RAKÉTÁK REAKTÍV HAJTÓMŰVEI A REAKTÍV HAJTÓMŰVEK
|
|
- Ágnes Bogdánné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Szilvássy László Dr. Szabó László RAKÉTÁK REAKTÍV HAJTÓMŰVEI A katonai alkalmazású rakétákban nagyon széleskörűen alkalmazzák a reaktív hajtóműveket, melyeknek nagyon sok típusa létezik, annak függvényében, hogy éppen melyik technológiai korszakot képviseli, vagy milyen méretű, illetve alkalmazási területű rakétában alkalmazzák azt. Ez a cikk szinte a teljes keresztmetszetét bemutatja a repülőfedélzeti rakétákon alkalmazott rakétahajtóműveknek. A REAKTÍV HAJTÓMŰVEK A rakétahajtóműveket fizikai szempontok alapján a reaktív hajtóművek csoportjába sorolhatjuk, melyeket alapvetően két nagy csoportra oszthatunk. Az egyik nagy csoportba azok a hajtóművek tartoznak melyek az atmoszférában található levegőt használják, mint az energiaforrás nélkülözhetetlen komponensét, vagy mint a kiáramló tömeget, vagy mint mindkettőt. Ezeket a hajtóműveket levegőnyelő, vagy aerob hajtóművek. Ilyen hajtóműveket találhatunk a repülőgépeken, néhány rakétán és a robot repülőgépeken. Ezeknek a hajtóműveknek az alkalmazási magassága igen korlátozott és bármennyire is szeretnénk, de méter fölött már nem alkalmazhatóak. A másik nagy csoportba azok a hajtóművek tartoznak, melyeknek nincsen szükségük a környezetükben található levegőre sem energiaforrásként, sem pedig a kiáramló tömeghez. Ezek a levegőt nem nyelő, vagy anaerob hajtóművek. Talán a legismertebb alkalmazási területük űrhajózási hordozó rakéták. LEVEGŐ NYELŐ HAJTÓMŰVEK A légcsavaros hajtóműnél a vonóerőt a légcsavar keresztmetszetén, az úgynevezett légcsavartárcsán átáramló levegő felgyorsításával állítjuk elő. A v sebességgel mozgó repülőgépre szerelt légcsavar a beszívott levegőt 2w sebességnövekedéssel löki hátra. Mivel hatása a tárcsa előtt és mögötti térre is kiterjed, amit a sugárkontrakció mutat, bizonyítható, hogy a légcsavar síkjában sebességnövekmény feleakkora, vagyis w. A légcsavart hajthatja dugattyús motor, vagy gázturbina. Mindkét esetben a hajtómű a környezeti levegőt használja az energiaforrás egyik komponenseként. 209
2 A légcsavaros hajtómű legjobban a viszonylag kis sebességű repülőgépeknél, légijárműveknél alkalmazható. A gázturbinás sugárhajtómű főalkotó elemei a levegő szívócsatorna, a sűrítő vagy kompresszor, az égőkamra, a turbina és a fúvócső. Az égőkamrában, a sűrített levegőben elégetett üzemanyagból nyert energia egy részét a turbina átalakítja mechanikai energiává a kompresszor hajtására, a megmaradó rész a fúvócsőben átalakul mozgási energiává és tolóerőt fejt ki. Ezt a hajtómű típust a közepes és nagy sebességű repülőgépeknél, robotrepülőgépeknél kerül alkalmazásra. (körülbelül 2-2,5 M 1 tartományig) Az ennél nagyobb sebességeknél már feleslegessé válik a turbókompresszor, mivel a szívócsatornában létesített torlónyomás, rekompresszió elegendő az égési reakció jó hatásfokú lefolyásához. Az ilyen típusú hajtóműveket hívjuk a torlósugár hajtóműnek. Ez a propulziós rendszer csupán a levegő beömlőcsatornából, az égőtérből és a fúvócsőből áll. Mivel nincsenek benne nagy sebességgel forgó alkatrészek, mint a kompresszor, vagy a turbina, felépítése sokkal egyszerűbb, mint a gázturbinás sugárhajtóműveké. Ezzel szemben viszont nagy hátránya, hogy csak nagy sebességeknél (kb. kétszeres Mach szám elérése után) lehet beindítani. Emiatt a torlósugárhajtóművet mindig gázturbinás sugárhajtóművel vagy rakétahajtóművel kell társítani. 210 LEVEGŐT NEM NYELŐ HAJTÓMŰVEK A levegőt nem nyelő hajtóműveket leggyakrabban rakétahajtóműként szoktuk emlegetni. Vizsgáljuk meg mit nevezünk rakétahajtóműnek. Olyan különleges sugárhajtómű, amely a működéshez nem a környező levegőt használja fel, hanem az üzemeltetéshez szükséges anyagot a fedélzeten viszi magával. Ebből eredően a rakétahajtómű bárhol, még légüres térben is elő tud állítani tolóerőt. A rakétahajtómű lehet: kémiai, atom- és elektromos rendszerű. A kémiai rakétahajtómű munkaközege nagy hőmérsékletű gáz, a rakéta-hajtóanyag égésének, vagy nagyon gyors bomlásának a terméke. Ma még az atom-rakétahajtómű fejlesztési stádiumban van; az elektromos rakétahajtóművek pedig gyakorlatilag csak az irányító rendszerek orientációs egységeiben fordulnak elő. 14 A fenti definíciót megvizsgálva a rakétahajtóműveket két csoportra oszthatók: Az egyikben a kémiai rakétahajtóművekben az energiaforrás és a kiáramló tömeg szoros összefüggésben van egymással, míg másikban a hajtómű energia forrása és a kiáramló tömeg nincsen olyan szoros összefüggésben egymással. 1 M, mint Mach szám. A repülésben a sebesség meghatározásának mértékegység nélküli mérőszáma M=v/a, ahol v a repülési sebesség, a pedig a helyi hangsebesség
3 Például használható az atomenergia vagy a napenergia. A kiáramló tömeget gyorsíthatjuk magas hőfokú gázkeverék expanziójával vagy esetleg elektromágneses tér segítségével. Számunkra az első csoport a lényeges ugyanis a repülőfedélzeti rakétákban ezen az elven működő hajtóműveket alkalmazunk, mivel gyakorlati megvalósítása az ilyen típusú hajtóműveknek lehetséges viszonylag olcsón és egyszerűen. Ezek a hajtóművek azért is alkalmasak repülőfedélzeti rakétákban való alkalmazásra, mert rövid idő alatt képesek igen nagy sebességeket (akár 3-3,5 M) elérni, így igen nagy távolságokat rövid idő alatt megtenni. A repülőfedélzeti rakétákban alkalmazott rakétahajtóműveket a következőképpen csoportosíthatjuk: A rakétahajtóművek felosztása RAKÉTA HAJTÓMŰ 1. táblázat FOLYÉKONY HAJTÓANYAGÚ SZILÁRD HAJTÓANYAGÚ KOMBINÁLT HAJTÓMŰ EGYFOKOZATÚ KÉTFOKOZATÚ EGYFOKOZATÚ KÉTFOKOZATÚ KÉTFOKOZATÚ Ha csoportosítjuk a repülőfedélzeti rakétákat, és megvizsgáljuk, hogy a különböző csoportokban milyen rakétahajtóművek fordulnak elő, akkor a következő következtetésre jutunk. Nem