REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK
|
|
- Sarolta Nagy
- 9 évvel ezelőtt
- Látták:
Átírás
1 ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM REPÜLOTISZTI INTÉZET REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK X. ÉVFOLYAM 25.SZÁM 1998/2.
2 REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK A Zrínyi Miklós Nemzetvédelmi Egyetem periodikus kiadványa Szerkesztő: Freytag Béla repülő ezredes Szerkesztő Bizottság Dr. Péter Tamás, Dr. Pokorádi László, Varga Béla, Dr. Szántai Tamás Bottyán Zsolt, Dr. Pintér István, Dr. Óvári Gyula, Kovács József Békési Bertold, Dr. Rohács József, Dr. Németh Miklós, Eszes János Dr. Gedeon József, Dr. Szabó László, Dr. Szabolcsi Róbert, Vörös Miklós Timár Szilárd. Lektori Bizottság Dr. Óvári Gyula, Dr. Pokorádi László, Dr. Horváth János, Dr. Gausz Tamás Dr. Sánta Imre, Dr. Pásztor Endre, Dr. Rohács József, Dr. Péter Tamás Dr. Szántai Tamás, Dr. Németh Miklós, Dr. Gedeon József, Dr. Kurutz Károly Dr. Nagy Tibor, Dr. Szekeres István, Dr. Szabolcsi Róbert, Dr. Jakab László Dr. Ludányi Lajos, Dr. Kuba Attila. Kiadó: Felelős kiadó: ZMNE Egyetemi Tanácsa Dr. Szabó Miklós rektor Sokszorosító szerv: ZMNE Repülőtiszti Intézet nyomdája Sokszorosítás helye: ZMNE Repülőtiszti Intézet 5008 Szolnok, Kilián út 1. HU ISSN
3 TARTALOMJEGYZÉK Szilvássy László: MIG-29 M 5 Dunay Pál: Túlterhelésekkel szembeni tűrőképesség növelése a fizikai felkészítés eszközeivel 17 Eszes János: A revolver-gépágyú története 23 Dr. Szabó László: A virtuális valóság alkalmazási lehetőségei repülőműszaki és hajózó képzésében 35 Szilvássy László: Repülőgépfedélzeti rakéták hajtóműveiben alkalmazott hajtóanyagok 43 Kun Mária: "XX. Hajós György matematika verseny" 52 Békési László: Dinamikus modellek alkalmazási lehetősége a helikopter aerodinamika tantárgy elsajátítási hatékonyságának növelése érdekében 61 Dr. Szabolcsi Róbert, Dr. Ludányi Lajos, Tóth Tivadar: Értéktartó szabályozási rendszerek számítógépes tervezése 67 Szegedi Péter: A javított hatásfokú polaritásváltóval megépített analóg MPPT 81 Dr. Szabolcsi Róbert, Dr. Ludányi Lajos, Tóth Tivadar, Kovács József: Értékkövető szabályozási rendszerek számítógépes tervezése 103 Szegedi Péter: Az új, javított hatásfokú polaritásváltóval megépített analóg MPPT áramkör 113 3
4 Repülőgépfedélzeti rakéták hajtóműveiben alkalmazott hajtóanyagok Szilvássy László mérnök százados főiskolai tanársegéd Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti Rendszerek Tanszék A szerző célja bemutatni a repülőgép- fedélzeti rakéták hajtóműveiben alkalmazott hajtóanyagokat, azok összetételét és a különböző hajtóanyag formákat. Bevezetés A napjainkban alkalmazott modern vadászrepülőgépek leggyakoribb fegyvere a fedélzeti rakéta, melyeket különböző speciális hajtóművek juttatnak célba, legyen a cél akár a levegőben, akár a felszínen. Ezeken a rakétákon alkalmazott hajtóművek kevés kivételtől eltekintve szilárd hajtóanyagú rakétahajtóművek (SzHRH), melyekben valamilyen robbanóanyagot nagyon gyakran lőport alkalmaznak hajtóanyagként. Ezek a hajtóanyagok többfajta molekulából állnak, melyek között mindig találunk egy vagy több alapelemet (C, H, O, N), amelyekhez más elemek is csatlakozhatnak (Cl, K, Na, Al, Mg, stb.). A molekulák lehetnek oxidáló-redukálóak, ami azt jelenti, hogy ugyanabban a molekulában egyesítették kémiailag a tüzelőanyagot és az oxidálószert. Ezek lesznek a homogén vagy kolloid hajtóanyagok. Ezzel szemben a kompozit vagy más néven heterogén hajtóanyagokban a tüzelőanyag és az oxidálószer molekulái kémiailag különbözőek, csak fizikailag alkotnak keveréket. A mai követelményeknek megfelelően a hajtóanyag kémiai összetételét úgy választják meg, hogy égése során 5000 kj/kg nagyságrendű fajlagos hőmennyiséget szabadítson fel, 2000 és 4000 K közötti hőmérsékleten, amelyet a ma rendelkezésre álló hőszigetelő anyagok még kibírnak. 43
5 Szilvássy László mérnök százados A hajtóanyagoknak több más fontos kritériumot is ki kell elégíteniük. Ezek a következők: a hajtóanyag sűrűsége, fajlagos energiája lehetőleg nagy legyen, mert ezáltal az égőtér kisebb lehet, a tömegviszony pedig nagyobb; az égési folyamatnak még a lehető legkisebb nyomásnál sem szabad megszakadnia; mechanikai szilárdsága nagy legyen, vagy az anyag legyen rugalmas. (Ez azért fontos követelmény, mert a töltet nagy nyomás alatt áll, azonkívül a gyorsító erők hatására tekintélyes igénybevételek is fellépnek. Az égési folyamat alatt a törésvonalak mentén az égőfelület megnövekedik, ami a nyomás növekedéséhez, ezáltal robbanáshoz és a rakéta megsemmisüléséhez vezetne.); a hajtóanyagban hosszú tárolás után sem szabad vegyi változásnak fellépnie; ne legyen nedvszívó és égése ne függjön jelentősen a külső környezeti hőmérséklettől, előállítása legyen olcsó és veszélytelen. 1. Homogén hajtóanyagok Tüzelőanyag és oxidálószer egy molekulát alkotó kémiai vegyülete. Egyik alapvető típusa az úgynevezett füstnélküli lőpor, amelyet tüzérségi lövedékekben is felhasználnak. A kolloid hajtóanyagok fő összetevője a nitrocellulóz (cellulóznitrát) vagy más néven a lőgyapot, melyet alkohollal, acetonnal, vagy leggyakrabban nitroglicerinnel mint oldószerrel keverve alkalmaznak. Általában a különböző homogén hajtóanyagoknak a nitrocellulóz tartalma % között változik. Ezenkívül a hajtóanyagok különböző adalékokat is tartalmaznak, melyekkel a hajtóanyag fizikai-kémiai tulajdonságait lehet befolyásolni. Ilyenek lehetnek: 44
