Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
|
|
- Barnabás Budai
- 6 évvel ezelőtt
- Látták:
Átírás
1 Megoldások 1. A radioaktív anyagok bomlását az m = m 0 2 t T egyenlet írja le, ahol m a pillanatnyi tömeg, m 0 a kezdeti tömeg, t az eltelt idő, T pedig az anyag felezési ideje. A bizmut- 214 radioaktív izotóp 10% - a 3 perc alatt elbomlik. a) Mekkora a Bi 214 felezési ideje? b) Egy óra alatt hányadrészére csökken a radioaktív bizmutizotóp tömege? c) Mennyi idő múlva marad meg az eredeti mennyiség 0, 01 % - a? a) A szöveg alapján felírhatjuk a következő egyenletet: 0,9 m 0 = m T. 0,9 = 2 3 T a logaritmus függvény szigorú monotonitása miatt lg 0,9 = lg 2 3 T lg 0,9 = 3 T lg 2 T 19,74 Válasz: Kb. 19,74 perc a felezési ideje. b) Az előzőek alapján felírhatjuk a következőt: m = m ,74 0,12 m 0. Válasz: A kezdeti érték kb. 12 % - ára csökken a tömeg. c) Az előzőek alapján felírhatjuk a következő egyenletet: 0,0001 m 0 = m 0 2 t 19,74. 0,0001 = 2 t 19,74 a logaritmus függvény szigorú monotonitása miatt 1
2 lg 0,0001 = lg 2 t 19,74 lg 0,0001 = lg 2 19,74 t 262,3 t Válasz: Kb. 262,3 percnek kell eltelnie. 2. A Föld népessége évente 1, 48 % - kal növekszik, 2001 ben 6, 2 milliárd ember élt a Földön. Melyik évben érné el az össznépesség száma a 8 milliárdot változatlan szaporodási ütem mellett? A szöveg alapján felírhatjuk a következő egyenletet: 6,2 1,0148 x = 8. 1,0148 x = 1,29 a logaritmus függvény szigorú monotonitása miatt lg 1,0148 x = lg 1,29 x lg 1,0148 = lg 1,29 x = lg 1,29 lg 1, ,33 Válasz: 2019 ben (18 év elteltével) érné el a népesség a 8 milliárdot. 3. A radioaktív anyagok bomlását a C = C 0 2 t T egyenlet írja le, ahol C a pillanatnyi aktivitás, C 0 a kezdeti aktivitás, t az eltelt idő, T pedig az anyag felezési ideje. a) Mennyi a felezési ideje annak a radioaktív izotópnak, amelynek kezdetben Bq aktivitású darabja két hét múlva már csak 2, Bq aktivitású? (Bq: becquerel az aktivitás mértékegysége) b) Mennyi idő múlva lesz a kezdetben Bq aktivitású, 5 napos felezési idejű radioaktív anyagdarab aktivitása 7, Bq aktivitású? a) A szöveg alapján felírhatjuk a következő egyenletet: 2, = T. 2
3 0,74,25 = 2 2 T a logaritmus függvény szigorú monotonitása miatt lg 0,7425 = lg 2 2 T lg 0,7425 = 2 T lg 2 T 4,66 Válasz: Kb. 4,66 hét a felezési ideje. b) A szöveg alapján felírhatjuk a következő egyenletet: 7, = t 5. 0,379 = 2 t 5 a logaritmus függvény szigorú monotonitása miatt lg 0,379 = lg 2 t 5 lg 0,379 = t 5 lg 2 t 7 Válasz: Kb. 7 napnak kell eltelnie. 3
4 4. A 226 os tömegszámú rádium (Ra) radioaktív, felezési ideje 1600 év. Az eredetileg N 0 számú atomot tartalmazó rádium t év elteltével N számú bomlatlan rádiumatomot tartalmaz, ahol N kiszámítható az N = N 0 ( 1 2 ) t 1600 összefüggés segítségével is. Mennyi idő alatt bomlik el a rádiumatomok 1 % - a az eredetileg 2, atomot tartalmazó (kb. 1 gramm) rádiumban? A szöveg alapján felírhatjuk a következő egyenletet: 0,99 N 0 = N 0 ( 1 2 ) t ,99 = ( 1 2 ) t 1600 a logaritmus függvény szigorú monotonitása miatt lg 0,99 = lg ( 1 2 ) t 1600 lg 0,99 = lg t 23,2 t Válasz: Kb. 23,2 évnek kell eltelnie. 5. Mekkora magasságba kell emelkedni a Földtől, hogy a légnyomás a tengerszinten mért légnyomás kétharmadára csökkenjen? A kilométerben megadott h magasságban uralkodó p nyomást a p = p 0 e 0,1275h formulával kapjuk (e 2, 718, ez a természetes alapú logaritmus alapszáma). A szöveg alapján felírhatjuk a következő egyenletet: 2 3 p 0 = p 0 e 0,1275h. 2 3 = e 0,1275h a logaritmus függvény szigorú monotonitása miatt lg 2 3 = lg e 0,1275h lg 2 3 = 0,1275 h lg e h 3,18 Válasz: Kb. 3,18 km magasságba kell emelkedni. 4
5 6. A világméretű szociológiai kutatások eredményeként a fejlett ipari országok egy főre jutó nemzeti összterméke (GDP) és a lakosság várható élettartama között hozzávetőleg az alábbi tapasztalati összefüggés állítható fel: É = 75, 5 5 1, G 206, ahol É az átlagos várható élettartam években, G pedig a GDP, reálértékben átszámítva 1980 as dollárra. a) Mennyi várható élettartam növekedést okoz kétszeres GDP növekedés, ha ez a növekedés 1500 dollárról 3000 dollárra történik? b) Mennyi GDP növekedés szükséges a várható élettartam 10 évvel való meghosszabbodásához, ha ez 50 évről 60 évre történik? a) Először számítsuk ki az 1500 dollárhoz kapcsolódó élettartamot: É = 75,5 5 1, Most számítsuk ki a 3000 dollárhoz kapcsolódó élettartamot: É = 75,5 5 1, Válasz: A várható élettartam növekedés: 12 év. b) Először számítsuk ki az 50 évhez kapcsolódó GDP - t: 50 = 75,5 5 1, G ,1 = 1, G 206 a logaritmus függvény szigorú monotonitása miatt lg 5,1 = lg 1, G 206 lg 5,1 = 6000 G 206 h 1691 lg 1,081 Most számítsuk ki a 60 évhez kapcsolódó GDP t: 60 = 75,5 5 1, G ,1 = 1, G 206 a logaritmus függvény szigorú monotonitása miatt 5
