Párhuzamos és Grid rendszerek
|
|
- Borbála Csonka
- 6 évvel ezelőtt
- Látták:
Átírás
1 Párhuzamos és Grid rendszerek (2. ea) párhuzamos algoritmusok tervezése Szeberényi Imre BME IIT Az ábrák egy része Ian Foster: Designing and Building Parallel Programs (Addison-Wesley) c. könyvéből származik. M Ű E G Y E T E M Párhuzamos és Grid rendszerek BME-IIT Sz.I
2 Hol tartunk? Megismerkedtünk az alapfogalmakkal Megismertük a fontosabb párhuzamos architektúrákat: SMP (NUMA, ccnuma) MPP CLUSTER Párhuzamos és Grid rendszerek BME-IIT Sz.I
3 Hol tartunk? /2 Felvázoltunk fizikai és logikai összeköttetéseket Egyszerű absztrakciós modellt alkottunk a párhuzamos gépek leírására Említett programozási modellek Közös memóriás Elosztott közös memóriás Üzenet küldéses Párhuzamos és Grid rendszerek BME-IIT Sz.I
4 Taszk/csatorna modell /1 minden taszk szekvenciális programot futtat minden taszknak van saját memóriája taszkok csatornákkal kapcsolódnak a csatornák üzenetsorokat valósítanak meg Párhuzamos és Grid rendszerek BME-IIT Sz.I
5 Taszk/csatorna modell /2 taszkok konkurensek van lokális memóriájuk küldés aszinkron fogadás szinkron csatornához in/out portokkal csatlakoznak taszkok tetszőlegesen rendelhetők össze a processzorokkal Párhuzamos és Grid rendszerek BME-IIT Sz.I
6 Taszk/csatorna modell /3 Példa: termelő-fogyasztó probléma taszk1: termelő taszk2: fogyasztó Raktár T1 T2 ha a fogyasztó lassabb, akkor a felhalmozódik a termelt adat ha a termelő a lassabb, akkor vár a fogy. Párhuzamos és Grid rendszerek BME-IIT Sz.I
7 Taszk/csatorna modell /4 Példa: termelő-fogyasztó probléma taszk1: termelő taszk2: fogyasztó T1 T2 második csatornán a fogyasztó jelzi, ha kér újabb adatot a termelő ennek hatására termel Párhuzamos és Grid rendszerek BME-IIT Sz.I
8 Taszk/csat. modell jellemzői A modell közvetlenül hozzárendelhető az idealizált számítógéphez. A taszk egy soros kódot reprezentál. A csatorna processzorok közötti kommunikációt valósít meg. A taszk működése független a taszkprocesszor összerendeléstől, taszkok számától. Moduláris felépítést tesz lehetővé. Párhuzamos és Grid rendszerek BME-IIT Sz.I
9 Taszk/csatorna vs. üzenet Az üzenet egy adott taszknak szól, ezért kevésbé absztrakt, mint a csatorna. Az általános üzenetküldéses modell szerint nem lehet dinamikusan új taszkot létrehozni. (Több megvalósításban lehet.) Egy processzor csak egy taszkot futtathat. (Több megvalósításban ez sem korlát.) Párhuzamos és Grid rendszerek BME-IIT Sz.I
10 Párh. algoritmus példák /1 Véges differenciák: egy vektor minden elemére T-szer végre kell hajtani a következő műveletet: Minden elemet egy-egy taszk számol, aki kommunikál a szomszédaival: Párhuzamos és Grid rendszerek BME-IIT Sz.I
11 Párh. algoritmus példák /2 Páronkénti iteráció (pl. atomok kölcsönös egymásra hatása) N*(N-1) üzenet kell, esetleg N*(N-1)/2, ha kihasználjuk a szimmetriát. Párhuzamos és Grid rendszerek BME-IIT Sz.I
12 Párh. algoritmus példák /3 Körkörös kapcsolat (csatorna) a fenti problémára hatékonyabb üzenetstruktúrát eredményez: L 0 L 0 L 0 L 3 Egy N elemű vektorba minden taszk beteszi a saját adatát (koord., 3 tömeg) és elküldi a szomszédnak. A bejövő üzenetbe megfelelő helyre ismét elhelyezi a saját adatát és továbbküldi azt. N-1 lépés után mindenki ismeri az a többiek koordinátáit és tömegét. F értéke minden lépésben az új partnerek adata alapján akkumulálható Párhuzamos és Grid rendszerek BME-IIT Sz.I
13 Párh. algoritmus példák /4 N újabb csatornával az algoritmus a szimmetria miatt tovább egyszerűsíthető: hozzunk létre minden i. taszk és i+n/2-dik taszk között egy újabb csatornát. az adott atomra ható erőket folyamatosan számoljuk, és küldjük is körbe. N/2 iterációval előáll az eredmény. L 0 F 0 L 1 F 1 L 2 F 2 L 3 F 3 L 4 F Párhuzamos és Grid rendszerek BME-IIT Sz.I
14 Párh. algoritmus példák /5 Párhuzamos keresés: fában történő keresés egyszerűen párhuzamosítható Paraméter elemzés: master-worker algoritmus Párhuzamos és Grid rendszerek BME-IIT Sz.I
15 Párh. algoritmus példák /6 Pipeline rendezés: minden elem megtartja a nagyobbat a kisebbet továbbküldi Pipeline merge sort p0 p1 p2 p Párhuzamos és Grid rendszerek BME-IIT Sz.I
16 Párh. algoritmusok tervezése Nem egyszerű. Kreativitást igényel. Számos iterációt tartalmaz. Nincs egyszerű recept. Vannak betartható, ajánlott lépések, módszerek. Párhuzamos és Grid rendszerek BME-IIT Sz.I