6 Repülőgépfedélzeti rakéták hajtóműveinek hajtóanyagai katalizátorok (égésgyorsítók), esetleg flegmatizátorok (égéslassítók), melyek az égési sebességet szabályozzák olymódon, hogy az gyakorlatilag független legyen a nyomástól; stabilizátorok, melyek a hajtóanyag tárolása során biztosítják annak kémiai állandóságát; plasztifikálók, amelyek az előállítás folyamán elősegítik a zselatinná válást és javítják a hajtóanyag mechanikai sajátosságait. Százalékarányuk a 10 %-ot is elérheti. Az oldószer nélküli hajtóanyagokat keverés és hengerlés után a felhasználáshoz szükséges kaliberen préselik át - extrudálják. Az így előállított hajtóanyag átmérője technológiai okok miatt 500 mm-re korlátozott. Repülőgép-fedélzeti rakétákban gyakran alkalmazzák. 2. Kompozit hajtóanyagok Ezt a típusú hajtóanyagot oxidáló és redukáló molekulák keveréke alkotja. Tulajdonképpen ebbe a csoportba sorolhatjuk a fekete lőport is, amely salétrom (oxidálószer), kén és szén (redukálószer, tüzelőanyag) keveréke. Nyilvánvaló azonban, hogy a fekete lőpor nem elégíti ki a megfelelő szilárdsági követelményeket, ezért hajtóanyagként nem alkalmazható. Az első modern kompozit hajtóanyagot 1942-ben valósították meg, Pasadena-ban (USA), a Jet Propulsion Laboratory-ban. Ebben a hajtóanyagban, amely a Kalcit 53 nevet kapta, a redukálószer molekuláit egy plasztik kötőanyagban helyezték el, amely tüzelőanyagként szolgált. A keverék hajtóanyagok tüzelőanyagaként rendszerint kaucsuk- és gyantaszerű anyagok (természetes és mesterséges kaucsuk, karbamid és fenolgyanták, szurok, polimer-butadének, poliuretánok, stb.) szolgálnak. A robbanóanyag tömegének %-át teszik ki. 45
7 Szilvássy László mérnök százados Oxidátorként felhasználhatók, nagy oxigén tartalmú szervetlen vegyületek (ammónia-, nátrium-, kálium-, lítiumperklorátok és nitrátok). A tömeg %-át teszik ki. A különböző komponenseket összekötő (ragasztó) elem maga a hajtóanyag, vagy speciális adalék lehet. A hajtóanyag energetikai jellemzői fémporok (alumínium, magnézium, stb.) bevitelével javíthatók! A tömeg %-a lehet. Az első táblázat a kompozit hajtóanyagokban alkalmazott oldószereket mutatja be, míg a másodikból néhány kompozit hajtóanyag összetételét ismerhetjük meg. Oxidálószer Ammónium perklorát NH 4 ClO 4 ρ kg/m 3 Szabad oxigén tömeg % Bomlási hőfok K Megjegyzés 1,95 34,0 > 540 Különböző szemcsenagyságban fordul elő, olcsó Káliumperklorát KClO 4 2,53 46,2 > 770 Az égéstermékek KCl-t tartalmaznak Ammóniumnitrát NH 4 NO 3 1,72 20,0 igen stabil Közepes teljesítményű, füstmentes Káliumnitrát KNO 3 2,11 40,0 - Gyenge teljesítményű, olcsó 1. számú táblázat A kompozit hajtóanyagokban alkalmazott oxidálószerek Összetétel Hajtóanyag verzió KClO 4 76 % NH 4 CLO 4 80 % 68 % NH 4 NO 3 80% Aszfalt 17 % Kőolaj 7 % Szerves kötőanyag 20 % 18 % 14 % Fémpor tüzelőanyag 16 % Egyéb 2 % 2 % 2. számú táblázat Néhány hajtóanyag összetétele 46
8 Repülőgépfedélzeti rakéták hajtóműveinek hajtóanyagai 3. Hajtóanyag formák Az egységnyi idő alatt keletkezett gázok mennyisége (mg) arányos a töltet égési felületével (S): mg=sρu (3.1)[1] ahol ρ - a töltet sűrűsége kg m 3 u - az égés sebessége m S Ha az égés folyamán az S felület növekszik progresszív, ha csökken degresszív, ha pedig változatlan semleges égésről beszélünk (lásd 1. számú ábra) p progresszív 2 - regresszív 3 - semleges 1. ábra Különböző égési módozatok A töltet égési ideje mindhárom esetben t a és ez alatt az idő alatt a hajtómű összimpulzusa = = ahol a p(t) az égőtérben uralkodó nyomás. t a I Σ I p() t dt (3.2)[1] 0 47
9 Szilvássy László mérnök százados Az ábrából jól látható, hogy a gázok maximális nyomása semleges égés esetén a legkisebb, ami lehetővé teszi az égőtér falvastagságának csökkentését. Az égés jellege a töltet formájával, keresztmetszetével befolyásolható. Lényeges paraméter még az égő réteg vastagsága is, amely gyakorlatilag egyenlő a töltet legvékonyabb falvastagságával, vagy annak felével (lásd 2. ábra) és a hajtómű működési idejének meghatározásához kiinduló adatként szolgál. 2.ábra Hajtóanyag formák 48