6 lg 3,1 = lg 1, G 206 lg 3,1 = 6000 G 206 h 3008 lg 1,081 Válasz: A GDP nek kb dollárral kell növekednie. 7. Az alábbi táblázat a Föld népességének alakulását mutatja. Az adatok a népesség gyorsuló ütemű növekedését mutatják. Ha exponenciális növekedést feltételezünk, akkor az adatsorra illeszkedő trendet az n = 897, 9 1, 011 x képlettel írhatjuk le (n a Föld előjelzett népessége millió főben számolva, x ben). év milliárd fő a) Hány lakosa lenne a Földnek 2020 ban a megadott képlet szerint? b) Melyik évben kellett volna a Föld össznépességének elérnie a 6 milliárdot a megadott képlet szerint? a) A szöveg alapján felírhatjuk a következőt: n = 897,9 1, Válasz: Kb millió lakosa lenne a Földnek 2020 ban. b) A szöveg alapján felírhatjuk a következő egyenletet: 6000 = 897,9 1,011 x. 6,682 = 1,011 x a logaritmus függvény szigorú monotonitása miatt lg 6,682 = lg 1,011 x lg 6,682 = x lg 1,011 x = lg 6,682 lg 1, ,6 Válasz: 2011 ben (174 év elteltével) kellett volna elérni a 6 milliárdot. 6
7 8. A gázok adiabatikus (hőcsere nélküli) állapotváltozását a pk 1 Tk állandó egyenlet írja le, ahol p a gáz nyomása, T a hőmérséklete, k pedig egy, a gázfajtára jellemző arányszám. Mekkora ez az arányszám héliumra, ha annak egy adiabatikus folyamatban 69 % - kal nő a nyomása, miközben 23 % - kal nő a hőmérséklete? A szöveg alapján felírhatjuk a következő egyenletet: pk 1 T k = (1,69p)k 1 (1,23T) k. 1,69 k 1 = 1,23 k a logaritmus függvény szigorú monotonitása miatt lg 1,69 k 1 = lg 1,23 k (k 1) lg 1,69 = k lg 1,23 k 1,65 Válasz: A hélium arányszáma 1, Kisebb mennyiségű cukor oldódása nagy mennyiségű vízben közelítőleg az M (t) = M 0 a t formula szerint, tehát időben exponenciálisan zajlik (0 < a < 1; a cukor vízbe kerülésétől percben mért időt jelöli a t; M (t) a t időpontig még fel nem oldódott cukor mennyisége; M 0 pedig a teljes cukor mennyisége, amit a vízbe tettünk). Legyen a = 0, 95. a) Mennyi idő múlva oldódik fel a cukormennyiség fele? b) Ha a 99, 9 % - os oldódást már,,lényegében teljesnek nevezzük, akkor mikorra oldódik fel lényegében teljesen a cukor? a) A szöveg alapján felírhatjuk a következő egyenletet: 0,5 M 0 = M 0 0,95 t. 0,5 = 0,95 t a logaritmus függvény szigorú monotonitása miatt lg 0,5 = lg 0,95 t lg 0,5 = t lg 0,95 t 13,5 Válasz: Kb. 13,5 perc alatt oldódik fel a cukormennyiség fele. 7
8 b) A szöveg alapján felírhatjuk a következő egyenletet: 0,001M 0 = M 0 0,95 t. 0,001 = 0,95 t a logaritmus függvény szigorú monotonitása miatt lg 0,001 = lg 0,95 t lg 0,001 = t lg 0,95 t 134,7 Válasz: Kb. 134,7 perc alatt oldódik fel,,teljesen a cukor. 10. A matematikai információelméletben az n betűs ábécéből alkotott, m számú karakterből álló hír információmennyiségét a H m log 2 n képlettel definiálták (Hartley képlet). A legegyszerűbb ábécé kétjelű (n 2, mert egy jellel nem lehet hírt közölni). Ha ebből egy jelet kiválasztunk (m 1), akkor megkapjuk a lehető legkisebb információs értékkel rendelkező hírt. Ez az információs érték: log 2 2, azaz éppen 1 lesz. Ezt az információmennyiséget John W. Tukey nevezte el 1 bit nek (a,,binary digit rövidítése). a) Mekkora a 90 számos lottó első, illetve második kihúzott számának információs értéke? b) Hány betűs ábécé esetén lenne egy 5 karakterből álló hír információs értéke 15 bit? c) Mekkora egy hétjegyű telefonszám információs értéke? a) Az első kihúzott szám információs értéke: H = 1 log 2 90 = A második kihúzott szám információs értéke: H = 1 log 2 89 = lg 90 lg 2 6,492. lg 89 lg 2 6,476. b) A szöveg alapján felírhatjuk a következő egyenletet: 15 = 5 log 2 n. Válasz: n = 2 3 = 8 betűből kell állnia az ábécének. c) A szöveg alapján felírhatjuk a következőt: H = 7 log 2 10 = 7 Válasz: Kb. 23,25 bit a telefonszám információs értéke. 8 lg 10 lg 2 23,25.