irányítható rakéták esetében kutatásaim során nem találkoztam csak szilárd hajtóanyagú rakétahajtóművel. Ez a rakéták viszonylag gyakori kis méretével és a hajtómű gyártási hibáiból adódó viszonylag kis szórásból és a hajtómű megbízható működéséből, olcsó előalíthatóságából adódik. Az irányítható rakéták között különbséget kell tenni a légiharc és a felszín elleni rakéták között. A légiharc rakéták között sem találtam csak szilárd hajtóanyagú rakétahajtóművet, míg a felszínelleni rakéták között igen nagy a választék. A rakéta harcászati jellegétől, vagy a hatótávolságtól illetve a rakéta méretétől függően ebben a csoportban megtalálható valamennyi korábban felsorolt hajtómű. A felsorolt reaktív hajtóművek szinte bármilyen kombinációja előfordulhat a rakétákon és ennek függvényében beszélünk egyfokozatú, vagy kétfokozatú hajtóműről. Háromfokozatú hajtóművel egyelőre nem találkoztam, de létezését nem tartom kizártnak, mivel az elektronika igen gyors fejlődésével a lokátorok, egyéb felderítő eszközök hatótávolsága is fejlődik, ami lehetővé teszi az egyre nagyobb távolságból történő rakétaindítást. A sajtóban robotrepülőgépként vagy cirkálórakétaként emlegetett eszközöknek gázturbinás sugárhajtóműve van esetleg utánégetővel, vagy nélküle. Éppen ezért ha a hajtómű oldaláról közelítjük meg az eszköz elnevezését, akkor a robotrepülőgép a jobb elnevezés, de legtöbb szakmai könyvben rakétaként írnak ezekről az eszközökről. Nem tartom tisztemnek az elnevezések közötti ellentmondást feloldani csak rá szeretnék világítani, az elnevezések közötti ellentmondásra. 211
4 A hagyományos értelemben vett rakéták között találunk olyat, amelyik egyfokozatú, szilárd hajtóanyagú rakétahajtóművel rendelkezik, melyek felépítését nem tervezem tárgyalni. Találunk viszont olyat, amelyik kétfokozatú hajtóművel rendelkeznek, melyek közül az első fokozat a gyorsító fokozat szilárd hajtóanyagú rakétahajtómű. Ezen rakéták második fokozata lehet levegőt nem nyelő, tehát a hagyományos értelemben vett rakétahajtómű, lehet viszont levegőt nyelő torlósugárhajtómű. Ezek között a hajtóművek között is megkülönböztethetünk folyékony és szilárd hajtóanyagú hajtóműveket. Szilárd és folyékony hajtóanyagú rakétahajtóművek rövid összehasonlítása A szilárd hajtóanyagú rakétahajtómű szerkezetét tekintve igen egyszerű. A szilárd hajtóanyagot általában különféle lőporokat hajtótöltet formájában, 2 a tüzelőtérben helyezik el, így tulajdonképpen a tüzelőtér egyben a hajtóanyagtartály, és egyben a rakéta törzse is. Igen fontos előnye: szerkezet, így a gyártása is egyszerű és viszonylag olcsó; a hajtóanyag állandóan a rakétában tárolható; az indításhoz való előkészítés a hajtómű szempontjából nem igényel előkészítési időt. Hátrányai: mivel a hajtótöltet tárolótartálya a hajtómű működése során tüzelőtérré változik, és egyben a rakéta törzse is, így a fellépő nagy nyomást és hőmérsékletet a tervezéskor figyelembe kell venni, ami megnövelheti a tüzelőtér méretét; viszonylag kis fajlagos tolóerő; az égési folyamatot jelentősen befolyásolja a töltet kezdeti hőmérséklete; 3 nagyon nehezen, vagy egyáltalán nem oldható meg a hajtómű leállítása. Figyelembe véve a felsorolt előnyeit hátrányai ellenére páncéltörő, tüzérségi, légvédelmi, repülőgép-, helikopter-, hajó- és tengeralattjáró-fedélzeti rakétákban is széleskörű alkalmazást nyert. A korszerű szilárd hajtóanyagú rakéta- 2 lásd 15 Szilvássy László: Repülőgép-fedélzeti rakéták hajtóműveiben alkalmazott hajtóanyagok, Zrínyi Miklós Nemzetvédelmi Egyetem Repülőtiszti Intézet Repüléstudományi Közlemények, X. évfolyam 25. szám 1998/2. 3 Töltet kezdeti hőmérséklete: a hajtóanyagok lényeges tulajdonsága. A töltethőmérséklet meghatározza a szilárd hajtóanyagú rakétahajtóművek tolóerejét, ugyanis a kisebb hőmérsékletű hajtótöltet lassabban ég. Ennek eredményeként egy időegység alatt kevesebb égéstermék keletkezik, tehát kisebb a tolóerő. A töltethőmérsékletnek -30 C-ról +40 C-ra való növelésekor a tolóerő, a hajtóanyag fajtájától függően, %-kal növekedhet. A töltethőmérsékletet a lőelemek megadásakor, illetve a szilárd hajtóanyagú rakétahajtóművek üzemeltetése során figyelembe kell venni
5 hajtóművek legnagyobb fajlagos tolóereje 3000 N/kg, a legnagyobb tüzelőtér nyomásuk pedig mintegy 20 MPa. A folyékony hajtóanyagú rakétahajtóművet gyakran alkalmazzák közepes ill. nagy hatótávolságú rakétafegyverekben. Az ilyen típusú hajtóművek szerkezete bonyolultabb, mint a korábban tárgyalt szilárd hajtóanyagú rakétahajtóműveké. Általában hajtóanyag tartályból vagy tartályokból, hajtóanyag-táprendszerből, hajtóházból (tüzelőtér a fúvókával) és a hajtómű automatikából áll. A hajtóanyagtartályokban tárolt összetevőket (általában oxidálóanyagot és tüzelőanyagot) a táprendszer szállítja a tüzelőtérbe, ahol a meggyulladás után folyamatos égés játszódik le. A hajtómű-automatika irányítja a hajtómű működését: a megindítását; az összetevők begyújtását; a tüzelőtérbe betáplálandó hajtóanyag mennyiségének szabályozását; az összetevők egymáshoz viszonyított mennyiségének megváltoztatását; a hajtómű leállítását. A folyékony hajtóanyagú rakétahajtóművek előnyös tulajdonságai: a szabályozás egyszerűsége és pontossága; a gyors és pontos leállítás lehetősége; viszonylag magas fajlagos tolóerő. Hátrányai bizonyos típusú hajtóanyag-összetevőket sajátos tulajdonságuk miatt nem lehet a rakéta fedélzeti tartályaiban tárolni huzamosabb ideig; az előbbiből következően viszonylag nagy előkészítési idő; szerkezete meglehetősen bonyolult; Hajtóanyagok összehasonlítása Fajlagos tolóerő Ns/kg Kiáramlási sebesség m/s 2. táblázat Tüzelőtér nyomás MPa Szilárd hajtóanyagok Folyékony hajtóanyagok A különböző hajtóanyagú rakétahajtóművekről eddig leírtakat figyelembe véve megállapíthatjuk, hogy a gazdaságossági és kezelhetőségi szempontokat figyelembe véve látható, hogy a szilárd hajtóanyagformák térhódítása miért olyan jelentős a repülőfedélzeti rakéták körében. 213