17 PCAM módszertan 1. Particionálás: Részfeladatokra osztás. NEM veszi figyelembe a fizikai gép adottságait. 2. Kommunikáció megtervezése: Részfeladatok közötti adatcsere és szinkronizációs séma kialakítása. 3. Agglomeráció: Részfeladatok nagyobb egységekbe gyűjtése a hatékonyságnövelés érdekében. 4. Leképezés: A részfeladatok processzorhoz (feldolgozó elemhez) rendelése. Párhuzamos és Grid rendszerek BME-IIT Sz.I
18 Particionálás Cél: Párhuzamosítható részek felderítése. A művelet absztrakt, nem veszi figyelembe párhuzamos környezet HW/SW adottságait. Finom felbontás (sok kis részfeladat) előállítása hatékonyabb és egyszerűbb. A feladatot és az adatokat is kis részekre szedjük. domén dekompozíció funkcionális dekompozíció Párhuzamos és Grid rendszerek BME-IIT Sz.I
19 Domén dekompozíció Adat vagy paramétertér felosztása. Az adat lehet input, output, vagy közbülső adat. Példa: Egy 3D rácson minden rácspontban ki kell számolni egy értéket. 1, 2, vagy 3 dimenziós partíció: Párhuzamos és Grid rendszerek BME-IIT Sz.I
20 Funkcionális dekompozíció Az algoritmus felosztása olyan részekre, melyek párhuzamosíthatók. Alapvetően a feladat funkcióiból adódik. Az adatokra is figyelni kell. Tipikus példa, amikor az adatok partícionálása nem járható: keresés fában. funkcionálisan viszont bontható Párhuzamos és Grid rendszerek BME-IIT Sz.I
21 Hogy sikerült a partícionálás? Jól, ha partícionálással kapott taszkok száma nagyságrendileg több mint a proc. száma. Jól, ha redundancia mentes. Jól ha a taszkok mérete hasonló. Jól, ha a probléma méretével a taszkok száma is nő. Párhuzamos és Grid rendszerek BME-IIT Sz.I
22 Kommunikáció Kis környezetű (local) és globális a taszkok csak kis környezetükben (szomszéd), vagy sok másik taszkkal is kommunikálnak. Strukturált és nem strukturált rács, gyűrű,... vagy más Statikus és dinamikus végrehajtás közben változik Szinkron vagy aszinkron koordináció hiánya Párhuzamos és Grid rendszerek BME-IIT Sz.I
23 Kommunikációs példák /1 Lokális kommunikáció (Jakobi): (Gauss-Seidel): Red-Black ordering: Párhuzamos és Grid rendszerek BME-IIT Sz.I
24 Kommunikációs példák /2 Globális kommunkáció (szumma): Csővezeték: Oszd meg és uralkodj: Párhuzamos és Grid rendszerek BME-IIT Sz.I
25 Hogy sikerült a kommunikáció? Jól, ha közel azonos számú kommunikációt végez minden taszk. Jól, ha a taszkok csak lokális környezetükkel kommunikálnak. Jól, ha kommunikácó konkurensen párhuzamosan zajlik. Különböző taszkok konkurensen kommunikálnak. Párhuzamos és Grid rendszerek BME-IIT Sz.I
26 Agglomeráció A tényleges párhuzamos gép kommunikációs adottságait is figyelembe véve a részfeladatokat nagyobb egységekbe gyűjtjük. Párhuzamos és Grid rendszerek BME-IIT Sz.I
27 Agglomeráció szükségessége A kommunikáció "költséges" A kommunikáció szükségtelen szinkronizációt okoz Térfogat-felület effektus (számítás/ kommunikáció arány) Flexibilitás megtartása Párhuzamos és Grid rendszerek BME-IIT Sz.I
28 Hogy sikerült az agglomeráció? Jól, ha jelentősen növekedett a lokális kommunikáció Jól, ha a skálázhatóság nem romlott. Jól, ha az összevont taszkok mérete közel azonos. Jól, ha a probléma méretével növekszik a taszkok száma. Jól, ha a már nem vonhatók össze feladatok anélkül, hogy a skálázhatóság vagy a terheléskiegyenlíthetőség ne romlana. Párhuzamos és Grid rendszerek BME-IIT Sz.I
29 Leképezés (mapping) Tényleges HW/SW környezet figyelembe vétele, leképezés a fizikai gépre. Jelentősen befolyásolhatja a terheléskiegyenlítést, ütemezési algoritmust. Párhuzamos és Grid rendszerek BME-IIT Sz.I
30 Hogy sikerült a leképezés? Jól, ha nem keletkezett szűk keresztmetszet a programban. Jól, ha több lehetséges leképezést is megvizsgáltunk. Ha figyelemmel voltunk a terheléskiegyenlítésre. Párhuzamos és Grid rendszerek BME-IIT Sz.I
31 Komplex példa: mátrix szorzás /1 Mátrix-mátrix szorzás: O(N 3 ) Partícionálás: egy Cij-t csak egy processzor számoljon domén dekompozíció 1D: 2D: Párhuzamos és Grid rendszerek BME-IIT Sz.I
32 Komplex példa: mátrix szorzás /2 Kommunikáció 1D: Minden proc.-nak szüksége van a teljes A-ra. tfh. egy processzor felelős az adatok szétküldéséért és begyűjtéséért (pl. SPMD) T 1d = (P-1)*(N 2 + 2*N 2 /P) P*N 2 A kommunikációs igény processzor számával lineárisan nő! Párhuzamos és Grid rendszerek BME-IIT Sz.I
