasztó kétpólusa mindegyikében mind az áram mind a feszültség pozitív irányát egyformán A-tól B felé választjuk. 6.3 ábra. A fázor: Időben szinuszosan változó mennyiségnek - pl. a 6.4. ábra áramának - pontos leírása: jϕi jωt [ ] [ m] it () = I sin( ωt+ ϕ ) = ImI e e = I m i m (6-1) Itt Im a vetítést a szinuszos, imaginárius rész képzést, I m a maximális értéket, e j ϕi a kezdő helyzetet, e jωt időtényezőt jelöli. a síkvektor forgatást az un. Transzformátorok/6
7 6.4 ábra Forgassuk a síkvektor helyett az időtengelyt ellenkező irányban és hagyjuk el a vetítés Im jelét. Így nyerjük az Im = Ime jϕi fázort. A gyakorlatban - az állandósult állapotban - az I m maximális érték helyett az I effektív értéket szokás használni. 3. A szimbólikus módszer: Segítségével szinuszos időbeli változáskor differenciálegyenleteink algebrai egyenletekké egyszerűsödnek. Válasszuk példának a soros R, L, C kört: Az u u Ri L di idt = + + dt C Ue j ω = Im t és i Ie j ω = Im t effektív értékek - majd áttérve a teljes vektorokra Az ωl 1 Ue = RIe + jωlie j ωc Ie j ω t j ω t j ω t j ω t helyettesítéssel - ahol U és I = X L és 1/ ωc= X C induktív és kapacitív rekatanciákkal [ L C ] U = I R+ j( X X ) (6-) 4. A komplex teljesítmény: A feszültség és áram közötti fázisszög irányát U-tól I felé választjuk, azaz (l ábra): ϕ ϕ ϕ = i u (6-3) Transzformátorok/7
8 6.5 ábra Ezzel a komplex teljesítmény kifejezése a feszültség konjugáltjának választásával: jϕ jϕ j( ϕ ϕ ) jϕ S = U I = Ue uie u = UIe i u = UIe = = UIcosϕ+ jui sinϕ = P + jq (6-4) 5. A "fogyasztói" irányrendszer: A (6-4) kifejezés "következményeit" a 6.6.ábra mutatja. A választott irányrendszerrel a felvett hatásos teljesítmény pozitív előjelű a leadott negatív, a kondenzátor "leadott" meddő teljesítménye pozitív, az induktivitás "felvett" meddő teljesítménye negatív előjelű. 6.6 ábra Transzformátorok/8
9 A tekercsek indukált feszültségeinek U N d φm U N d φ = i m= dt dt im 1 1 m (6-4) számításakor a főfluxus jωt jϕ jωt m φ φ = φ e = φ e e m m teljes időfüggvényével kell számítanunk jωt im 1 1 m im U = jωn φ e U = jωn φ e majd az időfüggvényt itt is elhagyjuk: U = jωn φ U = jωn φ (6-5) im 1 1 m im m Hányadosuk a menetszám áttétel U1im N1 n = = Uim N A primer indukált feszültség effektív értéke U Így: U 1i = Uim 1 1 fn 1 1 = π φ m m jωt (6-6) = 444, f N φ (6-7) 1i 1 1 m Fontos, sokszor alkalmazott, kifejezést nyertünk. φ m a főlfuxus maximális értéke. A tekercsek ellenállásai ill. szórt fluxusai nem vesznek részt az energiaátvitelben. Ezért azokat kiemeljuk a tekercsekből és a valóságos tekercseket ideális, ellenállás és szórásmentes tekercsekkel és az eléjük kötött R, X s soros kapcsolásával helyettesítjük. A vasmagról - egyelőre - feltesszük, hogy veszteségmentes és végtelen permeabilitású azaz gerjesztést sem igényel. Ezt részletesebben később látjuk. A szórt fluxusok hatását nem indukált feszültségként - feszültségforrásként - hanem célszerűen az ellenállásokhoz hasonlóan feszültségesésként vesszük figyelembe. A (6-7) kifejezést a primer tekercs szórt fluxusa által indukált feszültségre alkalmazva a szórt fluxus kapcsolódás ψ s1 effektív értékével s1 Us1 = πf1n1φs1 = πf ψ 1 I1= ω 1Ls11 I = Xs11 I (6-8) I 1 Transzformátorok/9
10 ahol Ls1 =ψ s1/ I1 a primer tekercs szórási induktivitása. Ílymódon a szórási feszültségesések kifejezései, figyelembe véve, hogy az indukált feszültség 90 kal siet a fluxushoz ill. áramhoz képest U = jx I U = jx I (6-9ab) s1 s1 1 s s Mindezekkel a 6.7. ábra kapcsolását nyerjük. Az ideális transzformátor szórás és veszteségmentes, csak a - gerjesztést nem igénylő - főfluxust tartalmazza. 6.7 ábra A primer ill. szekunder kör feszültségegyenlete: U1 = R1I1+ jxs1i1+ U1i (6-10ab) U = RI + jxsi + Ui Látható, hogy választott irányrendszerünkkel a jobboldalak minden tagja pozitív előjelű. Tisztán "galvanikus" csatolású, kölcsönös induktivitás nélküli helyettesítő áramkört szeretnénk. Ehhez az ideális transzformátort kell kiiktatni. Ezt akkor tudjuk megtenni - a primer és szekunder tekercsek menetenkénti összekötése révén - ha a valóságos N menetszámú szekundert egyenértékű N 1 menetszámúval helyettesítettük. Feladatunkat két részlépésre bontva teljesítjük. Először megkeressük a szekunder tekercs N N 1 transzformációját, majd az így nyert "egytekercses" ideális "transzformátor" modellezését vizsgáljuk. 1. Lehetséges-e az N N 1 helyettesítés? A válaszhoz meg kell vizsgálnunk a szekunder tekercs szerepét, visszahatását a primerre. Kitérő: A mágneses ohm törvény: A gerjesztési törvény szerint a mágneses térerősség zárt görbe mentén vett vonalmenti integrálja egyenlő a Transzformátorok/10