6 RAKÉTÁKON ALKALMAZOTT TORLÓSUGÁRHAJTÓMŰ FELÉPÍTÉSE Torlósugárhajtóművel felszerelt rakéták különös ismertetője, hogy rendelkeznek valamilyen levegőbeömlő csatornával, vagy csatornákkal. Ismerek olyan rakétát, melynek a levegő beömlő csatornája külső megjelenésében a MiG-21 repülőgép beömlő csatornájára hasonlít. Ha jobban megvizsgáljuk a rakéta hajtóművének felépítését a hasonlóság fokozódik, ugyanis a rakéta második fokozata nem más, mint az egyik ismert MiG típusú repülőgép utánégető fokozata, folyékony kerozin üzemanyaggal. Természetesen mire ez a hajtómű működésbe kezd a rakéta már közel 2 Mach sebességgel repül. Ezt a sebességet négy darab szilárd hajtóanyagú leváló rakétahajtómű biztosítja. A másik igen gyakran alkalmazott torlósugárhajtómű felépítését tekintve eltér az előbb említettől. A különbség az, hogy a levegő beömlő csatorna a rakéta testen kívül, az oldalán helyezkedik el. A leggyakrabban alkalmazott beömlőcsatorna szám a négy. Éppen ez az, ami nagyon sok félreértésre ad okot ugyanis felületes szemlélő számára ez a négy beömlőcsatorna úgy néz ki, mintha négy gyorsító fokozat lenne, amiről fentebb írtam. Az ilyen típusú rakétahajtómű általában közös hengeres testben nyer elhelyezést a gyorsító hajtóművel egymás mögötti elrendezésben. A rakéta indulásakor csak a gyorsító fokozat indul és viszonylag rövid idő alatt nagymennyiségű szilárd hajtóanyagot éget el, progresszív égéssel a rakéta gyorsításához. A gyorsító fokozat kiégésével egy időben indul a második, menet vagy utazó fokozat, ami a kiéget indítóhajtóműteret használja égőtérként, ahol megtörténik hajtóanyag elégetése a környező levegő segítségével. A levegő beömlő csatornák addig, míg a gyorsító fokozat működik lezárásra kerülnek egy speciális dugó segítségével. (lásd 1. sz. ábra felső rajz) ábra. A torlósugárhajtómű felépítése
7 A dugókat a start hajtóműben uralkodó nagy nyomás tartja a helyükön mindaddig amíg a hajtómű nyomása magasabb mint a torlónyomás. Ez pedig a hajtómű kiégésekor következhet csak be. Ekkor a dugók a torlónyomás hatására beesnek az égőtérbe és rendszerint elégnek vagy távoznak a fúvókán keresztül. Az indító hajtómű kiégésével egy időben szükség van a fúvóka keresztmetszetének megnövelésére a menet hajtómű igényeinek megfelelően (lásd 1. sz. ábra alsó rajz). Ezt a leggyakrabban egy lerobbantható fúvóka egységgel oldják meg. A menet hajtómű a hajtóanyag tekintetében lehet akár folyékony akár szilárd. Bármelyikről is legyen szó olyan összetételű, hogy az égés során felhasználásra kerülő oxigén csak egy részét tartalmazza így szükséges a külső levegő betáplálás a tökéletes égéshez. Végezetül szeretnék néhány példát felsorolni az ismertebb rakétákon alkalmazott különböző rakétahajtóművekre. (Előre bocsátom, hogy a felsorolás csak olyan információt tartalmaz, amely az irodalomjegyzékben felsorolt nyílt, szabadon hozzáférhető könyvekben, jegyzetekben fellelhető.) Néhány rakéta és hajtóműve EGYFOKOZATÚ ELSŐ FOKOZAT KÉTFOKOZATÚ 3. táblázat MÁSODIK FOKOZAT SZILÁRD FOLYÉKONY SZILÁRD FOLYÉKONY SZILÁRD FOLYÉKONY AA-1, -2, -3, -4 X AA-5, -6, -7, -8 X AA-6, -7, -8 X AS-4, -5, -6 X AS-15 X *** SA-4, Ganef X X ** SA-6, Gainful X X * AS-11 X X ASMP X X ** Kormoran X X * ANS X X * Martel X X Gabriel III A/S X X Penguin X X RB 05A X X ACM X *** AGM-86B X *** AGM-84A Harpon X *** AMRAM, AIM-120 X ASAT X X Phoenix, AIM-54 X Sidewinder, AIM-9 X Sparrow, AIM-7 X * ** *** torlósugár rakétahajtómű; kerozin hajtóanyagú, torlósugárhajtómű; gázturbinás sugárhajtómű. 215
8 FELHASZNÁLT IRODALOM [1] GUNSTON, Bill Korszerű harci repülőgépek fegyverzete, Zrínyi Kiadó, Budapest, [2] Haditechnika folyóirat 1996/3. szám [3] Haditechnika folyóirat 1997/4. szám [4] Hadtudományi lexikon CD-ROM, MHTT 1995, Scriptum Rt [5] Idegen hadseregek katonai repülőerőiben rendszeresített főbb fedélzeti pusztítóeszközök, Magyar Honvédség kiadványa 1993, (Id/16 Szabályzat) [6] KAKULA János mk. őrnagy Rakéták szerkezettana, Főiskolai jegyzet, KGyRMF, Szolnok [7] KAKULA János mk. őrnagy Robbanóanyagok és a robbanás hatásai, Főiskolai jegyzet, KGyRMF, Szolnok [8] DR. LUKÁCS László Katonai robbantástechnika és a környezetvédelem, ZMNE HTK, [9] MiG-29 publication by 4+ Publishing Co., Praha, [10] Militair folyóirat I. évf./ 1. szám, Triak gmk, május [11] Militair folyóirat I. évf./ 2. szám, Triak gmk, június [12] NAGY István György SZENTESI György Rakétafegyverek űrhajózási hordozórakéták, Típuskönyv, Zrínyi Katonai Kiadó, Budapest, [13] PAPP Bálint NAGY István György DR. TAMÁSI Zoltán Rakétafegyver, Zrínyi Katonai Kiadó, Budapest, [14] SÁRHIDAI Gyula: Robotrepülőgépek, Haditechnika fiataloknak Zrínyi Katonai Kiadó, Budapest, [15] SZENTESI György Hadászati rakéták, Haditechnika fiataloknak Zrínyi Katonai Kiadó, Budapest, [16] SZILVÁSSY László Repülőgép-fedélzeti rakéták hajtóműveiben alkalmazott hajtóanyagok, Repüléstudományi Közlemények, Szolnok, 1998/2. (43-50) o. [17] ИЛЬИНА, О. А. Авиационное вооружение, Военное издательство Министерство Обороны СССР, Москва, [18] КОНОВАЛОВ, Н. Е. МЕЛИК-ПАШАЕВ, Н. И. Теория авиационных двигателей, Часть III. Прямоточние ВРД и ракетные двигатели, ВВИА им. Жуковского, Москва, [19] САРКИСЯН, Р. С. Авиационные боеприпасы, ВВИА им. Жуковского, Москва, [20] ЧУМАКОВ, В. А. Авиационные ракеты ВВИА ВВИА им. Жуковского, Москва,
REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK
ZMNE REPÜLŐMŰSZAKI INTÉZET REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK XVIII. évfolyam 38. szám 2006. A ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM TUDOMÁNYOS KIADVÁNYA Repüléstudományi Közlemények XVIII. évfolyam 38. szám 2006/1.