33 Komplex példa: mátrix szorzás /2 Kommunikáció 2D: Azonos sor ill. azonos oszlop kell A-ból és B-ből. Algoritmus (Fox s): 1. C = 0 2. Ismétlés N-1-szer: 3. A átlóit soronként ismételve tegyük egy A'-be 4. C ij = C ij + B ij * A ij 5. B = B ciklikus feltolása T 2d = 2*( P-1)*N 2 + (P-1)*N 2 /P N 2 / P Párhuzamos és Grid rendszerek BME-IIT Sz.I
34 Komplex példa: mátrix szorzás /4 Agglomeráció: A kommunikációs igény felmérésénél láttuk, hogy érdemes lehet nagyobb csoportokat alkotni. Esetleg más algoritmusok (pl. Cannon) más agglomerációt igényelhetnek. Leképezés (mapping): Rács Fa Párhuzamos és Grid rendszerek BME-IIT Sz.I
Párhuzamos és Grid rendszerek
Párhuzamos és Grid rendszerek (14. ea) Összefoglalás Szeberényi Imre BME IIT M Ű E G Y ET E M 1 7 8 2 Párhuzamos és Grid rendszerek BME-IIT Sz.I. 2013.05.06. - 1 - Összefogalás Párhuzamos
Összefogalás. Párhuzamos és Grid rendszerek. Párhuzamos gépek osztályai. Jellemző szupersz.gép típusok. Flynn-féle architektúra modell
Összefogalás (14. ea) Összefoglalás Szeberényi Imre BME IIT M Ű E G Y ET E M 1 7 8 2 BME-IIT Sz.I. 2013.05.06. - 1 - Párhuzamos architektúrák Párhuzamos programok modellezése Párh. prog.
Párhuzamos és Grid rendszerek. Összefogalás. Jellemző szupersz.gép típusok. Párhuzamos architektúrák. Párh. prog. fejlesztési módszerek
Párhuzamos és Grid rendszerek (14. ea) Összefoglalás Szeberényi Imre BME IIT M Ű E G Y ET E M 1 7 8 2 Párhuzamos és Grid rendszerek BME-IIT Sz.I. 2013.05.06. - 1 - Összefogalás Párhuzamos
Flynn féle osztályozás Single Isntruction Multiple Instruction Single Data SISD SIMD Multiple Data MISD MIMD
M5-. A lineáris algebra párhuzamos algoritmusai. Ismertesse a párhuzamos gépi architektúrák Flynn-féle osztályozását. A párhuzamos lineáris algebrai algoritmusok között mi a BLAS csomag célja, melyek annak
egy szisztolikus példa
Automatikus párhuzamosítás egy szisztolikus példa Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus Automatikus párhuzamosítási módszer ötlet Áttekintés Bevezetés Példa konkrét szisztolikus algoritmus
Párhuzamos és Grid rendszerek
Párhuzamos és Grid rendszerek (1. ea) alapfogalmak Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 Párhuzamos és Grid rendszerek BME-IIT Sz.I. 2012.02.06. - 1 - Parallel programozás
Bevezetés a párhuzamos programozási koncepciókba
Bevezetés a párhuzamos programozási koncepciókba Kacsuk Péter és Dózsa Gábor MTA SZTAKI Párhuzamos és Elosztott Rendszerek Laboratórium E-mail: kacsuk@sztaki.hu Web: www.lpds.sztaki.hu Programozási modellek
Speciális adatszerkezetek. Programozás alapjai II. (8. ea) C++ Tömbök. Tömbök/2. N dimenziós tömb. Nagyméretű ritka tömbök
Programozás alapjai II. (8. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT Speciális adatszerkezetek A helyes adatábrázolás választása, a helyes adatszerkezet
Programozás alapjai II. (7. ea) C++ Speciális adatszerkezetek. Tömbök. Kiegészítő anyag: speciális adatszerkezetek
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Programozás alapjai II. (7. ea) C++
Programozás alapjai II. (7. ea) C++ Kiegészítő anyag: speciális adatszerkezetek Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 C++ programozási nyelv BME-IIT Sz.I. 2016.04.05. - 1
Párhuzamos programozási platformok
Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási
Párhuzamos algoritmusok tervezésének alapjai
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Párhuzamos algoritmusok tervezésének alapjai Bevezetés Részfeladatok és dekompozíció Processzek és leképzés
Párhuzamos és Grid rendszerek
Párhuzamos és Grid rendszerek (10. ea) GPGPU Szeberényi Imre BME IIT Az ábrák egy része az NVIDIA oktató anyagaiból és dokumentációiból származik. Párhuzamos és Grid rendszerek BME-IIT
Az UPPAAL egyes modellezési lehetőségeinek összefoglalása. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék
Az UPPAAL egyes modellezési lehetőségeinek összefoglalása Majzik István BME Méréstechnika és Információs Rendszerek Tanszék Résztvevők együttműködése (1) Automaták interakciói üzenetküldéssel Szinkron
Occam 1. Készítette: Szabó Éva
Occam 1. Készítette: Szabó Éva Párhuzamos programozás Egyes folyamatok (processzek) párhuzamosan futnak. Több processzor -> tényleges párhuzamosság Egy processzor -> Időosztásos szimuláció Folyamatok közötti
Párhuzamos programozási platformok