11 görbe fölé kifeszített - tetszőleges - felületen áthaladó áramok algebrai összegével az F = i gerjesztéssel: z Hd l = i = F Az egyszerűség kedvéért tételezzük fel, hogy a vasmagban H állandó és mindenütt dl irányú. Ekkor: B φ F= Hdl = Hl = l = l = µ µ A és innen a fluxus - a mágneses "áram" - egyenlő a gerjesztés - a mágneses "feszültség" és a Λ m mágneses "vezetés" szorzatával φ = Λ m = F A a vasmag keresztmetszete, l közepes hossza. Ha H nem állandó, akkor Λ m az eredő mágneses vezetést jelenti. Terheléskor a főfluxust, a vasmag fluxusát a primer és a szekunder gerjesztések eredője hozza létre. A mágneses ohm törvény szerint a primer tekercs főfluxus kapcsolódása, tekercsfluxusa: ψ 1 = N 1 Φ = N 1 ( Λ m F) (6-11) A 6.8. ábra vasmag "ablakát" átdöfő áramok gerjesztése F = N11 I + NI (6-1) a primer és a szekunder tekercsek gerjesztéseinek eredője. (A szemléletesség kedvéért az ábrán csak a menetek belső metszetét tüntettük fel.) φ Λ m 6.8 ábra Ílymódon (6-11) a ψ 1 = N 1 m N 1 I 1 + N I Λ ( ) (6-13) Transzformátorok/11
12 alaku. Tehát az adott üzemállapothoz tartozó fluxus változatlan tartásához az NI gerjesztésnek nem szabad megváltoznia. De az NI N N 1 N I N 1 = = n I = N I (6-14) átalakítás megengedhető. Ha tehát a valóságos szekunder tekercset, képzeletben olyan N 1 menetszámú tekerccsel helyettesítjük, amelyben az I I = (6-15) n a primerre redukált szekunder áram folyik akkor a primer tekercs "nem veszi észre a cserét". (Jól becsaptuk!) Mi a hatása az N N 1 cserének a szkunder körben? Ennek megállapítására szorozzuk meg a (6-10b) szekunder feszültségegyenletet n-nel és az áramot tartalamzó tagokat még n/n-nel: nu nu n R I jn X I = i + + s (6-16) n n A (6-6) egyenlet értelmében nu = U. Az i 1i U = nu R = n R X = n X s s (6-17abc) kifejezések a primerre redukált - primerre átszámított - szekunder kapocsfeszültséget, ellenállást ill. szórási reaktanciát jelentik, így U = U + R I + jx I 1i s (6-18) a primerre redukált szekunder feszültség egyenlet. Könnyen megmutatható, hogy RI = RI és X si = XsI, azaz sem a szekunder rézveszteség sem a szórási meddő teljesítmény nem változott.. Második lépésként az "aktív" U 1 i feszültségforrást "passzív" induktív feszültségeséssel helyettesítjük. (6-13) és (6-14) szerint: ψ 1 1 Λm Λm Λm = N ( NI + NI ) = N ( NI + NI ) = N ( I + I ) (6-19) 1 N1 Λ m = L µ 1 a transzformátor primer oldali mágnesező induktivitása I1+ I = I µ 1 a primer oldali mágnesező árama. Így (6-5) szerint U1i = jωψ1 = jω L µ 1I µ 1 (6-0) Transzformátorok/1
13 I µ1 a transzformátor - primer oldali - mágnesező árama, amely az üresen járó - nyitott szekunderű - transzformátor vasmagjában ugyanakkora főfluxust hoz létre mint terheléskor a primer és szekunder tekercsek - azok gerjesztései - együtt. A mágnesező áram bevezetésével a vasmag végtelen permeabilitásának idealizáló feltevését is elvetettük. Időnként erre majd visszatérünk. Ugyanis az I µ1 = 0 feltételezés az IN 1 1 = IN "a gerjesztések egyensúlya" jól hasznosítható törvényéhez vezet. Kitérő: Lineáris esetben a φ=λf=λni mágneses ohm törvénnyel az ön- ill. kölcsönös induktivitás ismert kifejezéseire juthatunk: ψ Nφ NΛNI L = = = L= N Λ I I I ψ Nφ NΛN1I1 M = = = M = N1NΛ I I I Az ω L µ 1 = X µ 1 mágnesező reaktancia bevezetésével már felrajzolhatjuk a transzformátor helyettesítő áramkörét, kapcsolását (6.9. ábra). 6.9 ábra A kapcsolást még kiegészítettük az eddig elhanyagolt vasveszteségeket jellemző ellenállással. A vasveszteség közelítőleg az indukció négyzetével, azaz a főfluxus így az indukált feszültség négyzetével arányos Pvas = U 1 i / Rv így az ellenállás nagysága R v U1 i = (6-1) P vas Kitérő: Transzformátorok/13
14 Közelítésként mind a hiszterézis, mind az örvényáram fajlagos vasveszteség összetevőt az indukció négyzetével arányosnak lehet tekinteni: T ~ k f B p ~ k fb p ö m h h m Itt a lemezvastagság. Az f=áll. megkötésnek megfelelően így P = P + P c B = c φ = c u v ö h 1 m m 3 i1 A transzformátorokban alkalmazott szilíciummentes, hidegen hengerelt lemezek veszteségi és mágnesezési tulajdonságai a hengerlésre merőleges irányban rosszak. Ezért el kell kerülni az indukcióvonalak ilyen irányú haladását így a lemezcsomag összeszorítását átmenő csavarok helyett külső bandázzsal, az oszlop-járom találkozásokat ferde illesztéssel készítik. A tekercsek nagykeresztmetszetű vezetőiben a szórt fluxus okozta áramkiszorítást elemi szálakra bontással és a szálak helycseréjével csökkentik Fázorábra. Feszültségkényszer. Erőátviteli hálózataink állandó feszültségű és állandó frekvenciájú rendszerek. Ez transzformátoraink és váltakozó áramú gépeink működését, vizsgálatát alapvetően befolyásolja. Az Uhál = U1 = áll. ( fhál = áll.) (6-) alapvető kényszer hatását jól követhetjük a transzformátor fázorábráján, amelyet a helyettesítő kapcsolás alapján rajzolhatunk fel. Induljunk ki üresjárásból. Ekkor a primer impedancián a kis I10 00, I1 üresjárási áram nagyon kis feszültségesést hoz létre így: U1 U1i = áll. (6-3) Mindjárt megjegyezzük, hogy a primer feszültségesés terheléskor is csak néhány százalék így ez az összefüggés jó közelítéssel akkor is érvényes. Az állandó U 1 i indukálásához állandó φ főfluxus szükséges, annak létesítéséhez pedig Io = áll. állandó üresjárási áram ill. állandó Fo = N 1 Io üresjárási gerjesztés (6.10a. ábra). Az Uh = áll. hálózati feszültségkényszer tehát a transzformátor állandó üresjárási gerjesztését írja elő. Transzformátorok/14