10 Repülőgépfedélzeti rakéták hajtóműveinek hajtóanyagai A hajtómű töltet formáján kívül az égés jellege befolyásolható még az egyes felületek hőszigetelő réteggel történő bevonásával is. A 2. ábrán látható hajtóanyag formák közül a d és a h degresszív, az a és a g progresszív, a többi pedig semleges égést biztosít. A formák közül a legelterjedtebb a csöves töltet (2. ábra a, b), amely kör keresztmetszetű csatornával ellátott hengeres test. A töltet homlokfelületeit hőálló réteg borítja. Az égés sebessége a belső és külső homlokfelületeken megegyezik, az azonos mértékben növekvő és csökkenő felületek összege nem változik. Ez igaz a 2/f ábrán látható csöves kötegelt töltetre is. Ezt a formát gyakran alkalmazzák nem irányítható rakétákban, ahol rövid idő alatt nagy tolóerőt lehet kifejteni, ami a találati valószínűséget javítja (rövidebb a rakéta repülési ideje). A csillag (2/c) ábra) keresztmetszetű belső csatornával ellátott töltet csak a belső felületen ég (a két homlokfelület hőálló réteg védi, a külső palástfelület az öntési eljárás következtében rés nélkül érintkezik az égőtér falával). A belső csatorna csillag formájával biztosítható az égési felület állandósága az e 1 réteg elégésének idejéig. A b és a d formájú hajtóanyag töltetek esetében rést kell biztosítani az égőtér belső felülete és a hajtóanyag között, hogy a külső felület égésekor keletkező gázok a fúvócsőbe juthassanak. Természetesen az égőteret ebben az esetben hőálló bevonattal kell ellátni. A homlok felületén égő töltet (2/e ábra) viszonylag kis égési felülettel és nagy vastagsággal rendelkezik. Utazó vagy menet hajtóművekben alkalmazzák, mivel viszonylag kis tolóerőt hosszú időn keresztül képes biztosítani. A 3. ábrán a hajtómű tipikus tolóerő diagramjai láthatók azonos összimpulzussal rendelkező hajtóanyag töltetek esetén, különböző keresztmetszetek alkalmazásával. 49
11 Szilvássy László mérnök százados F t ábra Tolóerő diagramok 4 t 1- csöves kötegelt töltet 2- csillag keresztmetszetű belső csatornával ellátott töltet 3- csöves töltet 4- homlokfelületen égő töltet Felhasznált irodalom: [1] Kakula János mk.őrnagy: Rakéták szerkezettana, Főiskolai jegyzet, KGyRMF, Szolnok 1989 [2] Kakula János mk. őrnagy: Robbanóanyagok és a robbanás hatásai, Főiskolai jegyzet, KGyRMF,, Szolnok 1990 [3] A. N. Dorofjev, A. P. Morozov: Aviacionije bojepripaszi, Vojennaja Vozdusnaja Inzsenyérnaja Akagyémija imenyi prof. N E. Zsukovszkova, Moszkva 1978 The purpose of the author is to review engine propellants of on-board missiles and their composition, and also different propellant forms. 50
Repülőgépfedélzeti rakéták hajtóműveiben alkalmazott hajtóanyagok. Bevezetés
Repülőgépfedélzeti rakéták hajtóműveiben alkalmazott hajtóanyagok Szilvássy László mérnök százados főiskolai tanársegéd Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti
a hajtóanyagban hosszú tárolás után sem szabad vegyi változásnak
Szilvássy László mk. őrgy. Békési Bertold mk. őrgy. REPÜLŐFEDÉLZETI RAKÉTÁK HAJTÓMŰVEI BEVEZETÉS A napj ainkban alkalmazott modern vadászrepülőgépek leggyakoribb fegyvere a fedélzeti rakéta, melyeket különböző
Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam
Hevesy György Országos Kémiaverseny Kerületi forduló 2013. február 20. 8. évfolyam A feladatlap megoldásához kizárólag periódusos rendszert és elektronikus adatok tárolására nem alkalmas zsebszámológép
REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK
ZMNE REPÜLŐMŰSZAKI INTÉZET REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK XVIII. évfolyam 38. szám 2006. A ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM TUDOMÁNYOS KIADVÁNYA Repüléstudományi Közlemények XVIII. évfolyam 38. szám 2006/1.
Minta feladatsor. Az ion neve. Az ion képlete O 4. Szulfátion O 3. Alumíniumion S 2 CHH 3 COO. Króm(III)ion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve.. Szulfátion
Tüzeléstan előadás Dr. Palotás Árpád Bence
Égéselméleti számítások Tüzeléstan előadás Dr. Palotás Árpád Bence Miskolci Egyetem - Tüzeléstani és Hőenergia Tanszék 2 Tüzelőanyagok Definíció Energiaforrás, melyből oxidálószer jelenlétében, exoterm
REPÜLŐFEDÉLZETI IRÁNYÍTHATÓ RAKÉTÁK
Papp István REPÜLŐFEDÉLZETI IRÁNYÍTHATÓ RAKÉTÁK A doktori disszertációmban a repülőfedélzeti irányítható rakéták modellezésével foglalkozom. Ahhoz, hogy egy rakétát megfelelő matematikai modellel helyettesíthessünk,
Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam
A feladatokat írta: Kódszám: Harkai Jánosné, Szeged... Lektorálta: Kovács Lászlóné, Szolnok 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 7. évfolyam A feladatok megoldásához csak
RAKÉTÁK REAKTÍV HAJTÓMŰVEI A REAKTÍV HAJTÓMŰVEK
Szilvássy László Dr. Szabó László RAKÉTÁK REAKTÍV HAJTÓMŰVEI A katonai alkalmazású rakétákban nagyon széleskörűen alkalmazzák a reaktív hajtóműveket, melyeknek nagyon sok típusa létezik, annak függvényében,
Jegyzet. Kémia, BMEVEAAAMM1 Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens.