Párhuzamos programozási platformok Parallel számítógép részei Hardver Több processzor Több memória Kapcsolatot biztosító hálózat Rendszer szoftver Párhuzamos operációs rendszer Konkurenciát biztosító programozási
Szenzorhálózatok programfejlesztési kérdései. Orosz György
Szenzorhálózatok programfejlesztési kérdései Orosz György 2011. 09. 30. Szoftverfejlesztési alternatívák Erőforráskorlátok! (CPU, MEM, Energia) PC-től eltérő felfogás: HW közeli programozás Eszközök közvetlen
Párhuzamos algoritmusok tervezésének alapjai
Párhuzamos algoritmusok tervezésének alapjai A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003 könyv anyaga alapján Vázlat Bevezetés Részfeladatok és
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Párhuzamos és Grid rendszerek. Parallel programozás áttekintése. Történelmi áttekintés
Párhuzamos és Grid rendszerek (1. ea) alapfogalmak Szeberényi Imre ME IIT M Ű E G Y E T E M 1 7 8 2 Párhuzamos és Grid rendszerek ME-IIT Sz.I. 2012.02.06. - 1 - Parallel programozás
Kereső algoritmusok a diszkrét optimalizálás problémájához
Kereső algoritmusok a diszkrét optimalizálás problémájához A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, 2003. könyv anyaga alapján A kereső eljárások
Autóipari beágyazott rendszerek. Komponens és rendszer integráció
Autóipari beágyazott rendszerek és rendszer integráció 1 Magas szintű fejlesztési folyamat SW architektúra modellezés Modell (VFB) Magas szintű modellezés komponensek portok interfészek adattípusok meghatározása
Bevezetés. Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Bevezetés Motiváció Soros és párhuzamos végrehajtás, soros és párhuzamos programozás Miért? Alapfogalmak
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Mit szeretnénk elérni? Informális tervek Informális követelmények Formális modell Formalizált követelmények
Algoritmusokfelülnézetből. 1. ELŐADÁS Sapientia-EMTE
Algoritmusokfelülnézetből 1. ELŐADÁS Sapientia-EMTE 2015-16 Algoritmus Az algoritmus kifejezés a bagdadi arab tudós, al-hvárizmi(780-845) nevének eltorzított, rosszul latinra fordított változatából ered.
Párhuzamosítás adatbáziskezelő rendszerekben
Párhuzamosítás adatbáziskezelő rendszerekben Erős Levente, 2018. 1 Párhuzamos műveletvégzés Miért? Nagy adatmennyiségek Nagyságrendileg nő a keletkező/feldolgozandó/tárolandó adat mennyisége Célhardver
Párhuzamos programozási feladatok
Párhuzamos programozási feladatok BMF NIK 2008. tavasz B. Wilkinson és M. Allen oktatási anyaga alapján készült Gravitációs N-test probléma Fizikai törvények alapján testek helyzetének, mozgásjellemzőinek
SAT probléma kielégíthetőségének vizsgálata. masszív parallel. mesterséges neurális hálózat alkalmazásával
SAT probléma kielégíthetőségének vizsgálata masszív parallel mesterséges neurális hálózat alkalmazásával Tajti Tibor, Bíró Csaba, Kusper Gábor {gkusper, birocs, tajti}@aries.ektf.hu Eszterházy Károly Főiskola
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése
Kiegészítő részelőadás 1. Az algoritmusok hatékonyságának mérése Dr. Kallós Gábor 2014 2015 1 Az Ordó jelölés Azt mondjuk, hogy az f(n) függvény eleme az Ordó(g(n)) halmaznak, ha van olyan c konstans (c
Algoritmusok. Dr. Iványi Péter
Algoritmusok Dr. Iványi Péter Egyik legrégebbi algoritmus i.e. IV század, Alexandria, Euklidész két természetes szám legnagyobb közös osztójának meghatározása Tegyük fel, hogy a és b pozitív egész számok
Számítógép Architektúrák
Multiprocesszoros rendszerek Horváth Gábor 2015. május 19. Budapest docens BME Híradástechnikai Tanszék ghorvath@hit.bme.hu Párhuzamosság formái A párhuzamosság milyen formáit ismerjük? Bit szintű párhuzamosság
Párhuzamos programozási feladatok. BMF NIK tavasz B. Wilkinson és M. Allen oktatási anyaga alapján készült
Párhuzamos programozási feladatok BMF NIK 2008. tavasz B. Wilkinson és M. Allen oktatási anyaga alapján készült Gravitációs N-test probléma Fizikai törvények alapján testek helyzetének, mozgásjellemzőinek
Fibonacci számok. Dinamikus programozással
Fibonacci számok Fibonacci 1202-ben vetette fel a kérdést: hány nyúlpár születik n év múlva, ha feltételezzük, hogy az első hónapban csak egyetlen újszülött nyúl-pár van; minden nyúlpár, amikor szaporodik
A Borda-szavazás Nash-implementálható értelmezési tartományai