15 6.10 ábra Terheljük most a transzformátort, azaz kapcsoljunk a szekunderére - pl. induktív jellegű - fogyasztót. Az a terhelésnek "ki van szolgáltatva", ugyanis a gyakorlatilag állandó szekunder indukált feszültség és a Z t terhelő impedancia megszabja a szekunder áram nagyságát és fázisszögét. (Helyettesítő vázlatunkban I = U / Zt = U i/( Z + Zt )). Megjelenik az I szekunder terhelő áram. Hogyan reagál erre a primer oldal? Az NI 1 o üresjárási gerjesztés nem változhat, így a primer gerjesztésnek - ezzel a primer áramnak - nagyságra és fázisszögre úgy kell beállni, a transzformátornak mindig olyan I 1 primer áramot kell a hálózatból felvenni, hogy az NI + NI = NI = áll. ( F+ F = F) (6-4) 11 1o 1 0 gerjesztési törvény - vagy a gerjesztések egyensúlya törvény - érvényesüljön. (NI= NI 1 ) Mind az I 1 mind az I áram ohmos és szórási feszültségesést hoz létre. Fázorábránkat a 6.10.b. ábrán ezekkel egészítettük ki. Feltettük hogy az U1i = U i, I 1 és I fázorokat ismerjük. Az ábra rajztechnikai okokból hamis, a valóságos feszültségesések -3%-ot tesznek ki (l. a 6.9. ábrán). Transzformátorok/15
16 Kitérő: Feszültség- és áramtranszformátor: A 6.11a. ill. b. ábrákon feszültség- ill. áramtranszformátor kapcsolását valamint I és I 1 terhelésfüggő változását rajzoltuk fel Z t állandó fázisszögét feltételezve ábra Az Io = áll. kényszer következtében az első esetben a két áram változása a gerjesztések egyensúlya törvény szerint "összehangolt". A második esetben az I 1 =áll. kényszer következtében I =0-hoz I =I 1 azaz pl. 0-szoros üresjárási áram és az ahhoz tartozó - a telítést figyelembe véve is - nagy fluxus tartozik, káros hatásaival A transzformátor feszültségváltozása A kis primer feszültségesésnek megfelelően gyakran közelítésként az áthidaló ágat a primer impedancia elé kapcsoljuk és így nyerjük a 6.1a. ábra un. "egyszerűsített helyettesítő kapcsolást", amelynek számos elvi és gyakorlati előnye van. Transzformátorok/16
17 6.1 ábra A két párhuzamos ággal különválasztottuk a vasmag és tekercselés helyettesítő áramköreit. Az előbbi impedanciája 5%-os üresjárási áram és névleges állapot esetén utóbbiénak hússzorosa. Hálózati vizsgálatoknál ezért csak a 6.1b. un. "soros" ágat vesszük figyelembe. A ábrában felrajzoltuk a 6.1b. kapcsoláshoz tartozó fázorábrát ábra A transzformátor feszültségváltozása - ami induktív terheléskor feszültésesés - a transzformátor szekunder kapocsfeszültségének megváltozása a terhelés hatására, azaz az U 0 üresjárási és U terhelési szekunder kapocsfeszültségek nagyságainak különbsége az üresjárási értékre vonatkoztatva: U U0 U = U0 U0 (6-5a) A szekunder feszültségeket a primerre redukálva az U = névleges értékkel 10 U 1n Transzformátorok/17
18 U U1n U = (6-5b) U1n U1n A ábra szerint - ha a közepes vetítést, merőlegessel közelítjük - U= U U IRcosϕ + IX sinϕ (6-5c) 1n s Ha U-t az U 1 n névleges feszültségre vonatkoztatjuk és a jobboldalon U 1 n /U 1n -el szorzunk akkor 7 L M< 1n 1n 1n NM ε α ε ε U U R X } 678 I I1nR I1nXs = M cosϕ + sin ϕ I U U 1n O QP Ez a feltüntetett jelölésekkel az ε = α εrcosϕ + εxsinϕ (6-6) alakban írható. ε R ill. ε X a transzformátor névleges ohmos ill. induktív feszültségesés összetevője, amelyeket százalékban szokás megadni. A transzformátor névleges árama ill. feszültsége az amire a transzformátor készült A rövidzárási állapot. Megkülönböztetjük az üzemi és a mérési rövidzárást. Előbbinél a névleges primer feszültségre kapcsolt transzformátor szekunderjének rövidzárásakor, ha a transzformátor névleges feszültségesése 5% akkor 0-szoros állandósult áram keletkezik 400-szoros erő és hőhatással. Ezt még megelőzi egy nagyobb átmeneti áramcsúcs. Az üzemi rövidzárlattal nem foglalkozunk ábra Mérési rövidzáráskor a 6.14a. ábra szerint a rövidrezárt transzformátor primer feszültségét addig növeljük, míg abban a névleges áram folyik. Ennek a Transzformátorok/18
19 feszültségnek a névleges értékre vonatkoztatott - rendszerint százalékban megadott - értéket nevezzük a transzformátor rövidzárási feszültségének vagy dropjának: U1z I1nR j I 1n X s = + (6-7) U1n U1n U1n A (6-6) kifejezés jelöléseivel: ε = ε + jε (6-8) Z R X A drop a transzformátor fontos jellemzője. Megszabja a rövidzárlati áram nagyságát, az előbbiek szerint a feszültségesést és a transzformátorok párhuzamos kapcsolásakor is szerepe van. A rövidzárási fázorábrát a 6.14b. ábrán látjuk. Onnan leolvasható, hogy ε = ε cosϕ ε = ε sin ϕ (6-8a) R Z Z X Z Z Transzformátorok/19
6. fejezet: Transzformátorok
6. Fejezet Transzformátorok Transzformátorok/1 TARTALOMJEGYZÉK 6. TRANSZFORMÁTOROK 1 6.1. Egyfázisú transzformátorok 4 6.1.1. Működési elv és helyettesítő kapcsolás 4 6.1.. Fázorábra. Feszültségkényszer.