9 11. Gazdaságkutatók szerint Közép és Kelet Európa,,átmeneti országainak átlagos egy főre jutó GDP je n = lg F lg f lg r lg R év alatt éri utol a fejlett országokét, ahol F és f a fejlett, illetve átmeneti országok jelenlegi egy főre jutó GDP jét jelöli ben a fejlett országokban ez a mutató (átlagosan) dollár, az átmeneti országokban pedig dollár volt. R és r azt mutatja meg, hányszorosára növekszik egy év alatt a fejlett, illetve fejlődő országok egy főre jutó GDP je. A fejlett országokban az egy főre jutó GDP éves növekedési üteme 2 % (vagyis R = 1, 02). Hány százalékos éves növekedést kellett volna elérni az átmeneti országokban, hogy az utolérés 20 év alatt bekövetkezzen? A szöveg alapján felírhatjuk a következő egyenletet: 20 = 20 (lg r lg 1,02) = lg lg 4627 lg r = lg lg lg 1,02 20 r = 10 0,0374 1,09 0,0374 lg lg 4627 lg r lg 1,02 Válasz: Kb. 9 % - os éves növekedést kellett volna elérni az átmeneti országokban Egy tóba honosítás céljából 500 darab csíkos sügért telepítettek 2005 márciusában. A halbiológusok figyelemmel kísérték az állomány gyarapodását és azt találták, hogy a halak száma a h (t) = 500 log 3 (2t + 3) függvénnyel írható le, ahol t a telepítéstől eltelt évek számát jelenti. a) Hány százalékkal nőtt a halak száma 2007 és 2009 márciusa között? b) Várhatóan mikor éri el a hal populáció az 1500 darabot? a) A 2007 márciusában levő halak száma: h (2) = 500 log 3 ( ) 885,6. A 2009 márciusában levő halak száma: h (4) = 500 log 3 ( ) 1091,3 Válasz: Kb. 23 % - kal ( ,23) nőtt a halak száma. b) A szöveg alapján felírhatjuk a következő egyenletet: 1500 = 500 log 3 (2t + 3). t = 12. Válasz: 2017 márciusában éri el a halak száma az 1500 darabot. 9
Egyenletek, egyenlőtlenségek XIII.
Egyenletek, egyenlőtlenségek XIII. Szöveges feladatok megoldása: Az olyan szöveges feladatban, ahol exponenciális, illetve logaritmikus kifejezést tartalmazó képlet szerepel, a megoldás során először helyettesítsük
RészletesebbenHatvány gyök logaritmus
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Hatvány gyök logaritmus Hatványozás azonosságai 1. Döntse el az alábbi állításról, hogy igaz-e vagy hamis! Ha két szám négyzete egyenl, akkor
RészletesebbenA gazdasági növekedés mérése
A gazdasági növekedés mérése Érték-, volumen- és árindexek 25.) Az alábbi táblázat két egymást követő év termelési mennyiségeit és egységárait mutatja egy olyan gazdaságban, ahol csupán három terméket
Részletesebben1. Számológép és táblázat használata nélkül számítsd ki a következő számokat, majd. ; 8. (7 pont) függvényt! (9 pont)
I..negyedéves témazáró.évfolyam A csoport. Számológép és táblázat használata nélkül számítsd ki a következő számokat, majd rendezd növekvő sorrendbe: 9 ; 8 ; 8. (7 pont). Ábrázold és jellemezd az f ( )
RészletesebbenNagy András. Feladatok a logaritmus témaköréhez 11. osztály 2010.
Nagy András Feladatok a logaritmus témaköréhez. osztály 00. Feladatok a logaritmus témaköréhez. osztály ) Írd fel a következő egyenlőségeket hatványalakban! a) log 9 = b) log 4 = - c) log 7 = d) lg 0 =
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő exponenciális egyenletrendszereket! (Alaphalmaz: R) 5 3 x 2 2 y = 7 2 3 x + 2 y = 10 7 x+1 6 y+3 = 1 6 y+2 7 x = 5 (6 y + 1) c) 25 (5 x ) y = 1 3 y 27 x = 3 Megoldás:
RészletesebbenFeladatok a logaritmus témaköréhez 11. osztály, középszint
TÁMOP-4-08/-009-00 A kompetencia alapú oktatás feltételeinek megteremtése Vas megye közoktatási intézményeiben Feladatok a logaritmus témaköréhez osztály, középszint Vasvár, 00 május összeállította: Nagy
RészletesebbenLogaritmikus egyenletek Szakközépiskola, 11. osztály. 2. feladat. Oldjuk meg a következ logaritmikus egyenletet!
Logaritmikus egyenletek Szakközépiskola,. osztály. feladat. Oldjuk meg a következ logaritmikus egyenletet! lg(0x ) lg(x + ) = lg () Kikötések: x > 5 és x >. lg(0x ) lg(x + ) = lg () lg 0x (x + ) = lg (3)
RészletesebbenMatematika 11. osztály
ELTE Apáczai Csere János Gyakorló Gimnázium és Kollégium Humán tagozat Matematika 11. osztály I. rész: Hatvány, gyök, logaritmus Készítette: Balázs Ádám Budapest, 018 . Tartalomjegyzék Tartalomjegyzék
RészletesebbenVizsgafeladatok. 1. feladat (3+8+6=17 pont) (2014. január 7.)
Vizsgafeladatok 1. feladat (3+8+6=17 pont) (2014. január 7.) Az elmúlt négy év a 2010. I. és a 2013. IV. negyedéve között csapadék mennyiségének alakulásáról az alábbiakat ismerjük: Időszak Csapadék mennyiéség
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenV.7. NÉPSZÁMLÁLÁS. A feladatsor jellemzői
V.7. NÉPSZÁMLÁLÁS Tárgy, téma A feladatsor jellemzői Eponenciális egyenletek felírása és megoldása szöveges feladatok alapján. Szöveges feladatok alapján modellt alkotunk, amely alkalmas eponenciálisan
RészletesebbenAz atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval
RészletesebbenExponenciális és logaritmusos feladatok
005-0XX Középszint Eponenciális és logaritmusos feladatok ) Oldja meg az alái egyenleteket! ( ) log + + =, ahol valós szám és cos = 4 5sin, ahol tetszőleges forgásszöget jelöl ( pont) ) Mekkora értéke,
RészletesebbenExponenciális és logaritmusos feladatok Megoldások
00-0XX Középszint Eponenciális és logaritmusos feladatok Megoldások ) Oldja meg az alábbi egyenleteket! a) ( ) log + + =, ahol valós szám és b) cos = 4 sin, ahol tetszőleges forgásszöget jelöl ( pont)
RészletesebbenMatematika kisérettségi I. rész 45 perc NÉV:...
Matematika kisérettségi I. rész 45 perc NÉV:... 1. Az A halmaz elemei a háromnál nagyobb egyjegyű számok, a B halmaz elemei pedig a húsznál kisebb pozitív páratlan számok. Sorolja fel az halmaz elemeit!
RészletesebbenRadioaktív bomlási sor szimulációja
Radioaktív bomlási sor szimulációja A radioaktív bomlásra képes atomok nem öregszenek, azaz nem lehet sem azt megmondani, hogy egy kiszemelt atom mennyi idıs (azaz mikor keletkezett), sem azt, hogy pontosan
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Exponenciális és Logaritmusos feladatok
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Eponenciális és Logaritmusos feladatok A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonan szolgálhatnak fontos információval
RészletesebbenEgyenletek, egyenlőtlenségek X.
Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak
RészletesebbenMATEMATIKA ÉRETTSÉGI október 25. EMELT SZINT I.
MATEMATIKA ÉRETTSÉGI 006. október 5. EMELT SZINT I. ) Oldja meg az alábbi egyenleteket a valós számok halmazán! lg x+ 7 + lg x+ = (5 pont) a) b) x x (6 pont) a) A logaritmus azonosságait és a 0-es alapú
Részletesebben5. feladatsor megoldása
megoldása I. rész ( ) = 1. x x, azaz C) a helyes válasz, mivel a négyzetgyökvonás eredménye csak nemnegatív szám lehet.. A húrnégyszögek tétele szerint bármely húrnégyszög szemközti szögeinek összege 180.
Részletesebben11. Sorozatok. I. Nulladik ZH-ban láttuk:
11. Sorozatok I. Nulladik ZH-ban láttuk: 1. Egy számtani sorozat harmadik eleme 15, a nyolcadik eleme 30. Mely n természetes számra igaz, hogy a sorozat első n elemének összege 6? A szokásos jelöléseket
RészletesebbenHarmadikos vizsga Név: osztály:
. a) b) c) Számítsd ki az alábbi kifejezések pontos értékét! log 6 log log 49 4 7 d) log log 6 log 8 feladat pontszáma: p. Döntsd el az alábbi öt állítás mindegyikéről, hogy igaz vagy hamis! A pontozott
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.
Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:
RészletesebbenAz egyenes egyenlete: 2 pont. Az összevont alak: 1 pont. Melyik ábrán látható e függvény grafikonjának egy részlete?
1. Írja fel annak az egyenesnek az egyenletét, amely áthalad az (1; 3) ponton, és egyik normálvektora a (8; 1) vektor! Az egyenes egyenlete: 2. Végezze el a következő műveleteket, és vonja össze az egynemű
RészletesebbenFÜGGVÉNYEK x C: 2
FÜGGVÉNYEK 2005-2014 1. 2005/0511/2 Az ábrán egy [ 2; 2] intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! A: x x 2 2 B: x 2 2 x x
RészletesebbenMIKROFIZIKA. Atomok és molekulák. Avogadro törvénye. www.baranyi.hu 2010. szeptember 19. FIZIKA TÁVOKTATÁS
MIKROFIZIKA Atomok és molekulák Avogadro törvénye A hidrogén a kémiai elemek között a legkönnyebb, részecskéi (atomjai) a legkissebbek. (A hidrogén kétatomos gáz, egyatomos állapotban nem fordul elő. Molekulája
RészletesebbenNépességnövekedés Technikai haladás. 6. el adás. Solow-modell II. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem.
Solow-modell II. Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Jöv héten dolgozat!!! Reál GDP növekedési üteme (forrás: World Bank) Reál GDP növekedési üteme (forrás: World Bank) Mit tudunk
RészletesebbenÉrettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6. 2005. május 29. 13. a) Melyik (x; y) valós számpár megoldása az alábbi egyenletrendszernek?
Érettségi feladatok: Egyenletek, egyenlőtlenségek 1 / 6 Elsőfokú 2005. május 28. 1. Mely x valós számokra igaz, hogy x 7? 13. a) Oldja meg az alábbi egyenletet a valós számok halmazán! x 1 2x 4 2 5 2005.
RészletesebbenEGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK
X. Témakör: feladatok 1 Huszk@ Jenő X.TÉMAKÖR EGYENLETEK, EGYENLŐTLENSÉGEK, EGYENLETRENDSZEREK Téma Egyenletek, egyenlőtlenségek grafikus megoldása Egyszerűbb modellalkotást igénylő, elsőfokú egyenletre
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Oldd meg a következő egyenleteket! (Alaphalmaz: R) a) log 4 (x ) = 3 b) lg (x 4) = lg (8x 10) c) log x + log 3 = log 15 d) log x 0x log x 5 = e) log 3 (x 1) = log 3 4 f) log 5 x = 4 g) lg
Részletesebben5. szeminárium Solowl I.
Makroökonómia szeminárium 5. szeminárium Solowl I. Révész Sándor Makroökonómia Tanszék BCE 2013. március 2. Alapegyenletek Termelési függvény: Állandó mérethozadék: Y = F (K, L) zy = F (zk, zl) Y /L =
RészletesebbenAz egészségügyi és gazdasági indikátorok összefüggéseinek vizsgálata Magyarországon
Az egészségügyi és gazdasági indikátorok összefüggéseinek vizsgálata Magyarországon Készítette: Bakos Izabella Mária SZIE-GTK Enyedi György RTDI PhD-hallgató Kutatási téma Az egészségügyi állapot (lakosság
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos
RészletesebbenViszonyszám A B. Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a. viszonyítadóadat
Viszonyszámok Viszonyszám Viszonyszám: két, egymással kapcsolatban álló statisztikai adat hányadosa, ahol A: a viszonyítandó adat Viszonyítás tárgya (viszonyítandó adat) B: a viszonyítás alapja V viszonyítadóadat
RészletesebbenFELADATOK A DINAMIKUS METEOROLÓGIÁBÓL 1. A 2 m-es szinten végzett standard meteorológiai mérések szerint a Földön valaha mért második legmagasabb hőmérséklet 57,8 C. Ezt San Luis-ban (Mexikó) 1933 augusztus
RészletesebbenTrigonometria Megoldások. 1) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( )
Trigonometria Megoldások Trigonometria - megoldások ) Igazolja, hogy ha egy háromszög szögeire érvényes az alábbi összefüggés: sin : sin = cos + : cos +, ( ) ( ) akkor a háromszög egyenlő szárú vagy derékszögű!
RészletesebbenFolyadékszcintillációs spektroszkópia jegyz könyv
Folyadékszcintillációs spektroszkópia jegyz könyv Zsigmond Anna Julia Fizika MSc I. Mérés vezet je: Horváth Ákos Mérés dátuma: 2010. október 21. Leadás dátuma: 2010. november 8. 1 1. Bevezetés A mérés
RészletesebbenKOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY
Név:.Iskola: KOMPETENCIA ALAPÚ LEVELEZŐ MATEMATIKA VERSENY 2012. november 12. 12. évfolyam I. forduló Pótlapok száma db Matematika 12. évfolyam 1. forduló 1. Az alábbiakban számtani sorozatokat adtunk
RészletesebbenNépesség növekedés (millió fő) Népességszám a szakasz végén (millió fő) időszakasz dátuma. hossza (év) Kr.e. 10000- Kr.e. 7000 Kr.e. 7000-Kr.e.
A világnépesség növekedése A népességszám változása időszakasz dátuma Kr.e. 10000- Kr.e. 7000 Kr.e. 7000-Kr.e. 4500 Kr.e. 4500-Kr.e. 2500 Kr.e. 2500-Kr.e. 1000 Kr.e. 1000- Kr. születése időszakasz hossza
RészletesebbenVI. Felkészítő feladatsor
VI. Felkészítő feladatsor I. 1. Egyszerűsítse az y 3 y 2 y 1 törtet, ha y 1. 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 450X szám 6-tal osztható? 3. Minden utca zajos. Válassza ki az alábbiak
RészletesebbenGYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK
GYAKORLÓ FELADATOK 4: KÖLTSÉGEK ÉS KÖLTSÉGFÜGGVÉNYEK 1. Egy terméket rövid távon a függvény által leírt költséggel lehet előállítani. A termelés határköltségét az összefüggés adja meg. a) Írja fel a termelés
RészletesebbenHatvány, gyök, logaritmus. Válogatás korábbi évek érettségi feladataiból ( , emelt szint)
Hatvány, gyök, logaritmus Válogatás korábbi évek érettségi feladataiból (2014-2017, emelt szint) 2014. máj. E/2. Jelölje H a 5,2 x 3 egyenlőtlenség pozitív egész megoldásainak halmazát. Jelölje továbbá
Részletesebben5. Laboratóriumi gyakorlat
5. Laboratóriumi gyakorlat HETEROGÉN KÉMIAI REAKCIÓ SEBESSÉGÉNEK VIZSGÁLATA A CO 2 -nak vízben történő oldódása és az azt követő egyensúlyra vezető kémiai reakció az alábbi reakcióegyenlettel írható le:
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Trigonometria A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett
RészletesebbenMatematika szintfelmérő dolgozat a 2018 nyarán felvettek részére augusztus
Matematika szintfelmérő dolgozat a 018 nyarán felvettek részére 018. augusztus 1. (8 pont) Oldjuk meg a következő egyenletet a valós számok halmazán: 6 4 x 13 6 x + 6 9 x = 0 6 ( ) x 4 13 9 6 4 x 13 6
RészletesebbenM. 33. Határozza meg az összes olyan kétjegyű szám összegét, amelyek 4-gyel osztva maradékul 3-at adnak!
Magyar Ifjúság 6 V SOROZATOK a) Három szám összege 76 E három számot tekinthetjük egy mértani sorozat három egymás után következő elemének vagy pedig egy számtani sorozat első, negyedik és hatodik elemének
RészletesebbenTOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, március óra 11. osztály
TOL A MEGYEI SZILÁRD LEÓ FIZIKAVERSE Y Szekszárd, 2002 március 13 9-12 óra 11 osztály 1 Egyatomos ideális gáz az ábrán látható folyamatot végzi A folyamat elsõ szakasza izobár folyamat, a második szakasz
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.
Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:
RészletesebbenFIZIKA. Radioaktív sugárzás
Radioaktív sugárzás Atommag összetétele: Hélium atommag : 2 proton + 2 neutron 4 He 2 A He Z 4 2 A- tömegszám proton neutron együttesszáma Z- rendszám protonok száma 2 Atommag összetétele: Izotópok: azonos
RészletesebbenMAKROÖKONÓMIA 4. szemináriurm Solow I.
MAKROÖKONÓMIA 4. szemináriurm Solow I. Révész Sándor Tanszék 2012. március 18. Alapegyenletek Termelési függvény: Állandó mérethozadék: Y = F (K, L) zy = F (zk, zl) Egy munkásra jutó termelés: Y /L = F
RészletesebbenT I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
RészletesebbenFizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz
Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a
RészletesebbenNEVEZETES FOLYTONOS ELOSZLÁSOK
Bodó Beáta - MATEMATIKA II 1 NEVEZETES FOLYTONOS ELOSZLÁSOK EXPONENCIÁLIS ELOSZLÁS 1. A ξ valószínűségi változó eponenciális eloszlású 80 várható értékkel. (a) B Adja meg és ábrázolja a valószínűségi változó
Részletesebben7. 17 éves 2 pont Összesen: 2 pont
1. { 3;4;5} { 3; 4;5;6;7;8;9;10} A B = B C = A \ B = {1; }. 14 Nem bontható. I. 3. A) igaz B) hamis C) igaz jó válasz esetén, 1 jó válasz esetén 0 pont jár. 4. [ ; ] Más helyes jelölés is elfogadható.
RészletesebbenGAZDASÁGI NÖVEKEDÉS II.
Gazdasági növekedés II. 1 IGAZ-HAMIS ÁLLÍTÁSOK GAZDASÁGI NÖVEKEDÉS II. 1. A Solow-modell alapján egy nemzetgazdaság életszínvonalának folyamatos emelkedése a technológiai haladásnak és a népesség magas
RészletesebbenMagfizika tesztek. 1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem
1. Melyik részecske nem tartozik a nukleonok közé? a) elektron b) proton c) neutron d) egyik sem 2. Mit nevezünk az atom tömegszámának? a) a protonok számát b) a neutronok számát c) a protonok és neutronok
RészletesebbenBrósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Megoldások
Megoldások 1. Melyik az a szám, amelynek a felét és az ötödét összeszorozva, a szám hétszeresét kapjuk? Legyen a keresett szám:. A szöveg alapján felírhatjuk a következő egyenletet: 1 1 = 7. 5 Ezt rendezve
RészletesebbenElső sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a. cos x + sin2 x cos x. +sinx +sin2x =
2000 Írásbeli érettségi-felvételi feladatok Első sorozat (2000. május 22. du.) 1. Oldjamegavalós számok halmazán a egyenletet! cos x + sin2 x cos x +sinx +sin2x = 1 cos x (9 pont) 2. Az ABCO háromszög
RészletesebbenAz atommag összetétele, radioaktivitás
Az atommag összetétele, radioaktivitás Az atommag alkotórészei proton: pozitív töltésű részecske, töltése egyenlő az elektron töltésével, csak nem negatív, hanem pozitív: 1,6 10-19 C tömege az elektron
RészletesebbenPróba érettségi feladatsor április I. RÉSZ
Név: osztály: Próba érettségi feladatsor 2007 április 17-18 I RÉSZ Figyelem! A dolgozatot tollal írja; az ábrákat ceruzával is rajzolhatja A megoldást minden esetben a feladat szövege melletti keretbe
RészletesebbenMérési adatok illesztése, korreláció, regresszió
Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,
RészletesebbenTermészetes népmozgalom
Természetes népmozgalom Termékenység és halandóság Termékenység fertilitás Nem minden nő ad gyermeknek életet De egy nő élete során több gyermeknek is adhat életet Halandóság mortalitás Mindenki meghal
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Exponenciális és Logaritmikus kifejezések
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI EMELT SZINT Eponenciális és Logaritmikus kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szoálhatnak fontos információval
RészletesebbenSzöveges feladatok és Egyenletek
Szöveges feladatok és Egyenletek Sok feladatot meg tudunk oldani következtetéssel, rajz segítségével és egyenlettel is. Vajon mikor érdemes egyenletet felírni? Van-e olyan eset, amikor nem tanácsos, vagy
RészletesebbenNULLADIK MATEMATIKA ZÁRTHELYI szeptember 13.
6A NULLADIK MATEMATIKA ZÁRTHELYI 00. szeptember. Terem: Munkaidő: 0 perc. A dolgozat megírásához íróeszközön kívül semmilyen segédeszköz nem használható. Válaszait csak az üres mezőkbe írja! A javítók
RészletesebbenAz egyszerűsítés utáni alak:
1. gyszerűsítse a következő törtet, ahol b 6. 2 b 36 b 6 Az egyszerűsítés utáni alak: 2. A 2, 4 és 5 számjegyek mindegyikének felhasználásával elkészítjük az összes, különböző számjegyekből álló háromjegyű
RészletesebbenMakroökonómia. 7. szeminárium
Makroökonómia 7. szeminárium Az előző részek tartalmából Népességnövekedés L Y t = ak t α L t 1 α Konstans, (1+n) ütemben növekszik Egy főre jutó értékek Egyensúlyi növekedési pálya Összes változó konstans
RészletesebbenMinta 2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR. I. rész
2. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI FELADATSOR I. rész A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok megoldásához
Részletesebben-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio
-A radioaktivitás a nem stabil (úgynevezett radioaktív) atommagok bomlásának folyamata. -Nagyenergiájú ionizáló sugárzást kelt Az elnevezés: - radio (sugároz) - activus (cselekvő) Különféle foszforeszkáló
Részletesebbenb) Ábrázolja ugyanabban a koordinátarendszerben a g függvényt! (2 pont) c) Oldja meg az ( x ) 2
1) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) b) c) ( ) ) Határozza meg az 1. feladatban megadott, ; intervallumon
RészletesebbenA 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.
A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató
RészletesebbenMATEMATIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Matematika középszint 1413 ÉRETTSÉGI VIZSGA 015. május 5. MATEMATIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Fontos tudnivalók Formai előírások:
Részletesebben3. előadás Reaktorfizika szakmérnököknek TARTALOMJEGYZÉK. Az a bomlás:
beütésszám. előadás TARTALOMJEGYZÉK Az alfa-bomlás Az exponenciális bomlástörvény Felezési idő és ativitás Poisson-eloszlás Bomlási sémá értelmezése Bomlási soro, radioatív egyensúly Az a bomlás: A Z X
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMit értünk a termikus neutronok fogalma alatt? Becsüljük meg a sebességüket 27 o C hőmérsékleten!
Országos Szilárd Leó fizikaverseny Elődöntő 04. Minden feladat helyes megoldása 5 pontot ér. A feladatokat tetszőleges sorrenen lehet megoldani. A megoldáshoz bármilyen segédeszköz használható. Rendelkezésre
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben1. szemináriumi. feladatok. Ricardói modell Bevezetés
1. szemináriumi feladatok Ricardói modell Bevezetés Termelési lehetőségek határa Relatív ár Helyettesítési határráta Optimális választás Fogyasztási pont Termelési pont Abszolút előny Komparatív előny
RészletesebbenA kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9
A kálium-permanganát és az oxálsav közötti reakció vizsgálata 9a. mérés B4.9 Név: Pitlik László Mérés dátuma: 2014.12.04. Mérőtársak neve: Menkó Orsolya Adatsorok: M24120411 Halmy Réka M14120412 Sárosi
RészletesebbenAz Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm.
Az Országos Képzési Jegyzékről és az Országos Képzési Jegyzék módosításának eljárásrendjéről szóló 133/2010. (IV. 22.) Korm. rendelet alapján: Szakképesítés, szakképesítés-elágazás, rész-szakképesítés,
RészletesebbenMATEMATIKA ÉRETTSÉGI május 8. EMELT SZINT
MATEMATIKA ÉRETTSÉGI 007. május 8. EMELT SZINT 1) Oldja meg a valós számok halmazán az alábbi egyenletet! x x 4 log 9 10 sin x x 6 I. (11 pont) sin 1 lg1 0 log 9 9 x x 4 Így az 10 10 egyenletet kell megoldani,
RészletesebbenMakroökonómia. 6. szeminárium
Makroökonómia 6. szeminárium Ismétlés: egy főre jutó makromutatók Népességnövekedés L Y t = ak t α L t 1 α Konstans, (1+n) ütemben növekszik Egy főre jutó értékek Egyensúlyi növekedési pálya Összes változó
Részletesebbentörtet, ha a 1. Az egyszerűsített alak: 2 pont
1. Egyszerűsítse az 3 2 a + a a + 1 törtet, ha a 1. Az egyszerűsített alak: 2. Milyen számjegy állhat az X helyén, ha a négyjegyű 361 X szám 6-tal osztható? X = 3. Minden szekrény barna. Válassza ki az
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Függvények ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x
Részletesebben1. dolgozatra gyakorló feladatlap tavasz. Egy nemzetgazdaság főbb makroadatait tartalmazza az alábbi táblázat (milliárd dollárban):
Makroökonómia 1. dolgozatra gyakorló feladatlap 2013. tavasz 1. feladat. Egy nemzetgazdaság főbb makroadatait tartalmazza az alábbi táblázat (milliárd dollárban): Összes kibocsátás 10000 Folyó termelőfelhasználás
RészletesebbenFogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben
Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia ok. TRI-MESTER, Tatabánya. 33. o. 1. 65.) Keynesi abszolút
RészletesebbenTermodinamika. Belső energia
Termodinamika Belső energia Egy rendszer belső energiáját az alkotó részecskék mozgási energiájának és a részecskék közötti kölcsönhatásból származó potenciális energiák teljes összegeként határozhatjuk
RészletesebbenFüggvények Megoldások
Függvények Megoldások ) Az ábrán egy ; intervallumon értelmezett függvény grafikonja látható. Válassza ki a felsoroltakból a függvény hozzárendelési szabályát! a) x x b) x x + c) x ( x + ) b) Az x függvény
RészletesebbenSZÁZALÉKSZÁMÍTÁS FELADATOK
SZÁZALÉKSZÁMÍTÁS FELADATOK 1. Határozza meg 700-nak a 13%-át! 91 2. Határozza meg 700-nak a 221%-át! 1547 3. B Határozza meg 8 000 Ft 72%-ának a 23%-át! 1325 Ft 4. B Mennyi a bruttó éves fizetése annak
RészletesebbenTermészetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!
Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához!
RészletesebbenPRÓBAÉRETTSÉGI 2004.május MATEMATIKA. KÖZÉPSZINT I. 45 perc
PRÓBAÉRETTSÉGI 2004.május MATEMATIKA KÖZÉPSZINT I. 45 perc A feladatok megoldására 45 perc fordítható, az idő leteltével a munkát be kell fejeznie. A feladatok megoldási sorrendje tetszőleges. A feladatok
RészletesebbenFogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben
Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 33. o. 1. feladat 65.) Keynesi
Részletesebben2. Százalékszámítás és alkalmazásai
2. Százalékszámítás és alkalmazásai Tanulási cél: Százalékszámítás ismétlése, megismerni az ÁFA valamint az egyszerű és kamatos kamat számítási módszereit Motivációs példa Az újságban olvassuk, hogy a
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉPSZINT Függvények A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
RészletesebbenSZKA_207_32. Jólét és jóllét. Avagy: alkoss államot saját elképzeléseid szerint
SZKA_207_32 Jólét és jóllét Avagy: alkoss államot saját elképzeléseid szerint diákmelléklet Jólét és jóllét 7. évfolyam 327 32/1a ARCOK A VILÁGBÓL Egyéni feladatlap Sorsz. Hol él? Jólétben él-e vagy sem?
RészletesebbenTERÜLETSZÁMÍTÁS évfolyam
Boronkay György Műszaki Középiskola és Gimnázium 2600 Vác, Németh László u. 4-6. : 27-317 - 077 /fax: 27-315 - 093 WEB: http://boronkay.vac.hu e-mail: boronkay@vac.hu Levelező Matematika Szakkör TERÜLETSZÁMÍTÁS
RészletesebbenMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK EMELT SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek
Részletesebben