A Borda-szavazás Nash-implementálható értelmezési tartományai Tasnádi Attila 2007. június 8. Alapfogalmak Jelölések: X az alternatívák véges nem üres halmaza (q = X ). Alapfogalmak Jelölések: X az alternatívák
Számítógép architektúra
Budapesti Műszaki Főiskola Regionális Oktatási és Innovációs Központ Székesfehérvár Számítógép architektúra Dr. Seebauer Márta főiskolai tanár seebauer.marta@roik.bmf.hu Irodalmi források Cserny L.: Számítógépek
Párhuzamos programozási feladatok
Többszálú, többmagos architektúrák és programozásuk Óbudai Egyetem, Neumann János Informatikai Kar Párhuzamos programozási feladatok B. Wilkinson és M. Allen oktatási anyaga alapján feladat javaslatok
Struktúra nélküli adatszerkezetek
Struktúra nélküli adatszerkezetek Homogén adatszerkezetek (minden adatelem azonos típusú) osztályozása Struktúra nélküli (Nincs kapcsolat az adatelemek között.) Halmaz Multihalmaz Asszociatív 20:24 1 A
Összefoglalás és gyakorlás
Összefoglalás és gyakorlás High Speed Networks Laboratory 1 / 28 Hálózatok jellemző paraméterei High Speed Networks Laboratory 2 / 28 Evolúció alkotta adatbázis Önszerveződő adatbázis = (struktúra, lekérdezés)
Mátrixok 2017 Mátrixok
2017 számtáblázatok" : számok rendezett halmaza, melyben a számok helye két paraméterrel van meghatározva. Például lineáris egyenletrendszer együtthatómátrixa 2 x 1 + 4 x 2 = 8 1 x 1 + 3 x 2 = 1 ( 2 4
Parallel programozás áttekintése. Párhuzamos és Grid rendszerek. Történelmi áttekintés. Jellemző szupersz.gép típusok. Flynn-féle architektúra modell
Páruzamos és Grid rendszerek (. ea) alapfogalmak Szeberényi Imre ME IIT M Ű E G Y E T E M 7 8 2 Páruzamos és Grid rendszerek ME-IIT Sz.I. 202.02.06. - - Parallel programozás áttekintése
Előadó: Nagy István (A65)
Programozható logikai áramkörök FPGA eszközök Előadó: Nagy István (A65) Ajánlott irodalom: Ajtonyi I.: Digitális rendszerek, Miskolci Egyetem, 2002. Ajtonyi I.: Vezérléstechnika II., Tankönyvkiadó, Budapest,
Dinamikus programozás párhuzamosítási lehetőségekkel
8. tavasz Dinamikus programozás párhuzamosítási lehetőségekkel A. Grama, A. Gupta, G. Karypis és V. Kumar: Introduction to Parallel Computing, Addison Wesley, könyv, valamint Michael Goodrich (Univ. California)
Csoportos üzenetszórás optimalizálása klaszter rendszerekben
Csoportos üzenetszórás optimalizálása klaszter rendszerekben Készítette: Juhász Sándor Csikvári András Budapesti Műszaki és Gazdaságtudományi Egyetem Villamosmérnöki és Informatikai Kar Automatizálási
"A tízezer mérföldes utazás is egyetlen lépéssel kezdődik."
"A tízezert mérföldes utazás is egyetlen lépéssel kezdődik dik." A BINB INSYS Előadók: Kornafeld Ádám SYS PROJEKT Ádám MTA SZTAKI kadam@sztaki.hu Kovács Attila ELTE IK attila@compalg.inf.elte.hu Társszerzők:
I. VEKTOROK, MÁTRIXOK
217/18 1 félév I VEKTOROK, MÁTRIXOK I1 I2 Vektorok 1 A síkon derékszögű koordinátarendszerben minden v vektornak van vízszintes és van függőleges koordinátája, ezeket sorrendben v 1 és v 2 jelöli A v síkbeli
elektronikus adattárolást memóriacím
MEMÓRIA Feladata A memória elektronikus adattárolást valósít meg. A számítógép csak olyan műveletek elvégzésére és csak olyan adatok feldolgozására képes, melyek a memóriájában vannak. Az információ tárolása
Szimuláció RICHARD M. KARP és AVI WIGDERSON. (Készítette: Domoszlai László)
Szimuláció RICHARD M. KARP és AVI WIGDERSON A Fast Parallel Algorithm for the Maximal Independent Set Problem című cikke alapján (Készítette: Domoszlai László) 1. Bevezetés A következőkben megadott algoritmus
2009.03.16. Ezeket a kiemelkedı sebességő számítógépeket nevezzük szuperszámítógépeknek.
A számítási kapacitás hiánya a világ egyik fontos problémája. Számos olyan tudományos és mőszaki probléma létezik, melyek megoldásához a szokásos számítógépek, PC-k, munkaállomások, de még a szerverek
Programozási módszertan. Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása
PM-06 p. 1/28 Programozási módszertan Dinamikus programozás: szerelőszalag ütemezése Mátrixok véges sorozatainak szorzása Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu
Objektumorientált paradigma és programfejlesztés Bevezető
Objektumorientált paradigma és programfejlesztés Bevezető Vámossy Zoltán vamossy.zoltan@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Ficsor Lajos (Miskolci Egyetem) prezentációja alapján
Klasszikus algebra előadás. Waldhauser Tamás április 28.