Kémia, BMEVEAAAMM Műszaki menedzser hallgatók számára Dr Csonka Gábor, egyetemi tanár Dr Madarász János, egyetemi docens Jegyzet dr. Horváth Viola, KÉMIA I. http://oktatas.ch.bme.hu/oktatas/konyvek/anal/
Városmajor út 30/F/8, 5000 Szolnok (Magyarország) +36 56424267 02437990 +36305851718 bekesi.bertold@gmail.com
Önéletrajz SZEMÉLYI ADATOK Dr. Békési Bertold Városmajor út 30/F/8, 5000 Szolnok (Magyarország) +36 56424267 02437990 +36305851718 bekesi.bertold@gmail.com Neme Férfi Születési dátum 1969. május 16. Állampolgárság
Számítástudományi Tanszék Eszterházy Károly Főiskola.
Networkshop 2005 k Geda,, GáborG Számítástudományi Tanszék Eszterházy Károly Főiskola gedag@aries.ektf.hu 1 k A mérés szempontjából a számítógép aktív: mintavételezés, kiértékelés passzív: szerepe megjelenítés
zeléstechnikában elfoglalt szerepe
A földgf ldgáz z eltüzel zelésének egyetemes alapismeretei és s a modern tüzelt zeléstechnikában elfoglalt szerepe Dr. Palotás Árpád d Bence egyetemi tanár Épületenergetikai Napok - HUNGAROTHERM, Budapest,
Kémia OKTV 2006/2007. II. forduló. A feladatok megoldása
Kémia OKTV 2006/2007. II. forduló A feladatok megoldása Az értékelés szempontjai Csak a hibátlan megoldásokért adható a teljes pontszám. Részlegesen jó megoldásokat a részpontok alapján kell pontozni.
KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont. HCl (1 pont) HCO 3 - (1 pont) Ca 2+ (1 pont) Al 3+ (1 pont) Fe 3+ (1 pont) H 2 O (1 pont)
KÉMIAI ALAPISMERETEK (Teszt) Összesen: 150 pont 1. Adja meg a következő ionok nevét, illetve képletét! (12 pont) Az ion neve Kloridion Az ion képlete Cl - (1 pont) Hidroxidion (1 pont) OH - Nitrátion NO
V É R Z K A S A Y E N P
Hevesy György Országos Kémiaverseny Kerületi forduló 2012. február 14. 7. évfolyam 1. feladat (1) Írd be a felsorolt anyagok sorszámát a táblázat megfelelő helyére! fémek anyagok kémiailag tiszta anyagok
1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.
1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:
MATEMATIKA-TUDOMÁNYI ROVAT
MATEMATIKA-TUDOMÁNYI ROVAT Rovatvezető: Dr. Szántai Tamás Rovatszerkesztők: Bottyán Zsolt 51 Kun Mária XX. HAJÓS GYÖRGY MATEMATIKA VERSENY (1998. április 15-17.) Kun Mária egyetemi tanársegéd Zrínyi Miklós
Természetes vizek, keverékek mindig tartalmaznak oldott anyagokat! Írd le milyen természetes vizeket ismersz!
Összefoglalás Víz Természetes víz. Melyik anyagcsoportba tartozik? Sorolj fel természetes vizeket. Mitől kemény, mitől lágy a víz? Milyen okokból kell a vizet tisztítani? Kémiailag tiszta víz a... Sorold
A HARCI HELIKOPTEREK HATÉKONYSÁGI KÖVETELMÉNYEINEK RANGSOROLÁSA
Szilvássy László A HARCI HELIKOPTEREK HATÉKONYSÁGI KÖVETELMÉNYEINEK RANGSOROLÁSA A doktori iskolában folytatott tanulmányaim során A haditechnikai eszközök és rendszerek harci hatékonyság értékelésének
Szabadentalpia nyomásfüggése
Égéselmélet Szabadentalpia nyomásfüggése G( p, T ) G( p Θ, T ) = p p Θ Vdp = p p Θ nrt p dp = nrt ln p p Θ Mi az a tűzoltó autó? A tűz helye a világban Égés, tűz Égés: kémiai jelenség a levegő oxigénjével
REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK
ZMNE REPÜLŐTISZTI INTÉZET REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK XII. évfolyam 3. szám 2000 A ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM TUDOMÁNYOS KIADVÁNYA Repüléstudományi Közlemények XII. évfolyam 3. szám 2000/3. A
Zaj- és rezgés. Törvényszerűségek
Zaj- és rezgés Törvényszerűségek A hang valamilyen közegben létrejövő rezgés. A vivőközeg szerint megkülönböztetünk: léghangot (a vivőközeg gáz, leggyakrabban levegő); folyadékhangot (a vivőközeg folyadék,
Általános Kémia, BMEVESAA101
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Óravázlatok:
1. feladat Összesen: 15 pont. 2. feladat Összesen: 10 pont
1. feladat Összesen: 15 pont Vizsgálja meg a hidrogén-klorid (vagy vizes oldata) reakciót különböző szervetlen és szerves anyagokkal! Ha nem játszódik le reakció, akkor ezt írja be! protonátmenettel járó
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár. Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár,
Általános Kémia, BMEVESAA101 Dr Csonka Gábor, egyetemi tanár Az anyag Készítette: Dr. Csonka Gábor egyetemi tanár, csonkagi@gmail.com 1 Jegyzet Dr. Csonka Gábor http://web.inc.bme.hu/csonka/ Facebook,
1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk:
Válaszoljatok a következő kérdésekre: 1. feladat Alkalmazzuk a mólhő meghatározását egy gázra. Izoterm és adiabatikus átalakulásokra a következőt kapjuk: a) zéró izoterm átalakulásnál és végtelen az adiabatikusnál
Osztályozó vizsgatételek. Kémia - 9. évfolyam - I. félév
Kémia - 9. évfolyam - I. félév 1. Atom felépítése (elemi részecskék), alaptörvények (elektronszerkezet kiépülésének szabályai). 2. A periódusos rendszer felépítése, periódusok és csoportok jellemzése.
REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK
REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK A Zrínyi Miklós Nemzetvédelmi Egyetem periodikus kiadványa Szerkesztő: Freytag Béla repülő ezredes Szerkesztő Bizottság Dr. Péter Tamás, Dr. Pokorádi László, Varga Béla, Dr.
REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK
ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM REPÜLOTISZTI INTÉZET REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK X. ÉVFOLYAM 25.SZÁM 1998/2. REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK A Zrínyi Miklós Nemzetvédelmi Egyetem periodikus kiadványa
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:24 Normál Magasabb hőmérsékleten a részecskék nagyobb tágassággal rezegnek, s így távolabb kerülnek egymástól. Magasabb hőmérsékleten a részecskék kisebb tágassággal rezegnek, s így távolabb kerülnek
Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei
Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI
MEGHÍVÓ NEW CHALLENGES IN THE FIELD OF MILITARY SCIENCE ÉS ROBOTHADVISELÉS 12. szakmai-tudományos konferencia. 2012. november 21-22.
NEMZETI KÖZSZOLGÁLATI EGYETEM, MAGYAR HADTUDOMÁNYI TÁRSASÁG, MTA HADTUDOMÁNYI BIZOTTSÁGA MEGHÍVÓ NEW CHALLENGES IN THE FIELD OF MILITARY SCIENCE ÉS ROBOTHADVISELÉS 12 szakmai-tudományos konferencia 2012.
MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403. Dr. Dogossy Gábor Egyetemi adjunktus B 408
MÉRNÖKI ANYAGISMERET AJ002_1 Közlekedésmérnöki BSc szak Csizmazia Ferencné dr. főiskolai docens B 403 Dr. Dogossy Gábor Egyetemi adjunktus B 408 Az anyag Az anyagot az ember nyeri ki a természetből és
Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam
A feladatokat írta: Kódszám: Harkai Jánosné, Szeged... Lektorálta: Kovács Lászlóné, Szolnok 2019. május 11. Curie Kémia Emlékverseny 2018/2019. Országos Döntő 8. évfolyam A feladatok megoldásához csak
8. Osztály. Kód. Szent-Györgyi Albert kémiavetélkedő
8. Osztály Kedves Versenyző! A jobb felső sarokban található mezőbe írd fel a verseny lebonyolításáért felelős személytől kapott kódot a feladatlap minden oldalára. A feladatokat lehetőleg a feladatlapon
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
1. 2:29 Normál párolgás olyan halmazállapot-változás, amelynek során a folyadék légneművé válik. párolgás a folyadék felszínén megy végbe. forrás olyan halmazállapot-változás, amelynek során nemcsak a
T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...
T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...
Mivel foglalkozik a hőtan?
Hőtan Gáztörvények Mivel foglalkozik a hőtan? A hőtan a rendszerek hőmérsékletével, munkavégzésével, és energiájával foglalkozik. A rendszerek stabilitása áll a fókuszpontjában. Képes megválaszolni a kérdést:
Ex Fórum 2009 Konferencia. 2009 május 26. robbanásbiztonság-technika 1
1 Az elektrosztatikus feltöltődés elleni védelem felülvizsgálata 2 Az elektrosztatikus feltöltődés folyamata -érintkezés szétválás -emisszió, felhalmozódás -mechanikai hatások (aprózódás, dörzsölés, súrlódás)
DOKTORI (PhD) ÉRTEKEZÉS SZERZŐI ISMERTETŐJE
DOKTORI (PhD) ÉRTEKEZÉS SZERZŐI ISMERTETŐJE ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM Doktori Tanács Lamper László nyá.mk.örgy MISTRAL 2 légvédelmi rakéta stabilitásának és irányíthatóságának szabályozástechnikai
Feladatlap X. osztály
Feladatlap X. osztály 1. feladat Válaszd ki a helyes választ. Két test fajhője közt a következő összefüggés áll fenn: c 1 > c 2, ha: 1. ugyanabból az anyagból vannak és a tömegük közti összefüggés m 1
Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53
Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika
7. osztály 2 Hevesy verseny, megyei forduló, 2004.
7. osztály 2 Hevesy verseny, megyei forduló, 2004. Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető
A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!
1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket
Kémiai reakciók sebessége
Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását
6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.