a hajtóanyagban hosszú tárolás után sem szabad vegyi változásnak
Szilvássy László mk. őrgy. Békési Bertold mk. őrgy. REPÜLŐFEDÉLZETI RAKÉTÁK HAJTÓMŰVEI BEVEZETÉS A napj ainkban alkalmazott modern vadászrepülőgépek leggyakoribb fegyvere a fedélzeti rakéta, melyeket különböző
RAKÉTA HAJTÓMŰVEK BEVEZETÉS
Szilvássy László mérnök őrnagy* Békési Bertoid mérnök százados* egyetemi tanársegéd Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti Rendszerek Tanszék A szerzők célja bemutatni
The Challenge of Next Millennium on Hungarian Aeronautical Sciences
The Challenge of Net Millennium on Hungarian Aeronautical Sciences Edited by József RO HÁCS Piroska AlLER Gyula SZABÓ Árpád VERESS Technical University of Budapest Department of A ircrajt and Ships er-group
Repülőgépfedélzeti rakéták hajtóműveiben alkalmazott hajtóanyagok. Bevezetés
Repülőgépfedélzeti rakéták hajtóműveiben alkalmazott hajtóanyagok Szilvássy László mérnök százados főiskolai tanársegéd Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti
REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK
ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM REPÜLOTISZTI INTÉZET REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK X. ÉVFOLYAM 25.SZÁM 1998/2. REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK A Zrínyi Miklós Nemzetvédelmi Egyetem periodikus kiadványa
A MIG-15 REPÜLŐGÉP GEOMETRIAI, REPÜLÉSI ÉS AERODINAMIKAI JELLEMZŐI BEVEZETÉS ÁLTALÁNOS JELLEMZÉS
Dr. Békési László A MIG-15 REPÜLŐGÉP GEOMETRIAI, REPÜLÉSI ÉS AERODINAMIKAI JELLEMZŐI BEVEZETÉS A Véget ért a MIG-korszak a konferencia címéhez kapcsolódva a Magyarországon elsőként repült és gázturbinás
A HARCI HELIKOPTEREK HATÉKONYSÁGI KÖVETELMÉNYEINEK RANGSOROLÁSA
Szilvássy László A HARCI HELIKOPTEREK HATÉKONYSÁGI KÖVETELMÉNYEINEK RANGSOROLÁSA A doktori iskolában folytatott tanulmányaim során A haditechnikai eszközök és rendszerek harci hatékonyság értékelésének
Repülőgép gázturbinák. Mert repülni márpedig kell! Dr. Ailer Piroska. 2011. március 22.
Repülőgép gázturbinák Mert repülni márpedig kell! Dr. Ailer Piroska 2011. március 22. "Ha hajót akarsz építeni, ne azért hívd össze az embereket, hogy fát vágjanak, szerszámokat készítsenek, hanem ültesd
Jármű-, közlekedési- és logisztikai rendszerek (BMEKODHA149)
Budapest, 2016 Szeptember 5. Jármű-, közlekedési- és logisztikai rendszerek (BMEKODHA149) Áramlástan és Propulziós hajtóművek http://www.styleofspeed.com/air/plane/hyperjet/hjf-1/index.htm Budapesti Műszaki
Hajtómű típusok, a hajtómű hatások jellemzése. Dr. Bauer Péter BME Közlekedés- és Járműirányítási Tanszék 2015.
Hajtómű típusok, a hajtómű hatások jellemzése Dr. Bauer Péter BME Közlekedés- és Járműirányítási Tanszék 2015. Repülőgépek meghajtására dugattyús motorokat, vagy gázturbinákat szoktak használni (a témáról
A HIPER X PROGRAM. Szegedi Péter Békési Bertold
Szegedi Péter Békési Bertold A HIPER X PROGRAM A mérnökök évek óta fáradoznak egy olyan (nem rakéta meghajtású) repülőgép építésén, amely képes elérni a hiperszonikus sebességet (M > 5). A NASA 1996-ban
Elgázosító CHP rendszer. Combined Heat & Power
Mobil biomassza kombinált erőmű Hu 2013 Elgázosító CHP rendszer Combined Heat & Power Elgázosító CHP rendszer Rendszer elemei: Elgázosítás Bejövő anyag kezelés Elgázosítás Kimenet: Korom, Hamu, Syngas
Tájékoztató. Értékelés Összesen: 60 pont
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Előadó: Varga Péter Varga Péter
Abszorpciós folyadékhűtők Abszorpciós folyadékhűtők alkalmazási lehetőségei alkalmazási lehetőségei a termálvizeink világában a termálvizeink világában Előadó: Varga Péter Varga Péter ABSZORPCIÓS FOLYADÉKHŰTŐ
A MH KARBANTARTÓ ÉS JAVÍTÓ EGYSÉGEIRE VO- NATKOZÓ FOLYAMATOK MINŐSÉGBIZTOSÍTÁSI LE- HETŐSÉGEI
HADITECHNIKA ÉS MINŐSÉGÜGY A MH KARBANTARTÓ ÉS JAVÍTÓ EGYSÉGEIRE VO- NATKOZÓ FOLYAMATOK MINŐSÉGBIZTOSÍTÁSI LE- HETŐSÉGEI Zubkó Tibor-Labancz Sándor 1 Az átalakulóban lévő Magyar Honvédség javítókapacitása
TÓTH BÁLINT 1. Légvédelmi rakéták működése 2. Operational of Surface-to-air Missiles
TÓTH BÁLINT 1 Légvédelmi rakéták működése 2 Operational of Surface-to-air Missiles Absztrakt A cikkben a szerző ismerteti a légvédelmi rakéták működését. A könnyebb feldolgozhatóság érdekében a bonyolult
A RAKÉTÁK KONSTRUKCIÓS KIALAKÍTÁSÁNAK TÖRVÉNYSZERŰSÉGEI, FŐBB SZERKEZETI EGYSÉGEI KIALAKÍTÁSÁNAK SAJÁTOSSÁGAI
Dr. Szegedi Péter Dr. Szabó László A RAKÉTÁK KONSTRUKCIÓS KIALAKÍTÁSÁNAK TÖRVÉNYSZERŰSÉGEI, FŐBB SZERKEZETI EGYSÉGEI KIALAKÍTÁSÁNAK SAJÁTOSSÁGAI A rakéta konstrukciós kialakításának általános törvényszerűségei
hybrid kézikönyv Mit jelent a hybrid?
Audi hybrid A hibridtechnika bemutatása hybrid kézikönyv Mit jelent a hybrid? A görög és latin eredetű hibrid szó jelentése teli, keresztezett vagy kevert amely jelzők tökéletesen illenek a hibridjárművekre
REPÜLŐFEDÉLZETI IRÁNYÍTHATÓ RAKÉTÁK
Papp István REPÜLŐFEDÉLZETI IRÁNYÍTHATÓ RAKÉTÁK A doktori disszertációmban a repülőfedélzeti irányítható rakéták modellezésével foglalkozom. Ahhoz, hogy egy rakétát megfelelő matematikai modellel helyettesíthessünk,
REPÜLŐFEDÉLZETI RAKÉTÁKON ALKALMAZOTT HAJTÓMŰVEK
Zrínyi Miklós Nemzetvédelmi Egyetem Bolyai János Katonai Műszaki Kar Repülő és Légvédelmi Intézet Fedélzeti Rendszerek Tanszék Repülőfedélzeti Fegyvertechnikai szakirány REPÜLŐFEDÉLZETI RAKÉTÁKON ALKALMAZOTT
DOKTORI (PhD) ÉRTEKEZÉS SZERZŐI ISMERTETŐJE
DOKTORI (PhD) ÉRTEKEZÉS SZERZŐI ISMERTETŐJE ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM Doktori Tanács Lamper László nyá.mk.örgy MISTRAL 2 légvédelmi rakéta stabilitásának és irányíthatóságának szabályozástechnikai
Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam
A feladatokat írta: Kódszám: Harkai Jánosné, Szeged... Lektorálta: Kovács Lászlóné, Szolnok 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam A feladatok megoldásához csak
zturbinák kompresszorának akusztikus
Mikro-gázturbin zturbinák kompresszorának akusztikus pompázs detektálása Koncz Miklós s Tamás, PhD ROBOTWARFARE 9 1 Gazdaságos egyensúlyozó gép tervezése pilóta nélküli repülőgépek gázturbinájához Koncz
A villamos energiát termelő erőművekről. EED ÁHO Mérnökiroda 2014.11.13
A villamos energiát termelő erőművekről EED ÁHO Mérnökiroda 2014.11.13 A villamos energia előállítása Az ember fejlődésével nőtt az energia felhasználás Egyes energiafajták megtestesítői az energiahordozók:
A repülés világa a motoros repülőgépektől a drónokig.
A repülés világa a motoros repülőgépektől a drónokig. 1903. a kezdet. tíznél alig több másodpercig a levegőben repült a REPÜLŐGÉP Néhány adat: Motor: 12 LE, vízhűtéses benzinmotor Fesztáv: 12.3 méter Hossz:
Szünetmentes áramellátás lendkerekes energiatárolással
BME OMIKK ENERGIAELLÁTÁS, ENERGIATAKARÉKOSSÁG VILÁGSZERTE 45. k. 10. sz. 2006. p. 54 61. Korszerű energetikai berendezések Szünetmentes áramellátás lendkerekes energiatárolással A lendkerék ősidők óta
Hagyományos és modern energiaforrások
Hagyományos és modern energiaforrások Életünket rendkívül kényelmessé teszi, hogy a környezetünkben kiépített, elektromos vezetékekből álló hálózatok segítségével nagyon könnyen és szinte mindenhol hozzáférhetünk
zeléstechnikában elfoglalt szerepe
A földgf ldgáz z eltüzel zelésének egyetemes alapismeretei és s a modern tüzelt zeléstechnikában elfoglalt szerepe Dr. Palotás Árpád d Bence egyetemi tanár Épületenergetikai Napok - HUNGAROTHERM, Budapest,
FORGÁCSNÉLKÜLI ALAKÍTÓ GÉPEK
SZÉCHENYI ISTVÁN EGYETEM GYŐR Gyártócellák (NGB_AJ018_1) FORGÁCSNÉLKÜLI ALAKÍTÓ GÉPEK ÁTTEKINTÉS Sajtológépek felosztása Működtetés szerint: Mechanikus sajtológépek (excenteres, könyökemelős vagy más mechanizmussal
HARCI HELIKOPTEREK FEDÉLZETI TÜZÉR FEGYVEREI
Szilvássy László HARCI HELIKOPTEREK FEDÉLZETI TÜZÉR FEGYVEREI A fedélzeti tüzér fegyver (lőfegyver) fogalma alatt a géppuskákat és a gépágyúkat értjük. Magyar nyelvű szabályzatokban is használatos ez a
Fogyóelektródás védőgázas ívhegesztés
Fogyóelektródás védőgázas ívhegesztés Ívhegesztéskor a kialakuló elektromos ívben az áram hőteljesítménye olvasztja meg az összehegesztendő anyagokat, illetve a hozaganyagot. Ha a levegő oxigénjétől az
Energiagazdálkodás és környezetvédelem 3. Előadás
Energiagazdálkodás és környezetvédelem 3. Előadás Tüzeléstechnika Kapcsolódó államvizsga tételek: 15. Települési hulladéklerakók Hulladéklerakó helyek fajtái kialakítási lehetőségei, helykiválasztás szempontjai.
Szabadentalpia nyomásfüggése
Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével
Tájékoztató. Használható segédeszköz: számológép, rajzeszközök
12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 525 02 Autószerelő Tájékoztató A vizsgázó az első lapra írja fel a nevét! Ha a vizsgafeladat
Adagolószivattyúk. Process adagolószivattyúk. www.prominent.hu
Adagolószivattyúk Process adagolószivattyúk A motoros- és process adagolószivattyúk felnőttek az extrém körülményekhez Az ipari alkalmazások a fluid adagolástechnika egész területén rendkívül sokoldalúak,
DÍZELMOTOR KEVERÉKKÉPZŐ RENDSZERÉNEK VIZSGÁLATA
DÍZELMOTOR KEVERÉKKÉPZŐ RENDSZERÉNEK VIZSGÁLATA Laboratóriumi gyakorlati jegyzet Készítette: Szabó Bálint 2008. február 18. A mérés célja: Soros adagoló karakterisztikájának felvétele adagoló-vizsgáló
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
Méréstechnika. Hőmérséklet mérése
Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű
MAGYAR KÖZTÁRSASÁG HONVÉDELMI MINISZTERE. A honvédelmi miniszter.. /2009. (...) HM rendelete. a Magyar Honvédség légvédelmi készenléti repüléseiről
MAGYAR KÖZTÁRSASÁG HONVÉDELMI MINISZTERE. számú példány TERVEZET A honvédelmi miniszter. /2009. (...) HM rendelete a Magyar Honvédség légvédelmi készenléti repüléseiről A légiközlekedésről szóló 1995.
Infravörös melegítők. Az infravörös sugárzás jótékony hatása az egészségre
Infravörös melegítők Infravörös melegítőink ökológiai alternatívát jelentenek a hagyományos fűtőanyag alapú készülékekkel szemben. Készülékeink nagytömegű meleget állítanak elő, anélkül, hogy szennyeznék
Az ábrán a mechatronikát alkotó tudományos területek egymás közötti viszonya látható. A szenzorok és aktuátorok a mechanika és elektrotechnika szoros
Aktuátorok Az ábrán a mechatronikát alkotó tudományos területek egymás közötti viszonya látható. A szenzorok és aktuátorok a mechanika és elektrotechnika szoros kapcsolatára utalnak. mért nagyság A fizikai
REPÜLÉS A XX.-XXI. SZÁZADBAN
REPÜLÉS A XX.-XXI. SZÁZADBAN 2016 Icaros és Daedeus A Leonardo-álom Működtető erők Orsózó nyomaték az X-tengely körül Legyező nyomaték az Z-tengely körül Bólintó nyomaték az Y-tengely körül 1903. a kezdet.
Városmajor út 30/F/8, 5000 Szolnok (Magyarország) +36 56424267 02437990 +36305851718 bekesi.bertold@gmail.com
Önéletrajz SZEMÉLYI ADATOK Dr. Békési Bertold Városmajor út 30/F/8, 5000 Szolnok (Magyarország) +36 56424267 02437990 +36305851718 bekesi.bertold@gmail.com Neme Férfi Születési dátum 1969. május 16. Állampolgárság
Traszformátorok Házi dolgozat
Traszformátorok Házi dolgozat Horváth Tibor lkvm7261 2008 június 1 Traszformátorok A traszformátor olyan statikus (mozgóalkatrészeket nem tartalmazó) elektromágneses átalakító, amely adott jellemzőkkel
VTOL UAV. Inerciális mérőrendszer kiválasztása vezetőnélküli repülőeszközök számára. Árvai László, Doktorandusz, ZMNE
Inerciális mérőrendszer kiválasztása vezetőnélküli repülőeszközök számára Árvai László, Doktorandusz, ZMNE Tartalom Fejezet Témakör 1. Vezető nélküli repülőeszközök 2. Inerciális mérőrendszerek feladata
12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján.
12/2013. (III. 29.) NFM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése 54 525 01 Autóelektronikai műszerész Tájékoztató A vizsgázó az első lapra írja fel
Tájékoztató. Értékelés Összesen: 120 pont
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Mérnöki alapok 11. előadás
Mérnöki alapok 11. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334.
Windcraft Development L.L.C. Környezetkímélő Energetikai Rendszer Fejlesztése
Windcraft Development L.L.C. Hungary - 1181 Budapest, Üllői u. 431. +36 30 235 2062 Fax: +36 1 294 0750 Környezetkímélő Energetikai Rendszer Fejlesztése Rövid leírás A projekt célja A szélenergia hasznosításán
A PLAZMASUGARAS ÉS VÍZSUGARAS TECHNOLÓGIA VIZSGÁLATA SZERKEZETI ACÉL VÁGÁSAKOR
A PLAZMASUGARAS ÉS VÍZSUGARAS TECHNOLÓGIA VIZSGÁLATA SZERKEZETI ACÉL VÁGÁSAKOR Készítette: TÓTH ESZTER A5W9CK Műszaki menedzser BSc. TUDOMÁNYOS DIÁKKÖRI DOLGOZAT CÉLJA Plazmasugaras és vízsugaras technológia
STS GROUP ZRt. FUELCELL (Hidrogén üzemanyagcellás erőművek). Előadó: Gyepes Tamás (Elnök Igazgató) Kriston Ákos. Vándorgyűlés előadás, 2009.09.11.
STS GROUP ZRt. FUELCELL (Hidrogén üzemanyagcellás erőművek). Előadó: Gyepes Tamás (Elnök Igazgató) Vándorgyűlés előadás, 2009.09.11. Kriston Ákos Tartalom Elméleti ismertetők Kriston Ákos Mi az az üzemanyagcella?
Levél a döntőbe jutottaknak
Levél a döntőbe jutottaknak Kedves Kémikus Barátom! Gratulálok, mert ügyesen dolgoztál, s a döntőbe jutottál. A versenyen szóbeli, írásbeli és gyakorlati feladatok* lesznek. Témakörök: az anyagok körforgása,
Hidraulika. 1.előadás A hidraulika alapjai. Szilágyi Attila, NYE, 2018.
Hidraulika 1.előadás A hidraulika alapjai Szilágyi Attila, NYE, 018. Folyadékok mechanikája Ideális folyadék: homogén, súrlódásmentes, kitölti a rendelkezésre álló teret, nincs nyírófeszültség. Folyadékok
ELEKTROMOS TERMOVENTILÁTOROK
ELEKTROMOS TERMOVENTILÁTOROK TARTALOMJEGYZÉK Alapadatok 3 Felépítés 4 Méretek 5 Műszaki adatok 5 Felszerelés 6 Szabályozás 8 Kapcsolási sémák 9 Légsebesség 9 Keverőelem 10 EL 2 ALAPADATOK EL Fűtőteljesítmény
AZ AHEAD LŐSZER BEMUTATÁSA
Nagy Norbert hallgató AZ AHEAD LŐSZER BEMUTATÁSA Az AHEAD (Advanced Hit Efficienty And Destruction, amely szó szerint lefordítva fokozott találati hatékonyságot és megsemmisítést jelent, de lényegében
AIRPOL PRM frekvenciaváltós csavarkompresszorok. Airpol PRM frekvenciaváltós csavarkompresszorok
Airpol PRM frekvenciaváltós csavarkompresszorok Az Airpol PRM frekvenciaváltós csavarkompresszorok változtatható sebességű meghajtással rendelkeznek 50-100%-ig. Ha a sűrített levegő fogyasztás kevesebb,
Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert
Geodézia 4. Vízszintes helymeghatározás Gyenes, Róbert Geodézia 4.: Vízszintes helymeghatározás Gyenes, Róbert Lektor: Homolya, András Ez a modul a TÁMOP - 4.1.2-08/1/A-2009-0027 Tananyagfejlesztéssel
Mekkora az égés utáni elegy térfogatszázalékos összetétele
1) PB-gázelegy levegőre 1 vonatkoztatott sűrűsége: 1,77. Hányszoros térfogatú levegőben égessük, ha 1.1. sztöchiometrikus mennyiségben adjuk a levegőt? 1.2. 100 % levegőfelesleget alkalmazunk? Mekkora
A KATONAI LÉGIJÁRMŰ RENDSZERMODELLJE A KATONAI LÉGIJÁRMŰ
Seres György A KATONAI LÉGIJÁRMŰ RENDSZERMODELLJE A rendszerelmélet, mint új tudományos vizsgálati módszer, Angliában keletkezett, a második világháború idején, amikor a német légierő, a Luftwaffe támadásai
(11) Lajstromszám: E 007 866 (13) T2 EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA
!HU000007866T2! (19) HU (11) Lajstromszám: E 007 866 (13) T2 MAGYAR KÖZTÁRSASÁG Magyar Szabadalmi Hivatal EURÓPAI SZABADALOM SZÖVEGÉNEK FORDÍTÁSA (21) Magyar ügyszám: E 0 73966 (22) A bejelentés napja:
Fábos Róbert okl. mk. őrnagy, adjunktus. Doktori (PhD) értekezés TERVEZET. Témavezető: Dr. habil. Horváth Attila alezredes CSc. Budapest 2013.
Fábos Róbert okl. mk. őrnagy, adjunktus A katonai közúti anyagszállítások tervezését, szervezését és végrehajtását támogató informatikai rendszerek jelenlegi helyzete, fejlesztésük lehetőségei Doktori
Belső energia, hőmennyiség, munka Hőtan főtételei
Belső energia, hőmennyiség, munka Hőtan főtételei Ideális gázok részecske-modellje (kinetikus gázmodell) Az ideális gáz apró pontszerű részecskékből áll, amelyek állandó, rendezetlen mozgásban vannak.
BBBZ kódex --------------------------------------------------------------------------------------------------------- 3.6 Hadihajók és tengeralattjárók
3.6 Hadihajók és tengeralattjárók 3.6.1 Hadihajók A hadihajókat szokás felosztani harci járművekre és segédjárművekre, vannak azonban olyan különleges feladatokra szolgáló hajók is közöttük, amelyeket
SL és SC típusminta. Két elkülönített kör
SL és SC típusminta Két elkülönített kör A Sunfab kétáramú szivattyúja két teljesen különálló fogyasztó kiszolgálására képes. A külön hidraulikus körök mindegyikét nyomáshatároló szeleppel kell ellátni.
A GEOTERMIKUS ENERGIA
A GEOTERMIKUS ENERGIA Mi is a geotermikus energia? A Föld keletkezése óta létezik Forrása a Föld belsejében keletkező hő Nem szennyezi a környezetet A kéreg 10 km vastag rétegében 6 10 26 Joule mennyiségű
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
Háztartási kiserőművek. Háztartási kiserőművek
Háztartási kiserőművek Háztartási kiserőművek FINANSZÍROZÁS BEFEKTETÉS ENERGIATERMELÉS MCHP 50 kwe Mikro erőmű Hőenergia termelés hagyományos kazánnal Hatékonyabb hőenergia termelés kondenzációs kazánnal
Tudományos életrajz Dr. Für Gáspár (2008. február)
Dr. Für Gáspár egyetemi docens Zrínyi Miklós Nemzetvédelmi Egyetem Kossuth Lajos Hadtudományi Kar Összhaderőnemi Műveleti Intézet Geoinformációs Tanszék mb. tanszékvezető Tudományos életrajz Dr. Für Gáspár
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (limitációk) Fókusz Légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet 5-4 A tökéletes gáz egyenlet alkalmazása 5-5 Gáz halmazállapotú reakciók
AZ EURÓPAI KÖZÖSSÉGEK BIZOTTSÁGA. Tervezet A BIZOTTSÁG /2011/EK RENDELETE
HU HU HU AZ EURÓPAI KÖZÖSSÉGEK BIZOTTSÁGA Tervezet Brüsszel, XXX C A BIZOTTSÁG /2011/EK RENDELETE a [ ] Bizottság 1702/2003/EK számú, a légijárművek és a hozzájuk kapcsolódó termékek, alkatrészek és berendezések
Tüzeléstan előadás Dr. Palotás Árpád Bence
Égéselméleti számítások Tüzeléstan előadás Dr. Palotás Árpád Bence Miskolci Egyetem - Tüzeléstani és Hőenergia Tanszék 2 Tüzelőanyagok Definíció Energiaforrás, melyből oxidálószer jelenlétében, exoterm
Hőtechnikai berendezések 2015/16. II. félév Minimum kérdéssor.
1. Biomassza (szilárd) esetében miért veszélyes a 16 % feletti nedvességtartalom? Mert biológiai folyamatok kiváltója lehet, öngyulladásra hajlamos, fűtőértéke csökken. 2. Folyékony tüzelőanyagok tulajdonságai
Az ExpertALERT szakértői rendszer által beazonosítható hibák felsorolása
Az ExpertALERT szakértői rendszer által beazonosítható hibák felsorolása Merev kuplungos berendezések Kiegyensúlyozatlanság Motor kiegyensúlyozatlanság Ventilátor kiegyensúlyozatlanság Gépalap flexibilitás
Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!
Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
MUNKAANYAG. Bellák György László. Mechatronikai elemek. A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása
Bellák György László Mechatronikai elemek A követelménymodul megnevezése: Mechatronikai elemek gyártása, üzemeltetése, karbantartása A követelménymodul száma: 0944-06 A tartalomelem azonosító száma és
Hőtechnikai berendezéskezelő É 1/5
A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,
Családi állapota: Nős, 2 gyermekes Gyermekeinek keresztnevei (zárójelben születési évszámuk): Attila (1982) Alexandra (1987)
Dr. Für Gáspár alezredes Elérhetőség: Mobiltelefon: +36 70 3341440 HM vezetékes: 02 2 29548 Vezetékes fax: +36 1 432900 HM fax: 29910 e-mail: fur.gaspar@uni-nke.hu Személyes adatok: Születési idő: 1958.
Ambrus László Székelyudvarhely, 2011.02.23.
Családi méretű biogáz üzemek létesítése Ambrus László Székelyudvarhely, 2011.02.23. AGORA Fenntartható Fejlesztési Munkacsoport www.green-agora.ro Egyesületünk 2001 áprilisában alakult Küldetésünknek tekintjük
DÖNTÉSI MODELL KIALAKÍTÁSA KÖZBESZERZÉSI ELJÁRÁS SORÁN ELŐSZÓ
Dr. Gyarmati József mk. őrnagy ZMNE BJKMK Katonai Logisztikai Minőségügyi és Közlekedésmérnöki Tanszék DÖNTÉSI MODELL KIALAKÍTÁSA KÖZBESZERZÉSI ELJÁRÁS SORÁN Absztrakt A cikk egy olyan algoritmust mutat
NEMZETI KÖZSZOLGÁLATI EGYETEM Doktori Tanács
NEMZETI KÖZSZOLGÁLATI EGYETEM Doktori Tanács Gázturbinás hajtóművek teljesítmény és hatásfok növelésének műszaki technológiai háttere, és ezek hatása a katonai helikopterek korszerűsítésére című doktori
Dr. Szilvássy László okl. mérnök alezredes
Dr. Szilvássy László okl. mérnök alezredes Lehetséges veszélyek IR légiharc rakéták Vállról indítható rakéták Tűzfegyverek (gépágyúk, géppuskák) Lövegek DR.SZISZILACI.HU 2 Irányítható rakéták csoportosítása
BBBZ kódex --------------------------------------------------------------------------------------------------------- 4.3 Hajók propulziója
4.3 Hajók propulziója A propulzió kifejezés latin eredetű, nemzetközileg elfogadott fogalom, amely egy jármű (leginkább vízi- vagy légi-jármű) meghajtására vonatkozik. Jelentése energiaátalakítás a meghajtó
Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam
Hevesy György Országos Kémiaverseny Kerületi forduló 2013. február 20. 8. évfolyam A feladatlap megoldásához kizárólag periódusos rendszert és elektronikus adatok tárolására nem alkalmas zsebszámológép
Tájékoztató. Használható segédeszköz: -
A 29/2016 (VIII.26.) NGM rendelet szakmai és vizsgakövetelménye alapján. Szakképesítés, azonosító száma és megnevezése Tájékoztató 54 544 03 Gázipari technikus A vizsgázó az első lapra írja fel a nevét!
205 00 00 00 Mûszertan
1. oldal 1. 100710 205 00 00 00 Mûszertan A sebességmérõ olyan szelencés mûszer, mely nyitott Vidi szelence segítségével méri a repülõgép levegõhöz viszonyított sebességét olyan szelencés mûszer, mely
FOLYÓIRAT SZEMLE. Lits Gábor 1
FOLYÓIRAT SZEMLE A PANDUR KEREKES PÁNCÉLOZOTT HARCJÁRMŰ Lits Gábor 1 Az alábbi írás egy viszonylag már régen kifejlesztett harcjárműcsalád alaptípusát a Pandur I. páncélozott kerekes harcjárművet mutatja
Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011
Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.
REPÜLŐESZKÖZÖK GÁZTURBINÁS HAJTÓMŰVEI DIAGNOSZTIKÁJA
Vonnák Iván Péter REPÜLŐESZKÖZÖK GÁZTURBINÁS HAJTÓMŰVEI DIAGNOSZTIKÁJA A REPÜLŐESZKÖZÖK GÁZTURBINÁS HAJTÓMŰVEI DIAGNOSZTIKÁJÁT ELŐSEGÍTŐ ÉS FEJLŐDÉSÉT BIZTOSÍTÓ TÉNYEZŐK A hajtóművek megbízhatósága A repülőgépek
Megújuló energiák hasznosítása: a napenergia. Készítette: Pribelszky Csenge Környezettan BSc.
Megújuló energiák hasznosítása: a napenergia Készítette: Pribelszky Csenge Környezettan BSc. A minket körülvevı energiaforrások (energiahordozók) - Azokat az anyagokat, amelyek energiát közvetítenek energiahordozóknak
Kuti Rajmund. A víz tűzoltói felhasználhatóságának lehetőségei, korlátai
Kuti Rajmund A víz tűzoltói felhasználhatóságának lehetőségei, korlátai A tűzoltóság a bevetések 90%-ban ivóvizet használ tűzoltásra, s a legtöbb esetben a kiépített vezetékes hálózatból kerül a tűzoltó
PiAndTECH FluidKAT katalitikus izzóterek
PiAndTECH FluidKAT katalitikus izzóterek Hő felszabadítás katalitikus izzótéren, (ULE) ultra alacsony káros anyag kibocsátáson és alacsony széndioxid kibocsátással. XIV. TÁVHŐSZOLGÁLTATÁSI KONFERENCIÁT
Modern Fizika Labor. 2. Elemi töltés meghatározása
Modern Fizika Labor Fizika BSC A mérés dátuma: 2011.09.27. A mérés száma és címe: 2. Elemi töltés meghatározása Értékelés: A beadás dátuma: 2011.10.11. A mérést végezte: Kalas György Benjámin Németh Gergely
Az elektrosztatika törvényei anyag jelenlétében, dielektrikumok
TÓTH.: Dielektrikumok (kibővített óravázlat) 1 z elektrosztatika törvényei anyag jelenlétében, dielektrikumok z elektrosztatika alatörvényeinek vizsgálata a kezdeti időkben levegőben történt, és a különféle
GÁZTURBINÁS LÉGI JÁRMÛVEK TÜZELÔANYAGAI MOL JET-A1
JET A1 fuzet OK 6.qxd 5/31/05 3:05 PM Page 1 JET A1 fuzet OK 6.qxd 5/31/05 3:05 PM Page 2 GÁZTURBINÁS LÉGI JÁRMÛVEK TÜZELÔANYAGAI MOL JET-A1 FELHASZNÁLÁSI TERÜLET A JET-A1 sugárhajtómû-tüzelôanyag a korszerû
Tüzelőberendezések Általános Feltételek. Tüzeléstechnika
Tüzelőberendezések Általános Feltételek Tüzeléstechnika Tartalom Tüzelőberendezések funkciói és feladatai Tüzelőtér Tüzelőanyag ellátó rendszer Füstgáz tisztító és elvezető rendszer Tüzelőberendezések
REPÜLŐFEDÉLZETI TŰZFEGYVEREK LÖVEDÉK MOZGÁSÁNAK BALLISZTIKAI SZÁMÍTÁSA 2 BEVEZETÉS
Szilvássy László 1 REPÜLŐFEDÉLZETI TŰZFEGYVEREK LÖVEDÉK MOZGÁSÁNAK BALLISZTIKAI SZÁMÍTÁSA 2 A szerző jelen tanulmányában bemutatja a repülőfedélzeti tűzfegyverek lövedékei mozgásának ballisztikai számítását.
Kazánok. Hőigények csoportosítása és jellemzőik. Hőhordozó közegek, jellemzőik és főbb alkalmazási területeik
Kazánok Kazánnak nevezzük azt a berendezést, amely tüzelőanyag oxidációjával, vagyis elégetésével felszabadítja a tüzelőanyag kötött kémiai energiáját, és a keletkezett hőt hőhordozó közeg felmelegítésével
Üvegszál szóró eljárás
Üvegszál szóró eljárás Az üvegszál szóró eljárás egy modern kézi lamináló eljárás. A hagyományos kézi lamináló eljárásokkal ellentétben itt nincs szükség porhoz vagy emulzióhoz kötött üvegre sem, mert