Klasszikus algebra előadás Waldhauser Tamás 2014. április 28. 5. Számelmélet integritástartományokban Oszthatóság Mostantól R mindig tetszőleges integritástartományt jelöl. 5.1. Definíció. Azt mondjuk,
Térbeli transzformációk, a tér leképezése síkra
Térbeli transzformációk, a tér leképezése síkra Homogén koordináták bevezetése térben A tér minden P pontjához kölcsönösen egyértelműen egy valós (x, y, z) számhármast rendeltünk hozzá. (Descartes-féle
Numerikus módszerek beugró kérdések
1. Definiálja a gépi számok halmazát (a tanult modellnek megfelelően)! Adja meg a normalizált lebegőpontos szám alakját. (4 pont) Az alakú számot normalizált lebegőpontos számnak nevezik, ha Ahol,,,. Jelöl:
Az informatika kulcsfogalmai
Az informatika kulcsfogalmai Kulcsfogalmak Melyek azok a fogalmak, amelyek nagyon sok más fogalommal kapcsolatba hozhatók? Melyek azok a fogalmak, amelyek más-más környezetben újra és újra megjelennek?
FPGA áramkörök alkalmazásainak vizsgálata
FPGA áramkörök alkalmazásainak vizsgálata Kutatási beszámoló a Pro Progressio alapítvány számára Raikovich Tamás, 2012. 1 Bevezetés A programozható logikai áramkörökön (FPGA) alapuló hardver gyorsítók
SZÁMÍTÓGÉP ARCHITEKTÚRÁK
SZÁMÍTÓGÉP ARCHITEKTÚRÁK Az utasítás-pipeline szélesítése Horváth Gábor, Belső Zoltán BME Hálózati Rendszerek és Szolgáltatások Tanszék ghorvath@hit.bme.hu, belso@hit.bme.hu Budapest, 2018-05-19 1 UTASÍTÁSFELDOLGOZÁS
Diszkrét matematika I., 12. előadás Dr. Takách Géza NyME FMK Informatikai Intézet takach november 30.
1 Diszkrét matematika I, 12 előadás Dr Takách Géza NyME FMK Informatikai Intézet takach@infnymehu http://infnymehu/ takach 2005 november 30 Vektorok Definíció Egy tetszőleges n pozitív egész számra n-komponensű
Autóipari beágyazott rendszerek. Local Interconnection Network
Autóipari beágyazott rendszerek Local Interconnection Network 1 Áttekintés Motiváció Kis sebességigényű alkalmazások A CAN drága Kvarc oszcillátort igényel Speciális perifériát igényel Két vezetéket igényel
III. Alapfogalmak és tervezési módszertan SystemC-ben
III. Alapfogalmak és tervezési módszertan SystemC-ben A SystemC egy lehetséges válasz és egyben egyfajta tökéletesített, tovább fejlesztett tervezési módszertan az elektronikai tervezés területén felmerülő
Osztott rendszer. Osztott rendszer informális definíciója
Osztott rendszer Osztott rendszer informális definíciója Egymástól elkülönülten létező program-komponensek egy halmaza. A komponensek egymástól függetlenül dolgoznak saját erőforrásukkal. A komponensek
Függvények. Programozás alapjai C nyelv 7. gyakorlat. LNKO függvény. Függvények(2) LNKO függvény (2) LNKO függvény (3)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Függvények C program egymás mellé rendelt függvényekből áll. A függvény (alprogram) jó absztrakciós eszköz a programok
Szoftver-technológia II. Architektúrák dokumentálása UML-lel. Irodalom. Szoftver-technológia II.
Architektúrák dokumentálása UML-lel Irodalom L. Bass, P. Clements, R. Kazman: Software Architecture in Practice, Addison-Wesley, 2003 H. Störrle: UML 2, Panem, 2007 2 Szoftver architektúra (emlékeztet!)
Programozás alapjai C nyelv 7. gyakorlat. Függvények. Függvények(2)
Programozás alapjai C nyelv 7. gyakorlat Szeberényi Imre BME IIT Programozás alapjai I. (C nyelv, gyakorlat) BME-IIT Sz.I. 2005.11.05. -1- Függvények C program egymás mellé rendelt függvényekből
Követelmény a 6. évfolyamon félévkor matematikából
Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,
1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás)
Matematika A2c gyakorlat Vegyészmérnöki, Biomérnöki, Környezetmérnöki szakok, 2017/18 ősz 1. feladatsor: Vektorterek, lineáris kombináció, mátrixok, determináns (megoldás) 1. Valós vektorterek-e a következő
Hálózati réteg. WSN topológia. Útvonalválasztás.