6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL
SZIMULÁCIÓ ÉS MODELLEZÉS AZ ANSYS ALKALMAZÁSÁVAL MAGYAR TUDOMÁNY NAPJA KONFERENCIA 2010 GÁBOR DÉNES FŐISKOLA CSUKA ANTAL TARTALOM A KÍSÉRLET ÉS MÉRÉS JELENTŐSÉGE A MÉRNÖKI GYAKORLATBAN, MECHANIKAI FESZÜLTSÉG
Katalízis. Tungler Antal Emeritus professzor 2017
Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923
Az anyagi rendszerek csoportosítása
Általános és szervetlen kémia 1. hét A kémia az anyagok tulajdonságainak leírásával, átalakulásaival, elıállításának lehetıségeivel és felhasználásával foglalkozik. Az általános kémia vizsgálja az anyagi
3D bútorfrontok (előlapok) gyártása
3D bútorfrontok (előlapok) gyártása 1 2 3 4 5 6 7 8 9 MDF lapok vágása Marás rakatolás Tisztítás Ragasztófelhordás 3D film laminálás Szegély eltávolítása Tisztítás Kész bútorfront Membránpréses kasírozás
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
gázok hőtágulása függ: 1. 1:55 Normál de független az anyagi minőségtől. Függ az anyagi minőségtől. a kezdeti térfogattól, a hőmérséklet-változástól, Mlyik állítás az igaz? 2. 2:31 Normál Hőáramláskor
TestLine - Fizika 7. osztály Hőtan Témazáró Minta feladatsor
Nézd meg a képet és jelöld az 1. igaz állításokat! 1:56 Könnyű F sak a sárga golyó fejt ki erőhatást a fehérre. Mechanikai kölcsönhatás jön létre a golyók között. Mindkét golyó mozgásállapota változik.
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK
FIZIKA II. 2. ZÁRTHELYI DOLGOZAT A MŰSZAKI INFORMATIKA SZAK 2007-2008-2fé EHA kód:.név:.. 1. Egy 5 cm átmérőjű vasgolyó 0,01 mm-rel nagyobb, mint a sárgaréz lemezen vágott lyuk, ha mindkettő 30 C-os. Mekkora
KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997
1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 JAVÍTÁSI ÚTMUTATÓ I. A HIDROGÉN, A HIDRIDEK 1s 1, EN=2,1; izotópok:,, deutérium,, trícium. Kétatomos molekula, H 2, apoláris. Szobahőmérsékleten
Gázok. 5-7 Kinetikus gázelmélet 5-8 Reális gázok (korlátok) Fókusz: a légzsák (Air-Bag Systems) kémiája
Gázok 5-1 Gáznyomás 5-2 Egyszerű gáztörvények 5-3 Gáztörvények egyesítése: Tökéletes gázegyenlet és általánosított gázegyenlet 5-4 A tökéletes gázegyenlet alkalmazása 5-5 Gáz reakciók 5-6 Gázkeverékek
Légköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK
ZRÍNYI MIKLÓS NEMZETVÉDELMI EGYETEM REPÜLÕTISZTI INTÉZET REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK XI. ÉVFOLYAM 27.SZÁM 1999/2. REPÜLÉSTUDOMÁNYI KÖZLEMÉNYEK XI. ÉVFOLYAM 27. SZÁM 1999/2. A ZRÍNYI MIKLÓS NEMZETVÉDELMI
7. osztály Hevesy verseny, megyei forduló, 2003.
Figyelem! A feladatokat ezen a feladatlapon oldd meg! Megoldásod olvasható és áttekinthető legyen! A feladatok megoldásában a gondolatmeneted követhető legyen! A feladatok megoldásához használhatod a periódusos
SZENNYVÍZKEZELÉS NAGYHATÉKONYSÁGÚ OXIDÁCIÓS ELJÁRÁSSAL
SZENNYVÍZKEZELÉS NAGYHATÉKONYSÁGÚ OXIDÁCIÓS ELJÁRÁSSAL Kander Dávid Környezettudomány MSc Témavezető: Dr. Barkács Katalin Konzulens: Gombos Erzsébet Tartalom Ferrát tulajdonságainak bemutatása Ferrát optimális
Poliaddíció. Polimerek kémiai reakciói. Poliaddíciós folyamatok felosztása. Addíció: két molekula egyesülése egyetlen fıtermék keletkezése közben
Polimerek kémiai reakciói 6. hét Addíció: két molekula egyesülése egyetlen fıtermék keletkezése közben Poliaddíció bi- vagy polifunkciós monomerek lépésenkénti összekapcsolódása: dimerek, trimerek oligomerek
Indikátorok. brómtimolkék
Indikátorok brómtimolkék A vöröskáposzta kivonat, mint indikátor Antociánok 12 40 mg/100 g ph Bodzában, ribizliben is! A szupersavak Szupersav: a kénsavnál erősebb sav Hammett savassági függvény: a savak
Lánghegesztés és lángvágás
Dr. Németh György főiskolai docens Lánghegesztés és lángvágás 1 Lánghegesztés Acetilén (C 2 H 2 ) - oxigén 1:1 keveréke 3092 C 0 magas lánghőmérséklet nagy terjedési sebesség nagy hőtartalom jelentéktelen
Ajánlott szakmai jellegű feladatok
Ajánlott szakmai jellegű feladatok A feladatok szakmai jellegűek, alkalmazásuk mindenképpen a tanulók motiválását szolgálja. Segít abban, hogy a tanulók a tanultak alkalmazhatóságát meglássák. Értsék meg,
XXXIX. TUDOMÁNYOS DIÁKKÖRI KONFERENCIÁJÁRA
A NYÍREGYHÁZI FŐISKOLA MŰSZAKI ÉS MEZŐGAZDASÁGI KARÁNAK TUDOMÁNYOS DIÁKKÖRI TANÁCSA tisztelettel meghívja Önt a XXXIX. TUDOMÁNYOS DIÁKKÖRI KONFERENCIÁJÁRA A konferencia időpontja: 2011. december 07. (szerda)
Minta feladatsor. Az ion képlete. Az ion neve O 4. Foszfátion. Szulfátion CO 3. Karbonátion. Hidrogénkarbonátion O 3. Alumíniumion. Al 3+ + Szulfidion
Minta feladatsor A feladatok megoldására 90 perc áll rendelkezésére. A megoldáshoz zsebszámológépet használhat. 1. Adja meg a következő ionok nevét, illetve képletét! (8 pont) Az ion neve Foszfátion Szulfátion
1. ábra Sztatikus gyújtásveszély éghető gázok, gőzök, ködök és porok esetében
1. ábra Sztatikus gyújtásveszély éghető gázok, gőzök, ködök és porok esetében A csekély feltöltődés B nagy mértékű feltöltődés, kisülési szikra és gyújtásveszély 2.ábra 3. ábra Az elektrosztatikus töltés
Junior távközlési szekció I.