Marcsa Dániel Transzformátor - példák 1. feladat : Egyfázisú transzformátor névleges teljesítménye 125kVA, a feszültsége U 1 /U 2 = 5000/400V. A névleges terheléshez tartozó tekercsveszteség 0,06S n, a
Négypólusok helyettesítő kapcsolásai
Transzformátorok Magyar találmány: Bláthy Ottó Titusz (1860-1939), Déry Miksa (1854-1938), Zipernovszky Károly (1853-1942), Ganz Villamossági Gyár, 1885. Felépítés, működés Transzformátor: négypólus. Működési
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
TARTALOMJEGYZÉK. Előszó 9
TARTALOMJEGYZÉK 3 Előszó 9 1. Villamos alapfogalmak 11 1.1. A villamosság elő for d u lá s a é s je le n t ősége 12 1.1.1. Történeti áttekintés 12 1.1.2. A vil la mos ság tech ni kai, tár sa dal mi ha
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01
Számítási feladatok a 6. fejezethez
Számítási feladatok a 6. fejezethez 1. Egy szinuszosan változó áram a polaritás váltás után 1 μs múlva éri el első maximumát. Mekkora az áram frekvenciája? 2. Egy áramkörben I = 0,5 A erősségű és 200 Hz
A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus
Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén. Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata
Hálózatok számítása egyenáramú és szinuszos gerjesztések esetén Egyenáramú hálózatok vizsgálata Szinuszos áramú hálózatok vizsgálata Egyenáramú hálózatok vizsgálata ellenállások, generátorok, belső ellenállások
1 kérdés. Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt május 13. szombat Teszt feladatok 2017 Előzetes megtekintés
Személyes kezdőlap Villamos Gelencsér Géza Simonyi teszt 2017. május 13. szombat Teszt feladatok 2017 Előzetes megtekintés Kezdés ideje 2017. május 9., kedd, 16:54 Állapot Befejezte Befejezés dátuma 2017.
7. L = 100 mh és r s = 50 Ω tekercset 12 V-os egyenfeszültségű áramkörre kapcsolunk. Mennyi idő alatt éri el az áram az állandósult értékének 63 %-át?
1. Jelöld H -val, ha hamis, I -vel ha igaz szerinted az állítás!...két elektromos töltés között fellépő erőhatás nagysága arányos a két töltés nagyságával....két elektromos töltés között fellépő erőhatás
Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet
Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika tárgy 7. sz. laboratóriumi gyakorlatához Mérésvezetői segédlet A hallgatói útmutatóban vázolt program a csoport felkészültsége
Számítási feladatok megoldással a 6. fejezethez
Számítási feladatok megoldással a 6. fejezethez. Egy szinuszosan változó áram a polaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T = 4 t = 4 = 4ms 6 f = = =,5 Hz = 5
4. /ÁK Adja meg a villamos áramkör passzív építő elemeit!
Áramkörök 1. /ÁK Adja meg a mértékegységek lehetséges prefixumait (20db)! 2. /ÁK Értelmezze az ideális feszültség generátor fogalmát! 3. /ÁK Mit ért valóságos feszültség generátor alatt? 4. /ÁK Adja meg
EGYFÁZISÚ VÁLTAKOZÓ ÁRAM
VANYSEEŐ KÉPÉS 0 5 EGYFÁSÚ VÁTAKOÓ ÁAM ÖSSEÁÍTOTTA NAGY ÁSÓ MÉNÖKTANÁ - - Tartalomjegyzék Váltakozó áram fogalma és jellemzői...3 Szinuszos lefolyású váltakozó feszültség előállítása...3 A szinuszos lefolyású
(Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.)
Egyenáramú gépek (Az 1. példa adatai Uray-Szabó: Elektrotechnika c. (Nemzeti Tankönyvkiadó) könyvéből vannak.) 1. Párhuzamos gerjesztésű egyenáramú motor 500 V kapocsfeszültségű, párhuzamos gerjesztésű
Tekercsek. Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: Innen:
Tekercsek Induktivitás Tekercs: induktivitást megvalósító áramköri elem. Az induktivitás definíciója: u i =-N dφ/dt=-n dφ/di di/dt=-l di/dt Innen: L=N dφ/di Ezt integrálva: L=N Φ/I A tekercs induktivitása
Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő
Transzformátorok Egyfázisú transzformátor felépítése, állandósult üzeme. fő- és szórt fluxusok. indukált feszültség számítása.
Transzformátorok Egyfázisú transzformátor felépítése, állandósult üzeme. fő- és szórt fluxusok. indukált feszültség számítása. helyettesítő kapcsolás. feszültség-kényszer. gerjesztés- és teljesítmény-invariancia.
Elektrotechnika 11/C Villamos áramkör Passzív és aktív hálózatok
Elektrotechnika 11/C Villamos áramkör A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 3. 1.1. Mekkora áramot (I w, I m ) vesz fel az a fogyasztó, amelynek adatai: U n = 0,4 kv (vonali), S n = 0,6 MVA (3 fázisú), cosφ
21. laboratóriumi gyakorlat. Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú
1. laboratóriumi gyakorlat Rövid távvezeték állandósult üzemi viszonyainak vizsgálata váltakozóáramú kismintán 1 Elvi alapok Távvezetékek villamos számításához, üzemi viszonyainak vizsgálatához a következő
Elektrotechnika 9. évfolyam
Elektrotechnika 9. évfolyam Villamos áramkörök A villamos áramkör. A villamos áramkör részei. Ideális feszültségforrás. Fogyasztó. Vezeték. Villamos ellenállás. Ohm törvénye. Részfeszültségek és feszültségesés.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) és a 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01
A soros RC-kör. t, szög [rad] feszültség áramerősség. 2. ábra a soros RC-kör kapcsolási rajza. a) b) 3. ábra
A soros RC-kör Az átmeneti jelenségek vizsgálatakor soros RC-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
Mérési útmutató. A transzformátor működésének vizsgálata Az Elektrotechnika tárgy laboratóriumi gyakorlatok 3. sz. méréséhez
BDPESTI MŰSZKI ÉS GZDSÁGTDOMÁNYI EGYETEM VILLMOSMÉRNÖKI ÉS INFORMTIKI KR VILLMOS ENERGETIK TNSZÉK Mérési útmutató transzformátor működésének vizsgálata z Elektrotechnika tárgy laboratóriumi gyakorlatok
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL 1. EGYENÁRAM
ALAPFOGALMIKÉRDÉSEK VILLAMOSSÁGTANBÓL INFORMATIKUS HALLGATÓK RÉSZÉRE 1. EGYENÁRAM 1. Vezesse le a feszültségosztó képletet két ellenállás (R 1 és R 2 ) esetén! Az összefüggésben szerepl mennyiségek jelölését
Elektrotechnika. Ballagi Áron
Elektrotechnika Ballagi Áron Mágneses tér Elektrotechnika x/2 Mágneses indukció kísérlet Állandó mágneses térben helyezzünk el egy l hosszúságú vezetőt, és bocsássunk a vezetőbe I áramot! Tapasztalat:
Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő
1. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye?
.. Ellenőrző kérdések megoldásai Elméleti kérdések. Milyen módszerrel ábrázolhatók a váltakozó mennyiségek, és melyiknek mi az előnye? Az ábrázolás történhet vonaldiagramban. Előnye, hogy szemléletes.
Mérési útmutató Az önindukciós és kölcsönös indukciós tényező meghatározása Az Elektrotechnika c. tárgy 7. sz. laboratóriumi gyakorlatához
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM VILLAMOSMÉRNÖKI ÉS INFORMATIKAI KAR VILLAMOS ENERGETIKA TANSZÉK Mérési útutató Az önindukciós és kölcsönös indukciós tényező eghatározása Az Elektrotechnika
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 10. 1.1. Egy öntözőrendszer átlagosan 14,13 A áramot vesz fel 0,8 teljesítménytényező mellett a 230 V fázisfeszültségű hálózatból.
A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet 29/2016 (VIII.26) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus
11-12. évfolyam. A tantárgy megnevezése: elektrotechnika. Évi óraszám: 69. Tanítási hetek száma: 37 + 32. Tanítási órák száma: 1 óra/hét
ELEKTROTECHNIKA (VÁLASZTHATÓ) TANTÁRGY 11-12. évfolyam A tantárgy megnevezése: elektrotechnika Évi óraszám: 69 Tanítási hetek száma: 37 + 32 Tanítási órák száma: 1 óra/hét A képzés célja: Választható tantárgyként
Az elektromos töltések eloszlása atomokban, molekulákban, ionokon belül és a vegyületekben. Vezetők, félvezetők és szigetelők molekuláris szerkezete.
Szakképesítés: Log Autószerelő - 54 525 02 iszti Tantárgy: Elektrotechnikaelektronika Modul: 10416-12 Közlekedéstechnikai alapok Osztály: 11.a Évfolyam: 11. 36 hét, heti 2 óra, évi 72 óra Ok Dátum: 2013.09.21
VÁLTAKOZÓ ÁRAMÚ KÖRÖK
Számítsuk ki a 80 mh induktivitású ideális tekercs reaktanciáját az 50 Hz, 80 Hz, 300 Hz, 800 Hz, 1200 Hz és 1,6 khz frekvenciájú feszültséggel táplált hálózatban! Sorosan kapcsolt C = 700 nf, L=600 mh,
tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja.
Tápvezeték A fogyasztókat a tápponttal közvetlen összekötő vezetékeket tápvezetéknek nevezzük. A tápvezetékre jellemző, hogy csak a vezeték végén van terhelés, ahogy az 1. ábra mutatja. U T l 1. ábra.
= Φ B(t = t) Φ B (t = 0) t
4. Gyakorlat 32B-3 Egy ellenállású, r sugarú köralakú huzalhurok a B homogén mágneses erőtér irányára merőleges felületen fekszik. A hurkot gyorsan, t idő alatt 180 o -kal átforditjuk. Számitsuk ki, hogy
Mágneses erőtér. Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat. A villamos forgógépek mutatós műszerek működésének alapja
Mágneses erőtér Ahol az áramtól átjárt vezetőre (vagy mágnestűre) erő hat A villamos forgógépek mutatós műszerek működésének alapja Magnetosztatikai mező: nyugvó állandó mágnesek és egyenáramok időben
Egyfázisú hálózatok. Egyfázisú hálózatok. Egyfázisú hálózatok. komponensei:
Egyfázisú hálózatok Elektrotechnika Dr Vajda István Egyfázisú hálózatok komponensei: Egyfázisú hálózatok Feszültség- és áramforrások Impedanciák (ellenállás, induktivitás, and kapacitás) A komponensek
A soros RL-kör. t, szög [rad] áram feszültség. 1. ábra Feszültség és áramviszonyok az ellenálláson, illetve a tekercsen
A soros L-kör Mint ismeretes, a tekercsen az áram 90 fokot késik a hez képest, ahogyan az az 1. ábrán látható. A valós terhelésen a és az áramerősség azonos fázisú. Lényegében viszonyítás kérdése, de lássuk
Egyszerű áramkörök árama, feszültsége, teljesítménye
Egyszerű árakörök áraa, feszültsége, teljesíténye A szokásos előjelek Általában az ún fogyasztói pozitív irányokat használják, ezek szerint: - a ϕ fázisszög az ára helyzete a feszültség szinusz hullá szöghelyzetéhez
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 522 01 Erősáramú elektrotechnikus
MÁGNESES INDUKCIÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK
MÁGNESES NDUKCÓ VÁLTÓÁRAM VÁLTÓÁRAMÚ HÁLÓZATOK Mágneses indukció Mozgási indukció v B Vezetőt elmozdítunk mágneses térben B-re merőlegesen, akkor a vezetőben áram keletkezik, melynek iránya az őt létrehozó
A soros RC-kör. t, szög [rad]
A soros C-kör Az átmeneti jelenségek vizsgálatakor soros C-körben egyértelművé vált, hogy a kondenzátoron a késik az áramhoz képest. Váltakozóáramú körökben ez a késés, pontosan 90 fok. Ezt figyelhetjük
VILLAMOS ENERGETIKA PÓTPÓTZÁRTHELYI DOLGOZAT - A csoport
VLLAMOS ENERGETKA PÓTPÓTZÁRTHELY DOLGOZAT - A csoport 2013. május 22. NÉV:... NEPTN-KÓD:... Terem és ülőhely:... A dolgozat érdemjegye az összpontszámtól függően: 40%-tól 2, 55%-tól 3, 70%-tól 4, 85%-tól
VI. fejezet. Az alapvető elektromechanikai átalakítók működési elvei
VI. fejezet Az alapvető elektromechanikai átalakítók működési elvei Aszinkron gépek Gépfajták származtatása #: ω r =var Az ún. indukciós gépek forgórészében indukált feszültségek által létrehozott rotoráramok
2. Ideális esetben az árammérő belső ellenállása a.) nagyobb, mint 1kΩ b.) megegyezik a mért áramkör eredő ellenállásával
Teszt feladatok A választásos feladatoknál egy vagy több jó válasz lehet! Számításos feladatoknál csak az eredményt és a mértékegységet kell megadni. 1. Mitől függ a vezetők ellenállása? a.) a rajta esett
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport
VILLAMOS ENERGETIKA VIZSGA DOLGOZAT - A csoport MEGOLDÁS 2013. június 21. 390.5D, 7B, 8B, 302.2B, 102.2B, 211.2E, 160.4A, 240.2B, 260.4A, 999A, 484.3A, 80.1A, 281.2A, 580.1A 1.1. Határozza meg az ábrán
Az elektromágneses indukció jelensége
Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér
2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel!
1.) Hány Coulomb töltést tartalmaz a 72 Ah ás akkumulátor? 2.) Fajlagos ellenállásuk nagysága alapján állítsd sorrendbe a következő fémeket! Kezd a legjobban vezető fémmel! a.) alumínium b.) ezüst c.)
Használható segédeszköz: szabványok, táblázatok, gépkönyvek, számológép
A 27/2012 (VIII. 27.) NGM rendelet (12/2013 (III.28) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 34 522 02 Elektromos gép- és készülékszerelő
VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport
VILLAMOS ENERGETIKA PÓT-PÓTZÁRTHELYI - A csoport MEGOLDÁS 2014. május 21. 1.1. Tekintsünk egy megoszló terheléssel jellemezhető hálózatot! A hosszegységre eső áramfelvétel i = 0,24 A/m fázisonként egyenlő
2.11. Feladatok megoldásai
Elektrotechnikai alaismeretek.. Feladatok megoldásai. feladat: Egy szinuszosan változó áram a olaritás váltás után μs múlva éri el első maximumát. Mekkora az áram frekvenciája? T 4 t 4 4µ s f,5 Hz 5 khz
Fizika II. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak. Levelező tagozat
Fizika. feladatsor főiskolai szintű villamosmérnök szak hallgatóinak Levelező tagozat 1. z ábra szerinti félgömb alakú, ideális vezetőnek tekinthető földelőbe = 10 k erősségű áram folyik be. föld fajlagos
Gyakorlat 34A-25. kapcsolunk. Mekkora a fűtőtest teljesítménye? I o = U o R = 156 V = 1, 56 A (3.1) ezekkel a pillanatnyi értékek:
3. Gyakorlat 34-5 Egy Ω ellenállású elektromos fűtőtestre 56 V amplitúdójú váltakozó feszültséget kapcsolunk. Mekkora a fűtőtest teljesítménye? Jelölések: R = Ω, U o = 56 V fűtőtestben folyó áram amplitudója
VILLAMOS ENERGETIKA PÓTZÁRTHELYI DOLGOZAT A csoport
VILLAMOS ENERGETIKA PÓTZÁRTHELYI DOLGOZAT A csoport 2014. április 23. NÉV:... NEPTUN-KÓD:... Terem és ülőhely:... 1. 2. 3. 4. 5. A dolgozat érdemjegye az összpontszámtól függően: 40%-tól 2, 55%-tól 3,
1. feladat R 1 = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V. Megoldás. R t1 R 3 R 1. R t2 R 2
1. feladat = 2 W R 2 = 3 W R 3 = 5 W R t1 = 10 W R t2 = 20 W U 1 =200 V U 2 =150 V U 1 R 2 R 3 R t1 R t2 U 2 R 2 a. Számítsd ki az R t1 és R t2 ellenállásokon a feszültségeket! b. Mekkora legyen az U 2
Háromfázisú aszinkron motorok
Háromfázisú aszinkron motorok 1. példa Egy háromfázisú, 20 kw teljesítményű, 6 pólusú, 400 V/50 Hz hálózatról üzemeltetett aszinkron motor fordulatszáma 950 1/min. Teljesítmény tényezője 0,88, az állórész
Villamos gépek tantárgy tételei
10. tétel Milyen mérési feladatokat kell elvégeznie a kördiagram megszerkesztéséhez? Rajzolja meg a kördiagram felhasználásával a teljes nyomatéki függvényt! Az aszinkron gép egyszerűsített kördiagramja
1. Feladat. Megoldás. Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω.
1. Feladat Számítsd ki az ellenállás-hálózat eredő ellenállását az A B az A C és a B C pontok között! Mindegyik ellenállás értéke 100 Ω. A 1 2 B 3 4 5 6 7 A B pontok között C 13 = 1 + 3 = 2 = 200 Ω 76
Elektromechanika. 4. mérés. Háromfázisú aszinkron motor vizsgálata. 1. Rajzolja fel és értelmezze az aszinkron gép helyettesítő kapcsolási vázlatát.
Elektromechanika 4. mérés Háromfázisú aszinkron motor vizsgálata 1. Rajzolja fel és értelmezze az aszinkron gép helyettesítő kapcsolási vázlatát. U 1 az állórész fázisfeszültségének vektora; I 1 az állórész
11/1. Teljesítmény számítása szinuszos áramú hálózatokban. Hatásos, meddô és látszólagos teljesítmény.
11/1. Teljesítén száítása szinuszos áraú álózatokban. Hatásos, eddô és látszólagos teljesítén. Szinuszos áraú álózatban az ára és a feszültség idıben változik. Íg a pillanatni teljesítén is változik az
LI 2 W = Induktív tekercsek és transzformátorok
Induktív tekercsek és transzformátorok A tekercsek olyan elektronikai alkatrészek, amelyek mágneses terükben jelentős elektromos energiát képesek felhalmozni. A mágneses tér a tekercset alkotó vezetéken
Teljesítm. ltség. U max
1 tmény a váltakozó áramú körben A váltakozv ltakozó feszülts ltség Áttekinthetően szemlélteti a feszültség pillanatnyi értékét a forgóvektoros ábrázolás, mely szerint a forgó vektor y-irányú vetülete
Villamos gépek tantárgy tételei
11. tétel smertesse a transzformátorok működési elvét! Értelmezze az üresjárási állapothoz tartozó villamos jellemzőket! A villamos energiát erőművekben váltakozó áramú generátorok termelik. A villamos
E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R
VILLANYSZERELŐ KÉPZÉS 0 5 E G Y F Á Z I S Ú T R A N S Z F O R M Á T O R ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - - Tartalomjegyzék Villamos gépek fogalma, felosztása...3 Egyfázisú transzformátor felépítése...4
Közreműködők Erdélyi István Györe Attila Horvát Máté Dr. Semperger Sándor Tihanyi Viktor Dr. Vajda István
Villamos forgógépek és transzformátorok Szakmai Nap Szupravezetős Önkorlátozó Transzformátor Györe Attila VILLAMOS ENERGETIKA TANSZÉK BUDA PESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGY ETEM Közreműködők Erdélyi
Alapfogalmak, osztályozás
VILLAMOS GÉPEK Alapfogalmak, osztályozás Gépek: szerkezetek, amelyek energia felhasználása árán munkát végeznek, vagy a felhasznált energiát átalakítják más jellegű energiává Működési elv: indukált áram
Mérés és adatgyűjtés
Mérés és adatgyűjtés 4. óra - levelező Mingesz Róbert Szegedi Tudományegyetem 2011. március 18. MA lev - 4. óra Verzió: 1.3 Utolsó frissítés: 2011. május 15. 1/51 Tartalom I 1 A/D konverterek alkalmazása
Fizika 1 Elektrodinamika beugró/kis kérdések
Fizika 1 Elektrodinamika beugró/kis kérdések 1.) Írja fel a 4 Maxwell-egyenletet lokális (differenciális) alakban! rot = j+ D rot = B div B=0 div D=ρ : elektromos térerősség : mágneses térerősség D : elektromos
4. A villamos gépekkel kapcsolatos általános feladatok.
A2) A villamosenergia átalakítás általános elvei és törvényei 4. A villamos gépekkel kapcsolatos általános feladatok. Transzformátorok. Önálló vizsgálati probléma, mert a transzformátor villamos energiát
VILLAMOS ENERGETIKA Vizsgakérdések (2007. tavaszi BSc félév)
1 VILLAMOS ENERGETIKA Vizsgakérdések (2007. tavaszi BSc félév) 1. Ismertesse a villamosenergia-hálózat feladatkrk szerinti felosztását a jellegzetes feszültségszinteket és az azokhoz tartozó átvihető teljesítmények
2014. április 14. NÉV:...
VILLAMOS ENERGETIKA A CSOPORT 2014. április 14. NÉV:... NEPTUN-KÓD:... Terem és ülőhely:... 1. 2. 3. 4. 5. 1. feladat 10 pont 1.1. Az ábrán látható transzformátor névleges teljesítménye 125 MVA, százalékos
VILLAMOS FORGÓGÉPEK. Forgó mozgás létesítése
SZÉCHENYI ISTVÁN EGYETEM HTTP://UNI.SZE.HU VILLAMOS FORGÓGÉPEK Forgó mozgás létesítése Marcsa Dániel Villamos gépek és energetika 203/204 - őszi szemeszter Elektromechanikai átalakítás Villamos rendszer
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.
Tételek Elektrotechnika és elektronika I tantárgy szóbeli részéhez 1 1. AZ ELEKTROSZTATIKA ALAPJAI 8 1.1 AZ ELEKTROMOS TÖLTÉS FOGALMA 8 1.2 AZ ELEKTROMOS TÉR 9 1.3 COULOMB TÖRVÉNYE 10 1.4 AZ ELEKTROMOS
Versenyző kódja: 30 27/2012. (VIII. 27.) NGM rendelet MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny.
54 522 01-2016 MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő ÍRÁSBELI FELADAT Szakképesítés: 54 522 01 SZVK rendelet száma: 27/2012. (VIII. 27.) NGM rendelet : Számolási/szerkesztési/szakrajzi
Elektromechanika. 6. mérés. Teljesítményelektronika
Elektromechanika 6. mérés Teljesítményelektronika 1. Rajzolja fel az ideális és a valódi dióda feszültségáram jelleggörbéjét! Valódi dióda karakterisztikája: Ideális dióda karakterisztikája (3-as jelű
azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra
4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra
FIZIKA. Váltóáramú hálózatok, elektromágneses hullámok
Váltóáramú hálózatok, elektromágneses Váltóáramú hálózatok Maxwell egyenletek Elektromágneses Váltófeszültség (t) = B A w sinwt = sinwt maximális feszültség w= pf körfrekvencia 4 3 - - -3-4,5,,5,,5,3,35
Traszformátorok Házi dolgozat
Traszformátorok Házi dolgozat Horváth Tibor lkvm7261 2008 június 1 Traszformátorok A traszformátor olyan statikus (mozgóalkatrészeket nem tartalmazó) elektromágneses átalakító, amely adott jellemzőkkel
Átmeneti jelenségek egyenergiatárolós áramkörökben
TARTALOM JEGYZÉK 1. Egyenergiatárolós áramkörök átmeneti függvényeinek meghatározása Példák az egyenergiatárolós áramkörök átmeneti függvényeinek meghatározására 1.1 feladat 1.2 feladat 1.3 feladat 1.4
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2007. május 25. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2007. május 25. 8:00 Az írásbeli vizsga időtartama: 240 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS KULTURÁLIS
MAGYAR KERESKEDELMI ÉS IPARKAMARA. Országos Szakmai Tanulmányi Verseny. Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR
MAGYAR KERESKEDELMI ÉS IPARKAMARA Országos Szakmai Tanulmányi Verseny Elődöntő KOMPLEX ÍRÁSBELI FELADATSOR Szakképesítés: SZVK rendelet száma: Komplex írásbeli: Számolási, szerkesztési, szakrajzi feladatok
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2008. október 20. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2008. október 20. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati OKTATÁSI ÉS
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2012. október 15. ELEKTRONIKAI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA 2012. október 15. 1:00 Az írásbeli vizsga időtartama: 20 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁYI EGYETEM VILLAMOSMÉRÖKI ÉS IFORMATIKAI KAR VILLAMOS EERGETIKA TASZÉK Mérési útmutató Periodikus, nem szinusz alakú jelek értékelése, félvezetős egyenirányítók vizsgálata
HÁROMFÁZISÚ VÁLTAKOZÓ ÁRAM
VILLANYSZERELŐ KÉPZÉS 2 0 1 5 HÁROMFÁZISÚ VÁLTAKOZÓ ÁRAM ÖSSZEÁLLÍTOTTA NAGY LÁSZLÓ MÉRNÖKTANÁR - 2 - Tartalomjegyzék Nem szimmetrikus többfázisú rendszerek...3 Háronfázisú hálózatok...3 Csillag kapcsolású
5. Mérés Transzformátorok
5. Mérés Transzformátorok A transzformátor a váltakozó áramú villamos energia, feszültség, ill. áram értékeinek megváltoztatására (transzformálására) alkalmas villamos gép... Működési elv A villamos energia
Elektrotechnika- Villamosságtan
Elektrotechnika- Villamosságtan 1.Előadás Egyenáramú hálózatok 1 Magyar Attila Tömördi Katalin Villamos hálózat: villamos áramköri elemek tetszőleges kapcsolása. Reguláris hálózat: ha helyesen felírt hálózati
Transzformátor rezgés mérés. A BME Villamos Energetika Tanszéken
Transzformátor rezgés mérés A BME Villamos Energetika Tanszéken A valóság egyszerűsítése, modellezés. A mérés tervszerűen végrehajtott tevékenység, ezért a bonyolult valóságos rendszert először egyszerűsítik.
Az aszinkron és a szinkron gépek külső mágnesének vasmagja, -amelyik általában az
8 FORGÓMEZŐS GÉPEK. Az aszinkron és a szinkron géek külső mágnesének vasmagja, -amelyik általában az állórész,- hengergyűrű alakú. A D átmérőjű belső felületén tengelyirányban hornyokat mélyítenek, és
Az elektromágneses indukció jelensége
Az elektromágneses indukció jelensége Korábban láttuk, hogy az elektromos áram hatására mágneses tér keletkezik (Ampère-féle gerjesztési törvény) Kérdés, hogy vajon ez megfordítható-e, és a mágneses tér
Egyenáram tesztek. 3. Melyik mértékegység meghatározása nem helyes? a) V = J/s b) F = C/V c) A = C/s d) = V/A
Egyenáram tesztek 1. Az alábbiak közül melyik nem tekinthető áramnak? a) Feltöltött kondenzátorlemezek között egy fémgolyó pattog. b) A generátor fémgömbje és egy földelt gömb között szikrakisülés történik.
Villamosságtan szigorlati tételek
Villamosságtan szigorlati tételek 1.1. Egyenáramú hálózatok alaptörvényei 1.2. Lineáris egyenáramú hálózatok elemi számítása 1.3. Nemlineáris egyenáramú hálózatok elemi számítása 1.4. Egyenáramú hálózatok
Elektrotechnika 3. zh
Elektrotechnika 3. zh Gyakorlati áramkör-számítási technikák és konvenciók: egy- és háromfázisú hálózatok számítása Az egyfázisú rendszerek áramai és feszültségei. A pozitív irányrendszer fogyasztói és
2. fejezet: Aszinkron gépek
2. Fejezet Aszinkron gépek Aszinkron/1 TARTALOMJEGYZÉK 2. Fejezet Aszinkron gépek...1 2.1. Váltakozó áramú gépek mágneses mezői...3 2.2. Az indukált feszültség...13 2.3. Az indukciós szabályozó...16 2.4.
ELEKTRONIKAI ALAPISMERETEK
ÉRETTSÉGI VIZSGA 2015. május 19. ELEKTRONIKAI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2015. május 19. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK
12.A 12.A. A belsı ellenállás, kapocsfeszültség, forrásfeszültség fogalmának értelmezése. Feszültséggenerátorok
12.A Energiaforrások Generátorok jellemzıi Értelmezze a belsı ellenállás, a forrásfeszültség és a kapocsfeszültség fogalmát! Hasonlítsa össze az ideális és a valóságos generátorokat! Rajzolja fel a feszültség-
2. ábra Változó egyenfeszültségek
3.5.. Váltakozó feszültségek és áramok Időben változó feszültségek és áramok Az (ideális) galvánelem által szolgáltatott feszültség iránya és nagysága az idő múlásával nem változik. Ha az áramkörben az