Hálózati réteg WSN topológia. Útvonalválasztás. Tartalom Hálózati réteg WSN topológia Útvonalválasztás 2015. tavasz Szenzorhálózatok és alkalmazásaik (VITMMA09) - Okos város villamosmérnöki MSc mellékspecializáció,
Gauss-Seidel iteráció
Közelítő és szimbolikus számítások 5. gyakorlat Iterációs módszerek: Jacobi és Gauss-Seidel iteráció Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 ITERÁCIÓS
Párhuzamos és Grid rendszerek. Hol tartunk? Klaszter. Megismerkedtünk az alapfogalmakkal,
Párhuzamos és Grid rendszerek (3. ea) cluster rendszerek, hosszútávú ütemezők Szeberényi Imre BME IIT M Ű E G Y E T E M 1 7 8 2 Párhuzamos és Grid rendszerek BME-IIT Sz.I. 2013.02.25.
Informatika 6. évfolyam
Informatika 6. évfolyam Egészséges, ergonómiai szempontok ismerete. A számítógép és a legszükségesebb perifériák rendeltetésszerű használata. Helyesírás ellenőrzése. Az adat fogalmának megismerése Útvonalkeresők,
Grafikonok automatikus elemzése
Grafikonok automatikus elemzése MIT BSc önálló laboratórium konzulens: Orosz György 2016.05.18. A feladat elsődleges célkitűzései o eszközök adatlapján található grafikonok feldolgozása, digitalizálása
Folyamatok. 6. előadás
Folyamatok 6. előadás Folyamatok Folyamat kezelése, ütemezése folyamattábla új folyamat létrehozása átkpcsolás folyamatok elválasztása egymástól átlátszó Szál szálkezelő rendszer szálak védése egymástól
A félév során előkerülő témakörök
A félév során előkerülő témakörök rekurzív algoritmusok rendező algoritmusok alapvető adattípusok, adatszerkezetek, és kapcsolódó algoritmusok dinamikus programozás mohó algoritmusok gráf algoritmusok
Diszkrét matematika I. gyakorlat
Vizsgafeladatok megoldása 2012. december 5. Tartalom Teljes feladatsor #1 1 Teljes feladatsor #1 2 Teljes feladatsor #2 3 Teljes feladatsor #3 4 Teljes feladatsor #4 5 Válogatott feladatok 6 Végső bölcsesség
Diszkrét matematika 2.C szakirány
Diszkrét matematika 2.C szakirány 2017. tavasz 1. Diszkrét matematika 2.C szakirány 11. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
UNIX: folyamatok kommunikációja
UNIX: folyamatok kommunikációja kiegészítő fóliák az előadásokhoz Mészáros Tamás http://home.mit.bme.hu/~meszaros/ Budapesti Műszaki Egyetem Méréstechnika és Információs Rendszerek Tanszék 1 A kommunikáció
A SPIN használata, példák II
A SPIN használata, példák II Dr. Németh L. Zoltán (zlnemeth@inf.u-szeged.hu) SZTE, Informatikai Tanszékcsoport 2008/2009 I. félév 2008.10.18/2 MODELL 9 1 2. példa: Egy osztott algoritmus Pl. legyen ez
Nagy Gábor compalg.inf.elte.hu/ nagy
Diszkrét matematika 3. estis képzés 2018. ősz 1. Diszkrét matematika 3. estis képzés 2. előadás Nagy Gábor nagygabr@gmail.com nagy@compalg.inf.elte.hu compalg.inf.elte.hu/ nagy Komputeralgebra Tanszék
Fine-Grained Network Time Synchronization using Reference Broadcast
Fine-Grained Network Time Synchronization using Reference Broadcast Ofszet Az indítás óta eltelt idıt mérik Az ofszet változása: skew Az órák sebességének különbsége Oka: Az óra az oszcillátor pontatlanságát
Keresés képi jellemzők alapján. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Keresés képi jellemzők alapján Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Lusta gépi tanulási algoritmusok Osztályozás: k=1: piros k=5: kék k-legközelebbi szomszéd (k=1,3,5,7)
Algoritmuselmélet. Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás. Katona Gyula Y.
Algoritmuselmélet Függvények nagyságrendje, elágazás és korlátozás, dinamikus programozás Katona Gyula Y. Számítástudományi és Információelméleti Tanszék Budapesti Műszaki és Gazdaságtudományi Egyetem
1. Alapfogalmak Algoritmus Számítási probléma Specifikáció Algoritmusok futási ideje
1. Alapfogalmak 1.1. Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt
Alapszintű formalizmusok
Alapszintű formalizmusok dr. Majzik István BME Méréstechnika és Információs Rendszerek Tanszék 1 Modellek a formális ellenőrzéshez Leképzések Mérnöki modellek Magasabb szintű formalizmusok PN, CPN, DFN,
Dinamikus programozás vagy Oszd meg, és uralkodj!
Dinamikus programozás Oszd meg, és uralkodj! Mohó stratégia Melyiket válasszuk? Dinamikus programozás vagy Oszd meg, és uralkodj! Háromszögfeladat rekurzívan: c nj := a nj ha 1 j n c ij := a ij + max{c
Dinamikus modellek szerkezete, SDG modellek
Diagnosztika - 3. p. 1/2 Modell Alapú Diagnosztika Diszkrét Módszerekkel Dinamikus modellek szerkezete, SDG modellek Hangos Katalin PE Villamosmérnöki és Információs Rendszerek Tanszék Diagnosztika - 3.