Junior távközlési szekció I. C.303 terem Elnök: Dr. Beinschróth József, egyetemi docens Tag: Konkoly Dóra, intézeti mérnök Titkár: Balogh Dominika, hallgató Füredy Péter PRECÍZIÓS TÁPEGYSÉG KÉSZÍTÉSE Konzulensek:
Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye
Kémiai egyensúlyok CH 3 COOH + C 2 H 5 OH CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Egyensúlyban: v 1 = v 2 azaz k 1 [CH 3 COOH].[C 2 H 5 OH] = k
KÖZSÉGI VERSENY KÉMIÁBÓL március 3.
OKTATÁSI, TUDOMÁNYOS ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM, SZERB KÉMIKUSOK EGYESÜLETE KÖZSÉGI VERSENY KÉMIÁBÓL 2018. március 3. TUDÁSFELMÉRŐ FELADATLAP A VIII. OSZTÁLY SZÁMÁRA A tanuló jeligéje (három
Művelettan 3 fejezete
Művelettan 3 fejezete Impulzusátadás Hőátszármaztatás mechanikai műveletek áramlástani műveletek termikus műveletek aprítás, osztályozás ülepítés, szűrés hűtés, sterilizálás, hőcsere Komponensátadás anyagátadási
A vizsgálatok eredményei
A vizsgálatok eredményei A vizsgált vetőmagvak és műtrágyák nagy száma az eredmények táblázatos bemutatását teszi szükségessé, a legfontosabb magyarázatokkal kiegészítve. A közölt adatok a felsorolt publikációkban
AZ ÚJ, JAVÍTOTT HATÁSFOKÚ POLARITÁSVÁLTÓVAL MEGÉPÍTETT MPPT ÁRAMKÖR
AZ ÚJ, JAVÍTOTT HATÁSFOKÚ POLARITÁSVÁLTÓVAL MEGÉPÍTETT MPPT ÁRAMKÖR Szegedi Péter mérnök százados egyetemi tanársegéd Zrínyi Miklós Nemzetvédelmi Egyetem Vezetés- és Szervezéstudományi Kar Fedélzeti Rendszerek
KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATOK 2003.
KÉMIA ÍRÁSBELI ÉRETTSÉGI-FELVÉTELI FELADATK 2003. JAVÍTÁSI ÚTMUTATÓ Az írásbeli felvételi vizsgadolgozatra összesen 100 (dolgozat) pont adható, a javítási útmutató részletezése szerint. Minden megítélt
Vízminőség, vízvédelem. Felszín alatti vizek
Vízminőség, vízvédelem Felszín alatti vizek A felszín alatti víz osztályozása (Juhász J. 1987) 1. A vizet tartó rétegek anyaga porózus kőzet (jól, kevéssé áteresztő, vízzáró) hasadékos kőzet (karsztos,
Talajmechanika. Aradi László
Talajmechanika Aradi László 1 Tartalom Szemcsealak, szemcsenagyság A talajok szemeloszlás-vizsgálata Természetes víztartalom Plasztikus vizsgálatok Konzisztencia határok Plasztikus- és konzisztenciaindex
JELENTÉS. MPG-Cap és MPG-Boost hatásának vizsgálata 10. Üzemanyag és Kenőanyag Központ Ukrán Védelmi Minisztérium
JELENTÉS MPG-Cap és MPG-Boost hatásának vizsgálata 10. Üzemanyag és Kenőanyag Központ Ukrán Védelmi Minisztérium 1. Termék leírás Az MGP-Cap és MPG-Boost 100%-ban szerves vegyületek belső égésű motorok
Dr. Szabó László - Dr. Békési László - Dr. Óvári Gyula - Varga Béla
Dr. Szabó László - Dr. Békési László - Dr. Óvári Gyula - Varga Béla MULTIMÉDIÁS ESZKÖZÖK ALKALMAZÁSI LEHETŐSÉGEI A SZAKSZOLGÁLATI ENGEDÉLYEK MEGSZERZÉSÉRE IRÁNYULÓ TANFOLYAMOKON A MI-8 HELIKOPTER TÍPUSISMERET
Textíliák felületmódosítása és funkcionalizálása nem-egyensúlyi plazmákkal
Óbudai Egyetem Anyagtudományok és Technológiák Doktori Iskola Textíliák felületmódosítása és funkcionalizálása nem-egyensúlyi plazmákkal Balla Andrea Témavezetők: Dr. Klébert Szilvia, Dr. Károly Zoltán
Gázégő üzemének ellenőrzése füstgázösszetétel alapján
MISKOLCI EGYETEM MŰSZAKI ANYAGTUDOMÁNYI KAR ENERGIA- ÉS MINŐSÉGÜGYI INTÉZET TÜZELÉSTANI ÉS HŐENERGIA INTÉZETI TANSZÉK Gázégő üzemének ellenőrzése füstgázösszetétel alapján Felkészülési tananyag a Tüzeléstan
Szilárd testek rugalmassága
Fizika villamosmérnököknek Szilárd testek rugalmassága Dr. Giczi Ferenc Széchenyi István Egyetem, Fizika és Kémia Tanszék Győr, Egyetem tér 1. 1 Deformálható testek (A merev test idealizált határeset.)
4. változat. 2. Jelöld meg azt a részecskét, amely megőrzi az anyag összes kémiai tulajdonságait! A molekula; Б atom; В gyök; Г ion.
4. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:
ROBOTHADVISELÉS 7. tudományos konferencia november 27.