Előfeltétel: legalább elégséges jegy Diszkrét matematika II. (GEMAK122B) tárgyból
ÜTEMTERV Programozás-elmélet c. tárgyhoz (GEMAK233B, GEMAK233-B) BSc gazdaságinformatikus, programtervező informatikus alapszakok számára Óraszám: heti 2+0, (aláírás+kollokvium, 3 kredit) 2019/20-es tanév
Programozás I. 1. előadás: Algoritmusok alapjai. Sergyán Szabolcs
Programozás I. 1. előadás: Algoritmusok alapjai Sergyán Szabolcs sergyan.szabolcs@nik.uni-obuda.hu Óbudai Egyetem Neumann János Informatikai Kar Alkalmazott Informatikai Intézet 2015. szeptember 7. Sergyán
Számítógépes képelemzés 7. előadás. Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék
Számítógépes képelemzés 7. előadás Dr. Balázs Péter SZTE, Képfeldolgozás és Számítógépes Grafika Tanszék Momentumok Momentum-alapú jellemzők Tömegközéppont Irányultáság 1 2 tan 2 1 2,0 1,1 0, 2 Befoglaló
A szimplex algoritmus
A szimplex algoritmus Ismétlés: reprezentációs tétel, az optimális megoldás és az extrém pontok kapcsolata Alapfogalmak: bázisok, bázismegoldások, megengedett bázismegoldások, degenerált bázismegoldás
C# Szálkezelés. Tóth Zsolt. Miskolci Egyetem. Tóth Zsolt (Miskolci Egyetem) C# Szálkezelés 2013 1 / 21
C# Szálkezelés Tóth Zsolt Miskolci Egyetem 2013 Tóth Zsolt (Miskolci Egyetem) C# Szálkezelés 2013 1 / 21 Tartalomjegyzék 1 Bevezetés 2 Szálkezelés 3 Konkurens Programozás Tóth Zsolt (Miskolci Egyetem)
Specifikáció. B logikai formula, a bemeneti feltétel, K logikai formula, a kimeneti feltétel, A az algoritmus, amelyre az állítás vonatkozik.
Algoritmus Az algoritmus olyan elemi műveletekből kompozíciós szabályok szerint felépített összetett művelet, amelyet megadott feltételt teljesítő bemeneti adatra végrehajtva, a megkívánt kimeneti adatot
Az MTA Cloud a tudományos alkalmazások támogatására. Kacsuk Péter MTA SZTAKI
Az MTA Cloud a tudományos alkalmazások támogatására Kacsuk Péter MTA SZTAKI Kacsuk.Peter@sztaki.mta.hu Tudományos alkalmazások és skálázhatóság Kétféle skálázhatóság: o Vertikális: dinamikusan változik
Gazdasági matematika II. tanmenet
Gazdasági matematika II. tanmenet Mádi-Nagy Gergely A hivatkozásokban az alábbi tankönyvekre utalunk: T: Tóth Irén (szerk.): Operációkutatás I., Nemzeti Tankönyvkiadó 1987. Cs: Csernyák László (szerk.):
Vektorterek. Több esetben találkozhattunk olyan struktúrával, ahol az. szabadvektorok esetében, vagy a függvények körében, vagy a. vektortér fogalma.
Vektorterek Több esetben találkozhattunk olyan struktúrával, ahol az összeadás és a (valós) számmal való szorzás értelmezett, pl. a szabadvektorok esetében, vagy a függvények körében, vagy a mátrixok esetében.
Felvételi tematika INFORMATIKA
Felvételi tematika INFORMATIKA 2016 FEJEZETEK 1. Természetes számok feldolgozása számjegyenként. 2. Számsorozatok feldolgozása elemenként. Egydimenziós tömbök. 3. Mátrixok feldolgozása elemenként/soronként/oszloponként.
Gyártórendszerek Dinamikája. Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok
GyRDin-02 p. 1/20 Gyártórendszerek Dinamikája Gyártórendszerek jellemzése és szerkezete Gyártórendszerekkel kapcsolatos mérnöki feladatok Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék
VIRTUAL NETWORK EMBEDDING VIRTUÁLIS HÁLÓZAT BEÁGYAZÁS
BME/TMIT Budapesti Műszaki és Gazdaságtudományi Egyetem (BME) Távközlési és Médiainformatikai Tanszék (TMIT) VIRTUAL NETWORK EMBEDDING VIRTUÁLIS HÁLÓZAT BEÁGYAZÁS Dr. Maliosz Markosz maliosz@tmit.bme.hu
3. Előadás. Megyesi László: Lineáris algebra, oldal. 3. előadás Lineáris egyenletrendszerek
3. Előadás Megyesi László: Lineáris algebra, 47. 50. oldal. Gondolkodnivalók Determinánsok 1. Gondolkodnivaló Determinánselméleti tételek segítségével határozzuk meg a következő n n-es determinánst: 1
Adatszerkezetek 1. előadás
Adatszerkezetek 1. előadás Irodalom: Lipschutz: Adatszerkezetek Morvay, Sebők: Számítógépes adatkezelés Cormen, Leiserson, Rives, Stein: Új algoritmusok http://it.inf.unideb.hu/~halasz http://it.inf.unideb.hu/adatszerk
Gauss elimináció, LU felbontás
Közelítő és szimbolikus számítások 3. gyakorlat Gauss elimináció, LU felbontás Készítette: Gelle Kitti Csendes Tibor Somogyi Viktor London András Deák Gábor jegyzetei alapján 1 EGYENLETRENDSZEREK 1. Egyenletrendszerek
Követelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.