ROBOTHADVISELÉS 7. tudományos konferencia 2007. november 27. Zrínyi Miklós Nemzetvédelmi Egyetem, Díszterem Budapest, X. Hungária krt. 9-11. A konferencia szervezőbizottsága: Dr. Haig Zsolt mk. alezredes
Biofizika szeminárium. Diffúzió, ozmózis
Biofizika szeminárium Diffúzió, ozmózis I. DIFFÚZIÓ ORVOSI BIOFIZIKA tankönyv: III./2 fejezet Részecskék mozgása Brown-mozgás Robert Brown o kísérlet: pollenszuszpenzió mikroszkópos vizsgálata o megfigyelés:
MELLÉKLETEK. a következőhöz: Javaslat Az Európai Parlament és a Tanács rendelete
EURÓPAI BIZOTTSÁG Brüsszel, 2018.4.17. COM(2018) 209 final ANNEXES 1 to 3 MELLÉKLETEK a következőhöz: Javaslat Az Európai Parlament és a Tanács rendelete a robbanóanyag-prekurzorok forgalmazásáról és felhasználásáról,
Hevesy György Országos Kémiaverseny Kerületi forduló február évfolyam
1. feladat (12 pont) Hevesy György Országos Kémiaverseny Kerületi forduló 2012. február 14. 8. évfolyam 212 éve született a dinamó és a szódavíz feltalálója. Töltsd ki a rejtvény sorait és megfejtésül
Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei
GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési
Az extrakció. Az extrakció oldószerszükségletének meghatározása
Az extrakció Az extrakció oldószerszükségletének meghatározása Az extrakció fogalma és fajtái olyan szétválasztási művelet, melynek során szilárd vagy folyadék fázisból egy vagy több komponens kioldását
2011/2012 tavaszi félév 2. óra. Tananyag:
2011/2012 tavaszi félév 2. óra Tananyag: 2. Gázelegyek, gőztenzió Gázelegyek összetétele, térfogattört és móltört egyezősége Gázelegyek sűrűsége Relatív sűrűség Parciális nyomás és térfogat, Dalton-törvény,
PS tűzgátló mandzsetta egy külső, horganyzott vagy rozsdamentes acél fémházból, valamint rugalmas PS-25 tűzvédelmi szalagból áll.
Leírás PS tűzgátló mandzsetta egy külső, horganyzott vagy rozsdamentes acél fémházból, valamint rugalmas PS-25 tűzvédelmi szalagból áll. A PS-25 tűzvédelmi szalag speciális grafittal és adalékokkal készül,
HIDROSZTATIKA, HIDRODINAMIKA
HIDROSZTATIKA, HIDRODINAMIKA Hidrosztatika a nyugvó folyadékok fizikájával foglalkozik. Hidrodinamika az áramló folyadékok fizikájával foglalkozik. Folyadékmodell Önálló alakkal nem rendelkeznek. Térfogatuk
Hidrosztatika. Folyadékok fizikai tulajdonságai
Hidrosztatika A Hidrosztatika a nyugalomban lévő folyadékoknak a szilárd testekre, felületekre gyakorolt hatásával foglalkozik. Tárgyalja a nyugalomban lévő folyadékok nyomásviszonyait, vizsgálja a folyadékba
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK
ÖSSZEFOGLALÁS HŐTANI FOLYAMATOK HŐTÁGULÁS lineáris (hosszanti) hőtágulási együttható felületi hőtágulási együttható megmutatja, hogy mennyivel változik meg a test hossza az eredeti hosszához képest, ha
Betonok. Betonkeverés hagyományos. és korszerő felfogásban ??? Új betonkeverési elvek, eljárások
Betonok Betonkeverés hagyományos és korszerő felfogásban??? Új betonkeverési elvek, eljárások A beton mesterséges kı Teherátadásnál meghatározó szempontok: szemcseváz minısége (teherátadás a szemcsevázon
A szennyvíztisztítás üzemeltetési költségeinek csökkentése - oxigén beviteli hatékonyság értékelésének módszere
A szennyvíztisztítás üzemeltetési költségeinek csökkentése - oxigén beviteli hatékonyság értékelésének módszere Gilián Zoltán üzemmérnökség vezető FEJÉRVÍZ Zrt. 1 Áttekintő 1. Alapjellemzés (Székesfehérvár
1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont
1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat
(2014. március 8.) TUDÁSFELMÉRŐ FELADATLAP A VIII. OSZTÁLY SZÁMÁRA
SZERB KÖZTÁRSASÁG OKTATÁSI, TUDOMÁNYÜGYI ÉS TECHNOLÓGIAI FEJLESZTÉSI MINISZTÉRIUM SZERB KÉMIKUSOK EGYESÜLETE KÖZSÉGI VERSENY KÉMIÁBÓL (2014. március 8.) TUDÁSFELMÉRŐ FELADATLAP A VIII. OSZTÁLY SZÁMÁRA
YaraLiva TM CALCINIT 15.5% N + 19% CaO
Yara Mono Műtrágyák YaraLiva TM CALCINIT 15.5% N + 19% CaO 100% vízoldható Kalcium-nitrát Kiszerelés: 25 kg, 5 kg, 2 kg A YaraLiva TM Calcinit nitrogént és kalciumot tartalmazó öntöző műtrágya. A kalcium
NSZ/NT beton és hídépítési alkalmazása
NSZ/NT beton és hídépítési alkalmazása Farkas Gy.-Huszár Zs.-Kovács T.-Szalai K. R forgalmi terhelésű utak - megnövekedett forgalmi terhelés - fokozott tartóssági igény - fenntartási idő és költségek csökkentése
FIZIKA I. Ez egy gázos előadás lesz! (Ideális gázok hőtana) Dr. Seres István
Ez egy gázos előadás lesz! ( hőtana) Dr. Seres István Kinetikus gázelmélet gáztörvények Termodinamikai főtételek fft.szie.hu 2 Seres.Istvan@gek.szie.hu Kinetikus gázelmélet Az ideális gáz állapotjelzői: