Az alábbi (nagyrészt megoldott) zh-feladatokból a sárgával jelölteket kell tudni a 2. zh-ra

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Az alábbi (nagyrészt megoldott) zh-feladatokból a sárgával jelölteket kell tudni a 2. zh-ra"

Átírás

1 Az alábbi (nagyrészt megoldott) zh-feladatokból a sárgával jelölteket kell tudni a. zh-ra Fizika BK1 zh okt. 6. *: memória, nem számítás! 1. Hány km-re van a Hold a tl?* Hány nm ez?. a) Becsüljük meg, hogy milyen átmérj körlapot kell tartani a szemünktl 1m-re, hogy az eltakarja a teliholdat! b) Ebbl a becsült adatból határozzuk meg a Hold átmérjét! (A Hold távolsága ismert*). c) Ebbl számítsuk ki, hogy milyen síkszög és milyen térszög alatt látszik a Hold a rl! d) Melyik égitest látszik nagyobb szög alatt: a Nap vagy a Hold?* 3. Tekintsük a P pontját, koordinátái: északi szélesség 60 o, keleti hosszúság: 45 o. a) Milyen messze van P az északi saroktól? b) Milyen hosszú az út P-tl az északi sarokig repülgéppel légvonalban? És az Egyenlítig? c) Mekkora és milyen irányú a P pontjának gyorsulása egy inerciarendszerben? (A forog*, csak ezt a forgást vegyük figyelembe!) 4. m tömeg golyót ersítünk k rugóállandójú rugóra. Az egyik végén rögzített rugó az x tengelyen van, egyensúlyi helyzete legyen az origó. A golyót t=0 idben v 0 kezdsebességgel meglökjük a -x tengely irányába, ezután az harmonikus rezgmozgást végez. a) Határozzuk meg és ábrázoljuk x-et az id függvényében! b) Határozzuk meg a gyorsulás átlagértékét az els félperiódusban! c) Milyen összefüggés van a gyorsulás és x között? Ebbl határozzuk meg az x kitérés átlagértékét az els félperiódusban! 5. Egy tömegpont körpályán mozog, melynek középpontja a koordinátarendszer origója. Az elmozdulás a [0,t] idintervallumban u, a t idben a helyvektora r. Határozzuk meg képletben és vektorábrában a 0 idbeli helyvektort! Jelöljük be a megtett utat, és képletben fejezzük ki u és r segítségével! 1

2 Fizika BK1 zh okt. 6. megoldások 1. A Hold- távolság D H 60 R = km = 3, km = 3, m = 3, nm. a) a becsült adat nagyságrendje: 1 cm b) 1 cm / 1 m = d Hold / D H d Hold = 0, km = 3840 km c) látószög: síkszög: 3840/ = 0,01 rad térszög: (d Hold /) π / D H = sr d) Elfordul teljes és gyrs Napfogyatkozás is; teljes Napfogyatkozáskor a Hold látószöge nagyobb (így tudja eltakarni a Napot), gyrs Napfogyatkozáskor viszont a Napé (amikor a Napközelben van). A két látószög közel azonos. 3. a) a P-hez húzott sugár az Egyenlít síkjával 60 o -ot zár be a forgástengellyel 30 o -ot P és az északi sarok távolsága egy olyan egyenl szárú háromszög alapja, melynek szárai R = 6370 km, a közbezárt szög 30 o : d = R sin 15 o = R R cos30 0,518 R = 3300 km b) a repülvel a felszíne fölött kb. 10 km-rel repülünk, a megfelel körív számítandó: az északi sarokig távolság 30/360 π (R+10) = 3340 km, az Egyenlítig kétszer ennyi c) a forgásának periódusideje T = 1 nap = = s, a szögsebessége ω = π / T 7, /s, a P pont pályasugara r P = R sin 30 o = R/ (kerületi sebessége v = ω r P 0,3 km/s) gyorsulása a centripetális gyorsulás: nagysága a cp = r P ω 1, m/s, iránya: merlegesen a forgástengelye felé mutat 4. a) m tömeg test k rugóállandójú rugón ω = k / m körfrekvenciájú harmonikus rezgést végez x = - A sin ωt, v = x = -Aω cos ωt, v(0) = -Aω cos 0 = - Aω = - v 0 A = v 0 /ω = v 0 m / k tehát x = - v 0 m / k sin k / m t T / 1 = T / 1 T / 1 T / b) a = v, átlagértéke a a dt = [ v] T / = ( v(t / ) v(0) ) a c) a = x = Aω sin ωt = - ω x x = ω 5. r(t) = r(0) + r r(0) = r(t) r = r u a megtett út s = r ϕ ahol sin ϕ/ = (u/)/r, azaz 0 s = r arc sin 0 4v = T ω u / r 0 4v0m = T k = v 0 ( v T / 0 ) = 4v T 0

3 Fizika BK1 zh okt. 15. A *-gal jelölt kérdésekre a választ fejbl kell tudni! 1. a) sugara:* b) felszíne: térfogata: c) Srségadatok - víz:* vas:* d) Mennyi lenne a tömege, ha fele vízbl, másik fele vasból volna?. Egy repülgép délben indul Budapestrl, nyugati irányban megy, megtesz 8000 km-t. Mennyit mutat a repültéri óra az érkezéskor? (Vegyünk reális adatot a sebességre és Budapest szélességi fokára!) 3. Hold távolsága tlünk:* Mennyi id alatt ér a Holdról a re a fény? 4. Írjuk be a hiányzó szavakat úgy, hogy az els axiómával egyenérték állítást kapjunk! rendszerben minden test gyorsulása.. 5. Egy 5 kg tömeg tömegpont 0 m sugarú körpályán mozog. a) Mekkora er hat rá akkor, amikor a sebessége 15 m/s, szöggyorsulása pedig 0,8/s? b) Milyen irányú az er? c) Mekkora a forgatónyomatéka? (Vonatkoztatási pont a kör középpontja legyen!) d) Mekkora és milyen irányú a tömegpont impulzusmomentuma ugyanekkor? 3

4 Fizika BK1 zh okt. 15. megoldások 1. a) sugara:* R F = 6378 km = 6, m (4 p.) b) a felszíne: A F = 4R F π = 5, km = 5, m, térfogata: V F = 4 R 3 3 F π = 1, km 3 = 1, m 3 (4 p.) c) ρ víz = 1000 kg/m 3, ρ vas = 7800 kg/m 3 ( p.) d) m = ρ víz ½V F + ρ vas ½V F = ½(ρ víz +ρ vas )V F = ½ 8800 kg/m 3 1, m 3 = 4, kg (4 p.). A repülgép sebességét vegyük v = 800 km/h nak, így a repülés ideje t r = d/v = 10 h. Nyugati irányba repül a gép, emiatt korábbi idzónában fog leszállni annak megfelelen, hogy a hosszúsági foka mennyit változik. Budapest szélességi foka 45, itt a forgástengelyre merleges körpálya sugara r = R F sin km, kerülete k = rπ 8300 km, az ideltolódás: t f = 8000/ h = 6,8 h 7 h, vagyis a helyi id h. (8 p.) 3. A Hold távolsága tlünk:* D H 60 R F km ( p.) t = D H / c = 3, km / ( km/s) 1,3 s. (4 p.) 4. Inercia rendszerben minden magára hagyott test gyorsulása nulla. (6 p.) 5. a) a tangenciális gyorsulás a t = r β = 0 0,8 = 16 m/s, a centripetális gyorsulás a cp = v /r = 15 /0 = 11,5 m/s, eredjük a = t cp a + a 19,56 m/s, az er nagysága F = ma 97,8 N. (8 p.) b) az er iránya: az érintvel ϕ = arc tg (11,5/16) 35 o -os szöget zár be. (4 p.) c) csak a tangenciális komponensnek van forgatónyomatéka: M = r F t = r (ma t ) = 0 (5 16) Nm = 1600 Nm. d) az impulzusmomentum nagysága N = r I = r (mv) = 0 (5 15) kg m /s = 1500 kg m /s, iránya: merleges a kör síkjára és jobbrendszer (6 p.) (8 p.) 4

5 Fizika BK1 zh1 00. október 14. A *-gal jelölt kérdésekre adandó válaszokat fejbl kell tudni, a #-tel jelölt kérdéseknél a számolást külön lapra kérjük. 1. A Holdon és a ön elhelyezünk egy-egy tükröt, amelyek pontosan egymás felé néznek, majd a rl t=0-kor egy fényimpulzust küldünk a Holdra. A fényimpulzus oda-vissza pattog a két tükör között. a) * A Hold távolság: d =. ( p.) b) # Mennyi id alatt ér a Holdra a jel? T =. (3 p.) c) Vegyük fel az x tengelyt úgy, hogy a két tükröt kösse össze, és az origó a ön van. Ábrázoljuk (külön-külön koordinátarendszerben) az id függvényében 0-tól 4T-ig - a jel x helykoordinátáját, - a v x sebességkoordinátát, - a gyorsulás x koordinátáját, - a megtett utat, - a sebesség nagyságát! (13 p.) #. Egységek átváltása: 7 km/óra =.. nm/s, (3 p.) 10 m/s = km/óra. (4 p.) # 3. L hosszúságú, 0 tömeg merev rúd két végére m 1 és m = 5 m 1 tömeg golyók vannak ersítve. A rúd a harmadánál átmen vízszintes tengely körül forog, a szögsebesség éppen ω, amikor a rúd a vízszintessel α szöget zár be (t=0). a) Milyen pályán mozog a két golyó, és mekkora a sebességük t=0-kor? (3 p.) b) Hol van a tömegközéppont? (4 p.) c) Adjuk meg a rendszer impulzusát, valamint a felfüggesztési pontra vonatkoztatott impulzusmomentumot ugyanekkor! (10 p.) d) Mekkora a rendszerre ható nehézségi er forgatónyomatéka a felfüggesztési pontra? (5 p.) e) Mekkora az impulzusmomentum változási sebessége? ( p.) f) Mekkora a távolabbi golyó felületi sebessége? (3 p.) # 4. Egy m tömeg tömegpont gyorsulása a. A tömegpontra két er hat, az egyik er (F 1 ) ismert. Határozzuk meg képletben és szerkesztéssel az ismeretlen másik ert (F )! (8 p.) 5

6 Fizika BK1 zh1 00. október 14. megoldások 1. a) d 60 R F = km b) T = d / c = 3, km / ( km/s) 1,3 s c) a jel x helykoordinátája: a v x sebességkoordináta: a gyorsulás x koordinátája: a megtett út: a sebesség nagysága:. 7 km/óra = 0 m/s = nm/s 10 m/s = 0,01 km = 1, km/óra 1 óra a) a golyók körpályán mozognak v = ωr, azaz t = 0 kor sebességük v 1 (0) = ωl/3, v (0) = ωl/3 b) m 1 x = m (L-x) x = m L / (m 1 +m ) = 5/6 L a tömegközéppont távolsága m 1 -tl c) I = Σm i v i = -m 1 v 1 + m v = -m 1 ω/3 + 5m 1 ωl/3 = 3m 1 Lω iránya: a rúdra merleges, m sebességével megegyez irányú (a papír síkjában) N = Σr i I i = L/3 m 1 ωl/3 + L/3 5m 1 ωl/3 = 7/3 m 1 L ω iránya: a forgás síkjára merleges és jobbrendszer, vagyis itt vízszintesen a papírból kifelé d) a tömegközéppont távolsága a forgástengelytl d = 5/6 L L/3 = L/ M = d F = k cosα (m 1 +m )g = L/ cosα 6m 1 g = 3m 1 Lg cosα (vagy tömegpontonként: M = L/3 cosα 5m 1 g L/3 cosα m 1 g = 3m 1 Lg cosα) e) N = M, tehát N = 3m 1 Lg cosα r f) v 1 1 L L = r v = ω = L ω F 1 + F = F = ma F = ma F 1 6

7 Fizika BK1 zh október 13. A *-gal jelölt kérdésekre adandó válaszokat fejbl kell tudni 1. Tegyük fel, hogy egy B bolygó sugara fele akkora, mint a é, pályasugara pedig a pályasugarának másfélszerese. Tegyük fel azt is, hogy mind a, mind a B bolygó közelítleg ugyanabban a síkban körpályán kering a Nap körül. Számítsuk ki, milyen legkisebb és legnagyobb látószög (sík- illetve térszög) alatt látszik a rl a B bolygó: a) A sugara*: (1 p.) b) A pályasugara*: (1 p.) c) B legkisebb távolsága a tl: (1 p.) d) B legnagyobb távolsága a tl: (1 p.) e) B látószöge (síkszög) akkor, amikor d távolságban van a tl: (3 p.) f) B látószöge (térszög) akkor, amikor d távolságban van a tl: (3 p.) g) Hányszorosa B legnagyobb látószöge a legkisebbnek? Az arány síkszögre: (1 p.) térszögre: ( p.) h) Milyen közelmúltbeli nevezetes csillagászati jelenség van kapcsolatban e feladattal? (3 p.). 30 m magas toronyház tetejérl 5 m/s sebességgel elhajítunk egy követ vízszintesen. a) Vegyen fel egy Descartes-koordinátarendszert (rajz!), és adja meg a helyvektort az id függvényében!(5 p.) b) Adja meg a sebességvektort és annak nagyságát az id függvényében! (4 p.) c) Adja meg a gyorsulásvektort az id függvényében! ( p.) d) Mikor és hol ér földet a k? Adja meg az elmozdulásvektort és annak nagyságát! (7 p.) e) Mekkora szöget zár be a sebességvektor a gyorsulásvektorral a becsapódáskor? (4 p.) f) Írja fel képletben, hogy mennyi a hajítás közben megtett út! ( p.) 3. Egy m tömeg golyóra a földi nehézségi ern kívül egy rugó is hat. A rugó nyugalmi hossza l 0, egyik végpontja az r 1 pontban van rögzítve, a rugó másik végének helyvektora, ahol a tömegpontnak tekintett golyó van, r. Írjuk fel a golyó mozgásegyenletét! (14 p.) 4. Mi az er? (6 p.) 7

8 Fizika BK1 zh október 13. megoldások 1. a) r F 6400 km b) R F km = 1, km c) a B bolygó pályasugara R B = 1,5 R F, km d min = R B R F 7, km d) d max = R F + R B 3, km e) a B bolygó sugara r B = 0,5 r F 300 km B sík-látószöge ϕ = (r B )/d = 300/d 6400/d f) B tér-látószöge Φ = (r B π)/d = 300 π/d 3, /d g) síkszögre ϕ max /ϕ min = (r B /d min ) / (r B /d max ) = d max /d min 3, /7, = 5 térszögre Φ max /Φ min = (r B π/d min ) / (r B π/d max ) = (d max /d min ) 5 (ϕ max 8, , ϕ min 1, Φ max 5,7 10-9, Φ min, ) e) 003. augusztusának végén a Mars 55 millió km távolságra volt a tl, szabad szemmel is látható volt a délkeleti horizonton. (A Mars utoljára 60 ezer évvel ezeltt volt ilyen közel a höz, legközelebb pedig 84 év múlva lehet majd újra így látni a Vörös Bolygót.). a) a koordinátarendszer z tengelye függlegesen felfelé, x tengelye a kezdsebesség irányába mutat, az origó a toronyház talppontjában van r(t) = (v x0 t+x 0 ) i + ( ½gt +v z0 t+z 0 ) k, ahol v x0 = 5 m/s, v z0 = 0, x 0 = 0, z 0 = 30 m, g 10 m/s vagyis r(t) = (5t) i + ( 5t + 30) k b) v(t) = (v x0 ) i + ( gt+v z0 ) k = 5 i 10t k, c) a(t) = g k = 10 k v (t) = 5 + (10t) d) z(t) = 5t = 0 t 1 = 6 s,45 s, x(t 1 ) = 5t = 5 6 m 1,5 m, r(t 1 ) = 1,5 i r = r(t 1 ) r(0) = 1,5 i 30 k, r = 1, ,4 m e) a = 10 k = konst., függlegesen lefelé mutató vektor becsapódáskor v(t 1 ) = 5 i + ( 10 6 ) k 5 i 4,5 k, ennek a vízszintessel bezárt szöge arc tg ( 4,5/5) = arc tg ( 4,9) 78,5, a gyorsulással bezárt szöge 90 78,5 = 11,5 VAGY skalárszorzatból: a v(t 1 ) = a v(t 1 ) cos ϕ cos ϕ = a v(t 1 ) / (a v(t 1 )) = (0 5+( 10) ( 4,5)) / ( ,5 ) = 45/50 = 0,98 3. A golyóra hat a nehézségi er és a rugóer: F = G + F rugó, ahol G = m g = mg k, a rugóer nagysága F rugó = k l = ( l r 1 r ) r1 r k 1. r r F rugó = ( l r r ) A mozgásegyenlet m r mgk k( l r r ) = 0 k, iránya 1 r1 r r r 1 r r 1 1 r r, tehát 4. Az er másik test ( p.) hatásának ( p.) mértéke ( p.). 8

9 Fizika BK1 zh okt A mechanika I. axiómája. 8 p..a) Írjunk fel általánosan érvényes összefüggéseket a t, r, v, s fizikai mennyiségek között! Képletben és szöveggel is! 4 p. b) Írjunk fel olyan összefüggéseket a t, r, v, s között, amelyek valamely speciális esetben érvényesek, és adjuk meg azt is, hogy milyen esetre érvényesek! 6 p. 3.a) Mekkora a Hold távolsága a tl? * p. b) Mekkora ervel hat a a felszín közelében egy m tömeg testre? p. c) Hogyan függ ez az er a magasságtól? 6 p. d) Határozzuk meg ezek alapján a Hold gyorsulásának értékét! 4 p. e) Milyen mozgást végez közelítleg a Hold? Számítsuk ki a gyorsulásból a sebességének nagyságát! 4 p. 4. Az r 1, r, r 3 pontokban egyforma m tömeg tömegpontok vannak. Írjuk fel az r 1 ben lev testre ható tömegvonzási er vektorát! 10 p. 5. Adjuk meg képletben és ábrázoljuk grafikonon annak a harmonikus rezgmozgásnak a kitérését az id függvényében, amelyiknek amplitúdója A = 0, m, frekvenciája 0 Hz, és a t = 0 idben a pont kitérése 0,1 m, és ekkor az egyensúlyi helyzet (x=0) felé mozog! 14 p. 9

10 Fizika BK1 zh okt. 18. megoldások 1. Inerciarendszerben ( p.) minden ( p.) magára hagyott test ( p.) sebessége állandó ( p.). d r. a) v = : a sebesség a helyvektor id szerinti deriváltja d t d s v = : a sebesség nagysága az út id szerinti deriváltja d t r [ vagy még: v átl = : az átlagsebesség az elmozdulásvektor és az id hányadosa ] t b) például: s = v t : állandó nagyságú sebesség esetén a megtett út a sebesség és az id szorzata r = v t : állandó nagyságú és irányú sebesség esetén a helyvektor a sebességvektor és az id szorzata, ha a pont a t=0 idben az origóból indul (és r = v t + r 0, ha t=0 -ban r 0 -ból indul) r = ½ a t + v 0 t + r 0 : állandó gyorsulással mozgó pont helyvektora, ha a pont t=0 -ban az r 0 pontból indul v 0 kezdsebességgel 3.a) d 60 R = km b) F = mg = 9,81 m/s m (kg) [N] m M c) mg = γ R F = γ m M = m g R ( R + h) ( R + h) γ M R = R = g R h + mg F R R d) a Hold = = g g,7 10 m R h 60R + e) A Hold közelítleg körmozgást végez, azaz a Hold = a cp és mivel a cp = v / r v = a cp d = 3,7 10 3, m / s m/s m m m m 4. F = F 1 + F = ( r r ) + γ ( r r ) γ 1 3 r r1 r3 r T = 1 / ν = 1 / 0 = 0,05 s ω = πν = 40π ( 15,7 ) s -1 x(t) = A cos (ωt + ϕ 0 ) = 0, cos (40πt + ϕ 0 ) x(0) = 0, cos ϕ 0 = 0,1 cos ϕ 0 = 0,5, ϕ 0 = π/3 x(t) = 0, cos (40πt + π/3) [m] v(t) = x = 8π sin (40πt + π/3) [m/s] 10

11 Fizika K1A zh nov Az alábbi állítások közül melyek azok, - amelyek általános esetben érvényesek; - amelyek soha nem igazak; - amelyek csak egyes speciális esetekben érvényesek (mikor)? <1> A gyorsulás y koordinátája egyenl a sebesség y koordinátájának id szerinti deriváltjával. <> Polárkoordináta-rendszerben egy adott pontban az e r és e ϕ egységvektorok által bezárt szög függ a pont helyétl. <3> A gyorsulás id szerinti deriváltja egyenl a helyvektor id szerinti integráljával. <4> Ha két test sebességvektora minden idben megegyezik, akkor megegyezik a helyvektoruk is. <5> Ferde hajításnál a vízszintes sebességkomponens állandó. <6> Ferde hajításnál a függleges sebességkomponens állandó. <7> Csak egy inerciarendszer létezik. <8> Ha inerciarendszerben egy test sebessége állandó, akkor nem hathat rá er. <9> Ha az er és a sebesség merlegesek egymásra, a sebesség nagysága nem változik.. Írjon fel 3 példát ertörvényre! Írja le, melyik mire, mikor érvényes! Az egyikhez írja fel a mozgásegyenletet is! 3. A Szaturnusz átlagsrsége a víz srségének 70 %-a, közepes sugara a sugarának 9-szerese. (Tekintsük a Szaturnuszt gömbnek.) a) Mekkora a nehézségi gyorsulás értéke a Szaturnusz felszínén az általános tömegvonzásból számolva? ( γ = 6, m 3 kg -1 s - ) b) Írjuk fel Kepler III. törvényét! c) Számoljuk ki ebbl a Szaturnusz Nap körüli keringési idejét! A Szaturnusz pályasugara a ének 9,5- szerese (a Szaturnusz pályáját tekintsük körnek). A Szaturnusz 10 óra 40 perc alatt fordul meg tengelye körül. d) Mekkora centrifugális er hatna egy 80 kg tömeg rhajósra a Szaturnusz egyenlítjén? e) Ezt is figyelembe véve hány N ervel nyomná a Szaturnusz "talaját" (ha lenne olyan) a 80 kg tömeg rhajós? 4. Kötél végére ersített m tömeg testet az (x,z) függleges síkban pörgetünk R sugarú körpályán. Amikor a test lefelé megy és az ábra szerinti helyzetben, a testre ható ered er vízszintes. (A testre csak a kötéler és a nehézségi er hat, a kötél nyújthatatlan, súlytalan.) a) Mekkora ekkor a kötéler? (Fejezzük ki a nehézségi er nagyságával!) b) Írjuk fel a nehézségi er, a kötéler és az ered er vektorát! c) Írjuk fel a gyorsulás sugárirányú és érintirányú komponensét! d) A centripetális gyorsulásból határozzuk meg a test sebességét! e) Mekkora munkát végez a kötéler a testen, amíg az az alsó pontba ér? 11

12 Fizika K1A zh nov. 14. megoldások 1. (16 pont) <1> A gyorsulás y koordinátája egyenl a sebesség y koordinátájának id szerinti deriváltjával. Igaz; Descartes-koordinátarendszerben ugyanis v(t) = v x (t)i+ v y (t)j+v z (t)k, a = v = v xi + v y j + v zk = a xi + a y j + a zk, azaz a y = v y (p.) <> Polárkoordináta-rendszerben egy adott pontban az e r és e ϕ egységvektorok által bezárt szög függ a pont helyétl. Nem igaz; az e r és e ϕ egységvektorok által bezárt szög mindig derékszög (p.) <3> A gyorsulás id szerinti deriváltja egyenl a helyvektor id szerinti integráljával. Nem igaz; a helyvektor deriváltja egyenl a gyorsulás integráljával (megfelel kezdeti feltételekkel) (p.) <4> Ha két test sebességvektora minden idben megegyezik, akkor megegyezik a helyvektoruk is. Csak abban a speciális esetben igaz, ha tudjuk, hogy egy idben megegyezett a helyvektoruk ekkor igaz, hogy bármely más idben is megegyezik (megfelel kiindulási feltétel esetén igaz) (p.) <5> Ferde hajításnál a vízszintes sebességkomponens állandó. Igaz (((feltéve, hogy a közegellenállás elhanyagolható))) (1p.) <6> Ferde hajításnál a függleges sebességkomponens állandó. Nem igaz (((illetve lehet igaz, ha figyelembe vesszük a közegellenállást, akkor kialakulhat egy stacionárius sebesség))) (1p.) <7> Csak egy inerciarendszer létezik. Nem igaz; egy inerciarendszerhez képest egyenesvonalú egyenletes transzlációt végz vonatkozatási rendszer is inerciarendszer (azaz végtelen sok inerciarendszer létezik) (p.) <8> Ha inerciarendszerben egy test sebessége állandó, akkor nem hathat rá er. Nem igaz; az erk eredje zérus (p.) <9> Ha az er és a sebesség merlegesek egymásra, a sebesség nagysága nem változik. Igaz; belátható a munkatételbl: ha F és v merlegesek, akkor W = 0, így E kin = (½ mv ) = 0, azaz v = konst. (p.). (10 pont) Az ertörvények azt adják meg, hogy mitl, hogyan függ az er egy adott kölcsönhatás esetén. Példák: i nehézségi ertér G = mg = -mgk A felszín közelében lév testekre hat. Iránya függleges, a középpontja felé mutat; g a gravitációs gyorsulás. m1 m r Általános gravitációs ertörvény F = γ r r Bármely két test között fellép vonzóer. m 1, m a testek tömege, r az egyik testtl a másik felé mutató vektor, γ univerzális fizikai állandó (gravitációs állandó). Lineáris rugalmas ertörvény Egyik végén rögzített rugó a rugó megnyúlásával arányos ert fejt ki: F = -k (- 0 ) a rugó hossza, 0 a rugó hossza megnyújtatlan állapotban, k a rugóállandó. (Rugalmas: az er csak a pillanatnyi kitéréstl függ, lineáris: az er arányos a kitéréssel.) Csúszási súrlódási er F = µn Ha egy test egy szilárd felületen mozog, akkor rá a mozgásiránnyal ellentétes csúszási súrlódási er hat; µ a csúszási súrlódási tényez, N a normáler. Tapadási súrlódási er Az az er, amelyet a felület fejt ki a (felülethez képest nyugalomban lév) testre, ha a testet más er mozgásba kívánja hozni. A tapadási súrlódási er maximális értéke F kr = µ t N. Gördül ellenállás F = µ g N Henger, gömb, kerekek gördülésénél fellép fékez er. Közegellenállási er Folyadékban vagy gázban mozgó szilárd testre ható, a sebességével ellentétes irányú fékez er. Kis sebességnél a sebességgel F = - k v, nagyobb sebességnél a sebesség négyzetével arányos: F = - k v v (ertörvényenként 3p.) 1

13 Mozgásegyenlet: (a II. axiómába behelyettesítjük az aktuális ertörvényt, és a gyorsulást a helyvektor második deriváltjaként írjuk fel) pl. m r = mgk (1p.) 3. (17 pont) 3 a) A Szaturnusz térfogata V Sz = 4/3 R Sz π = 4/3 (9R F ) 3 π = 4/3 (96,410 6 ) 3 π m 3, srsége ρ Sz = 0,7 kg/dm 3 = 700 kg/m 3, tömege M Sz = ρ Sz V Sz 5,610 6 kg. (p.) Mivel a Szaturnusz felszínén mg Sz = γ mm Sz / R Sz, a Szaturnuszra érvényes g-érték g Sz = γ M Sz / R Sz = 6, ,610 6 /(96,410 6 ) 11,6 m/s (3p.) b) A Naprendszer bolygóira: a bolygók keringési idejének (T) négyzetei úgy aránylanak egymáshoz, mint pályáik fél-nagytengelyeinek (a) köbei: T / a 3 = konst. (3p.) c) T Sz / T F = a 3 3 Sz / a F T Sz = (a Sz /a F ) 3/ T F = 9,5 3/ 1 év = 9,8 év (=10688 nap) (p.) d) A Szaturnusz szögsebessége ω Sz = π / t Sz = π / (10,663600) = 1, s -1, a cf = R Sz ω Sz = 96,410 6 (1, ) 1,554 m/s, F cf = m a cf = 801,554 13, N. (4p.) e) Az általános gravitációs er a Szaturnusz középpontja felé, a centrifugális er azzal ellentétesen (sugárirányban kifelé) hat, az ered er F = m(g Sz -a cf ) = 80(11,6-1,554) 777,6 N. (3p.) 4. (17 pont) a) cos 60º = mg / F k F k = mg / cos 60º = mg (3p.) b) G = - mgk ; az ered er nagysága F e = mg tg 60º = vektorként F e = 3 mg i ; a kötéler F k = 3 mg i + mgk (6p.) 3 mg, c) ma cp = F k mg cos 60º a cp = g ½ g = 3/ g ma t = mg sin 60º a t = g sin 60º = 3 / g (4p.) 3 d) a cp = v /R v = a cp R = gr (p.) e) A kötéler mindig merleges a sebességre, ezért az általa végzett munka zérus. ( dw = F dr cos 90º = 0 ) (p.) 13

14 Fizika K1A zh 005. nov. 8. megoldással 1. Igaz-e, hogy - az út-id görbének lehet vízszintes érintje? Ha igen, mit jelent az? IGEN, ekkor a sebesség zérus - a ön semmilyen körülmények között nem hathat mg-nél nagyobb nyomóer egy testre? NEM IGAZ, pl. felfelé gyorsuló liftben vagy hullámvasúton a (függleges kör)pálya aljában nagyobb lesz a nyomóer mg-nél - görbevonalú mozgásnál a sebesség nagysága mindig változik? NEM IGAZ, a sebesség nagysága lehet állandó (az iránya változik, és így a sebességvektor is) - a ön a nehézségi gyorsulás értéke a sarkokon nagyobb, mint az Egyenlítn? IGAZ, a sarkokon 9,83 m/s, az Egyenlítn 9,789 m/s, egyrészt a lapult alakja, másrészt a centripetális er miatt Minden válaszhoz indoklást is kérünk! (4x p.+ p., ha mind jó). Írja le Newton II. axiómáját! Definiálja a benne szerepl mennyiségeket! (8 p.) 3. Az E épület liftje induláskor 0,5 s alatt gyorsít fel (állandó nagyságú gyorsulással) az 1,5 m/s-os állandó sebességére, fékezéskor ugyancsak 0,5 s alatt fékez le álló helyzetbe. A lift 1. emeletrl megy le a földszintre, ehhez a liftnek 4,5 m-t kell ereszkednie. Ábrázoljuk (megfelelen beskálázott koordinátarendszerekben) az id függvényében - a lift gyorsulását, (4 p.) - a lift sebességét, (4 p.) - a lift által megtett utat! (6 p.) A lifttel levisznek egy 00 kg-os kávéautomatát az 1. emeletrl a földszintre. Ábrázoljuk az automatára ható nyomóert is az id függvényében! (4 p.) (össz 18 p.) Megoldás: a = v / t = 1,5 / 0,5 = 3 m/s az út - a gyorsuló részen: s 1 (t) = ½ a t = 1,5 t, t 1 = 0,5 s-nál az addig megtett út s 1v = 0,375 m - a lassuló részen s 3 (t) = s v + vt ½ at = s v +1,5t 1,5t, t 3 = 0,5 s alatt a lassulva megtett út s 3v = s v + 0,375 [m] - az állandó sebesség részen s v = 4,5-0,375 = 3,75 m-t kell megtennie, az ehhez szükséges id t = s v / v = 3,75/1,5 =,5 s és itt az út-id függvény s (t) = s 1v + vt = 0, ,5 t 4. A 8-as úton 108 km/h sebességgel megy egy 8 tonnás kamion, mögötte 18 m-rel szintén 108 km/h sebességgel egy 1 tonnás személyautó. A kamionos meglát egy zet és elkezd fékezni. Az út nedves, a kamion csúszni kezd és µ = 0,9 -es súrlódási együtthatóval fékezdik. Az autó vezetje elbóbiskolt, nem fékez. a) Mennyi id alatt éri utol az autó a kamiont? (4 p.) 14

15 b) Mekkora ekkor a kamion sebessége? ( p.) Az autó a kamionnal tökéletesen rugalmatlanul ütközik. c) Mennyi lesz az összetapadt roncs sebessége az ütközés után? (3 p.) d) Mennyi az autó impulzusának változása az ütközés során? Mennyi a kamioné? Mennyi az autó + kamion rendszer teljes impulzusának változása? (4 p.) e) Mennyi az autó mozgási energiájának változása az ütközés során? Mennyi a kamioné? Mennyi az autó + kamion rendszer teljes mozgási energiájának változása? (5 p.) (össz 18 p.) Megoldás: a) v 0 = 108 km/h = 30 m/s, a = -µg = -9 m/s x kamion = D + v 0 t + ½ at = t 4,5t, x autó = v 0 t = 30t x kamion = x autó : t 4,5t = 30t t = s b) v kamion = v 0 + at = 30-9 = 1 m/s c) I kamion + I autó = I roncs : m kamion v kamion + m autó v autó = (m kamion +m autó ) v roncs = 9000v roncs v roncs = 14 m/s d) I kamion = m kamion (v roncs v kamion ) = 8000(14-1) = kgm/s I autó = m autó (v roncs v autó ) = 1000(14-30) = kgm/s I kamion + I autó = 0, ezt használtuk ki a c) részben e) E kin,autó = ½ m autó (v roncs v autó ) = ½ 1000(14-30 ) = -35 kj E kin,kamion = ½ m kamion (v roncs v kamion ) = ½ 8000(14-1 ) = 08 kj E kin,autó + E kin,kamion = -144 kj kg tömeg kötéltáncos súlypontja a kötél felett 1 m magasságban van. Ugyanezen magasságban tartja a kezében lev 6 m-es, 4 kg tömeg merev rudat, melynek mindkét végén lev m-es fonálon 1-1 ólomgolyó függ. Legalább milyen tömegeknek kell lenniük a golyóknak, hogy a rendszer súlypontja a kötél alá essék? (A rudat középütt fogja, a m távolság a rúdtól a golyó középpontjáig értend.) (6 p.) Megoldás: A rúd tömegközéppontja ugyanott van, ahol a kötéltáncosé, azaz a rúd fölött 1 m-rel van 56+4= 60 kg. A két ólomgolyó tömegközéppontja a kötél alatt 1 m-rel van a kötéltáncos tömegközéppontja alatt. Ahhoz, hogy a teljes rendszer tömegközéppontja a kötél alá essen, a lent lév össztömegnek nagyobbnak kell lenni a fent lév tömegnél, azaz a golyók tömegének nagyobbnak kell lenni 60 kg-nál, vagyis egy golyó tömege legalább 30 kg. 15

16 Fizika K1A zh december Egy m = 0 g tömeg test állandó er hatására mozog az x-y síkban. A test a t 1 = s idben a P 1 (10 m, 0 m) pontban van, sebessége a +y tengely irányába mutat és nagysága v 1 = 10 m/s. A test a t = 6 s idpontban a P (-6 m, 0 m) pontban van, a sebessége a x tengely irányába mutat és nagysága v = 8 m/s. a) Mekkora az er nagysága? b) Mekkora a test sebessége a t 3 = 8 s idpontban, és hol lesz a test akkor? (16 p.). A mechanikai energia megmaradásának tétele. (Mi az, mikor érvényes.) (8 p.) 3. A 8-as úton 108 km/h sebességgel megy egy 8 tonnás kamion, mögötte 18 m-rel szintén 108 km/h sebességgel egy 1 tonnás személyautó. A kamionos meglát egy zet és elkezd fékezni. Az út nedves, a kamion csúszni kezd és µ = 0,9-es súrlódási együtthatóval fékezdik. Az autó vezetje elbóbiskolt, nem fékez. Az autó s alatt utoléri a kamiont, ami ekkorra már 43, km/h sebességre lassult. Az autó a kamionnal tökéletesen rugalmatlanul ütközik. a) Mennyi lesz az összetapadt roncs sebessége az ütközés után? b) Mennyi az autó impulzusának változása az ütközés során? Mennyi a kamioné? Mennyi az autó + kamion rendszer teljes impulzusának változása? c) Mennyi az autó mozgási energiájának változása az ütközés során? Mennyi a kamioné? Mennyi az autó + kamion rendszer teljes mozgási energiájának változása? (1 p.) 4. Egyik végén (súrlódásmentes) csuklóval felfogott homogén rudat vízszintes helyzetbl (kezdsebesség nélkül) elengedünk. 1 A rúd tehetetlenségi nyomatéka a tömegközéppontjára nézve Θ = ML. 1 Írjuk fel az impulzusmomentum-tételt a rúdra! Adjuk meg - a szöggyorsulást, - a rúd tömegközéppontjának gyorsulását; - a rúd másik végpontjának gyorsulását a kiindulási pillanatra! Adjuk meg a rúd ω szögsebességét a vízszintessel bezárt ϕ szög függvényében! (16 p.) 5. Egy test úszik a vízen, ekkor térfogatának az ötöde áll ki a vízbl. Ugyanezen testnek hányadrésze állna ki higanyból? (A higany srsége 13,6 kg/dm 3.) (8 p.) 16

17 Fizika zh1 / környezetmérnök 006. nov. 8. megoldásokkal 1. Az alábbi állításokról döntse el, hogy lehet-e igaz! Indokolja! a) A/ Egy tömegpont sebességvektora idben változik, de ugyanakkor a sebességének nagysága állandó. Igaz lehet, ha a vektor iránya változik. B/ Egy tömegpont sebességének nagysága idben változik, de ugyanakkor a sebességvektora állandó. Nem lehet igaz. Két vektor akkor egyenl, ha nagyságuk és irányuk megegyezik. b) A/ Egy tömegpont átlagsebessége a [0; 0 s] idintervallumban nem zérus, de a [0; 60 s] idintervallumban zérus. B/ Egy tömegpont átlagsebessége a [0; 60 s] idintervallumban zérus, de a [0; 0 s] idintervallumban nem zérus. A két kérdés ugyanaz. Mivel az átlagsebesség az elmozdulásvektor és az eltelt id hányadosa, igaz lehet az állítás, ha a [0; 60 s] intervallumban a tömegpont visszatér a kiindulópontba, ahol t = 0-ban volt. c) A/ Tömegpont mozog az x tengely mentén. A sebessége pozitív és a gyorsulása negatív. B/ Tömegpont mozog az x tengely mentén. A sebessége negatív és a gyorsulása pozitív. Bármi lehet igaz. A gyorsulás a sebesség deriváltja, de nincs semmi megkötés arra, hogy ha az egyik pozitív/negatív, milyen kell legyen a másik eljele. (Az viszont itt mindkét esetben igaz, hogy a sebesség abszolút értéke csökken.).a/ a) A sugara mm-ben: 6, mm b) m = 0 g, a = 6480 km/h. Adjuk meg a testre ható er nagyságát N-ban! 1000 m a = 6480 km/h = 6480 = 0,5 m/s, F = ma = 0,00,5 = 0,01 N (3600s).B/ a) A keringési ideje percben: ,610 5 min b) m = 0 g, v = 1,08 km/h. Adjuk meg a test mozgási energiáját J-ban! v = 1,08 km/h = 0,3 m/s, E kin = ½ mv = ½0,00,3 = J 3.A/ Mi a kinetikus energia tétele? Mikor érvényes? Definiálja a benne lév mennyiségeket! A test kinetikus energiájának E kin megváltozása egyenl a testre ható összes er összes W munkájával: E kin = W. E kin = ½ mv, ahol m a test tömege (a test tehetetlenségévnek mértéke), v a test sebessége. Megváltozás: E kin = E kin, E kin,1. r1 Munka: W = F dr (a testre ható erk elmozdulás irányába es komponensének az integrálja) r1 Teljesen általános érvény, mindenféle testre és tetszleges erhatásokra érvényes. 3.B/ Mi a mechanikai energia megmaradásának tétele? Mikor érvényes? Definiálja a benne lév mennyiségeket! A mechanikai energia a kinetikus és potenciális energia összege: E mech = E kin + E pot ahol E kin = ½ mv, m a test tömege (a test tehetetlenségévnek mértéke), v a test sebessége, E pot a potenciális (helyzeti) energia. Ez csak konzervatív ertérben létezik, azaz ahol csak olyan erk hatnak, melyek tetszleges zárt görbére vett munkája zérus. Ilyen pl. a földi nehézségi ertér: E pot = mgz, az általános gravitációs ertér: E pot = γm/r, a lineáris rugalmas er tere: E pot = ½kx. (A súrlódási, közegellenállási erk nem konzervatív erk.) A mechanikai energia megmaradásának tétele: mozgás közben E mech = konstans. Csak konzervatív ertérben érvényes. 17

18 4. A/ Egy fekete autó 84 km/h sebességrl 10 km/h sebességre gyorsít fel 4 s alatt állandó gyorsulással, egy fehér autó pedig 48 km/h-ról 84 km/h-ra ugyancsak 4 s alatt szintén állandó gyorsulással A: egyenes úton, B: R = 150 m sugarú köríven. 4. B/ Egy fekete autó 90 km/h sebességrl 108 km/h sebességre gyorsít fel s alatt állandó gyorsulással, egy fehér autó pedig 7 km/h-ról 90 km/h-ra ugyancsak s alatt szintén állandó gyorsulással A egyenes úton, B R = 00 m sugarú köríven. A két autó tömege egyenl. Az adatok mások, de mindkét feladatnál ugyanaz jön ki. Igaz-e, hogy a) a fekete autó gyorsulása nagyobb? A: nem B: igen A fekete és a fehér autó gyorsulása megegyezik, mert a sebességváltozás és az id is megegyezik. Egyenes úton tehát nem igaz, hogy a fekete autó gyorsulása nagyobb. Köríven viszont a fenti gyorsulás még csak az érintirányú, tangenciális gyorsuláskomponens (ami a sebesség nagyságának változását okozza). Itt viszont figyelembe kell venni a (sebességvektor irányának változását okozó) centripetális gyorsuláskomponenst is, ami v -tel arányos, tehát a fekete autónál nagyobb. Az ered gyorsulás a = a t + a cp, tehát köríven igaz, hogy a fekete autó gyorsulása nagyobb. b) a fekete autó nagyobb utat tesz meg eközben? A: igen B: igen A megtett út s = v 0 t + ½at. A kezdsebességet, v 0 -at kivéve minden megegyezik, tehát az az autó, amelyik nagyobb sebességrl indult, nagyobb utat tesz meg, akár egyenesen, akár köríven halad. c) a fekete autó motorja nagyobb munkát végez a gyorsítás közben? A: igen B: igen W = Fs = mas. A tömegek és a gyorsulások megegyeznek, de a fekete autó nagyobb utat tesz meg, tehát igaz, hogy a motorja nagyobb munkát végez. Köríven haladva is ugyanez lesz igaz, mert az ernek csak az elmozdulás irányába es komponense végez munkát, azaz az ernek, ill, a gyorsulásnak csak a tangenciális komponensét kell tekinteni, ami megegyezik. 5.A/ Egy függlegesen feldobott k s múlva már lefelé esik, sebessége 4 m/s. a) Mekkora volt a kezdsebessége? v = v 0 gt : fölfelé mutató z tengelyt használva s-nál a sebesség 4 m/s, azaz 4 = v 0 10 v 0 = 16 m/s. b) Mekkora maximális magasságot ért el? h = v 0 /g = 16 / 10 = 1,8 m. 5.B/ 50 m/s kezdsebességgel függlegesen felfelé hajítunk egy követ. Ugyanakkor egy 50 m magas toronyból szabadeséssel leesik egy másik k. a) Melyik pillanatban vannak azonos magasságban? Fölfelé mutató z tengelyt használva a feldobott k z koordinátája z 1 = 50t ½gt, a leesé z = 50 ½gt. z 1 = z : 50t ½gt = 50 ½gt t = 1 s. b) Mekkora ekkor az egyik ill. másik sebessége? v = v 0 gt: v 1 = = 40 m/s, v = 101 = 10 m/s. 6. Súrlódásmentes lejtn F k kötélervel húzzuk az ábrán látható módon a lejtn lév m tömeg testet. A csoport B csoport a) Írjuk fel a test mozgásegyenletét vektori alakban! m r = G + F ny + F k b) Írjuk fel a mozgásegyenlet két komponensét az ábrán jelölt x-y koordinátarendszernek megfelelen! ma x = Gsinα F k cosα ma x = Gsinα F k cosα ma y = F ny + F k sinα Gcosα ma y = F ny + F k sinα Gcosα 18

19 7. A/ A Szaturnusz sugara 9,5-szerese, tömege 95-szöröse a ének. Számoljuk ki, hányszorosa a Szaturnusz 7. B/ Az Uránusz sugara 4-szerese, tömege 14,5-szerese a ének. Számoljuk ki, hányszorosa az Uránusz a) felszínén mérhet nehézségi gyorsulás értéke a felszínén mérhetnek! (a centrifugális gyorsulást hanyagoljuk el) M bolygó γ M bolygó M g = γ, g bolygó R g bolygó M, azaz Szaurnusz 95 g = = = 1, 05 ill. Uránusz 14,5 = 0, 906 R g M g γ R 9,5 g 4 bolygó R R b) elhagyásához szükséges második szökési sebesség a éhez képest! M bolygó v = gr, v bolygó g bolygór bolygó g bolygó R bolygó M = = =, v g R g R R bolygó vszatrurnusz v azaz = 10 3, 16 ill. Uránusz 1, 905 v v R 8. Függleges síkban körpályán haladó repülgép sebessége 1080 km/h. Mekkora legyen a pálya sugara, hogy a legfels pontban a pilóta A/ súlytalan legyen? Az, hogy súlytalan a pilóta, azt jelenti, hogy a rá ható nyomóer zérus. (Súly: az az er, amivel a test az alátámasztást nyomja, vagy a felfüggesztést húzza.) höz rögzített koordinátarendszerben: a pilótára egyedül a nehézségi er hat, az adja a centripetális ert: mg = ma cp, a cp = v /R R = v /g = 300 / 10 = 9000 m = 9 km. (1080 km/h = 300 m/s) A repülgéphez rögzített koordinátarendszerben (forgó koordinátarendszerben): a pilótára hat a nehézségi er lefelé (a kör közepe felé) és hat a centrifugális er (mint rendszerer) sugárirányban kifelé (felfelé), és a kett éppen egyenl, hiszen a pilóta a repülgépen belül nem gyorsul: ma cf mg = 0, a cf = v /R R = = 9 km B/ éppen g gyorsulást érezzen sugárirányban kifelé? Ha sugárirányban kifelé (felfelé) g gyorsulást érez, az azt jelenti, hogy azzal ellentétes irányú, vagyis a kör közepe felé (lefelé) mutató F ny = mg nagyságú nyomóer hat rá. (Ez fejjel lefelé ugyanaz, mint amikor vízszintes talajon áll valaki, és a közepe felé -vagyis lefelé- rá ható mg nagyságú nehézségi ert felfelé ható nyomóer egyenlíti ki.) höz rögzített koordinátarendszerben: a pilótára hat a nehézségi er és a nyomóer, mindkett lefelé, a kör közepe felé; ezek összege adja a centripetális ert: mg + F ny = ma cp, F ny = mg, a cp = v /R R = v /g = 300 / 10 = 4500 m = 4,5 km A repülgéphez rögzített koordinátarendszerben: a pilótára hat a nehézségi er és a nyomóer lefelé, a kör közepe felé, és hat a centrifugális er sugárirányban kifelé (felfelé). A három er eredje zérus, hiszen a pilóta a repülgépen belül nem gyorsul: ma cf mg F ny = 0, F ny = mg, a cf = v /R R = = 4,5 km 19

20 Fizika zh / környezetmérnök 006. nov.. A csoport 1. Newton I. és III. axiómája. Egy fekete autó egyenes úton, egy fehér autó pedig R = 50 m sugarú köríven 108 km/h sebességrl 16 km/h sebességre gyorsít fel 5 s alatt állandó kerületi gyorsulással. Igaz-e, hogy a) a fehér autó gyorsulása nagyobb? b) a fehér autó motorja nagyobb munkát végez a gyorsítás alatt? A válaszokat indokoljuk! c) Írjuk fel a fehér autó szögsebességét az id függvényében! 3. Egy tömegpont harmonikus rezgmozgást végez az x tengely mentén: x(t) = x* cos (ωt + π), ahol x* = m, ω = π/5 s -1 a) Ábrázoljuk a test x koordinátáját a [0, T] idintervallumban! (Mennyi a T periódusid? Mekkora az A amplitúdó? Honnan indul a test a t = 0 s-ban?) b) Mennyi a sebesség átlagértéke egy teljes periódusra? c) Mennyi a sebesség nagyságának átlagértéke egy teljes periódusra? m magasságban állandó, 960 km/h vízszintes sebességgel haladó repülgéprl leesett az egyik ajtó. Szupermen is azon a repülgépen utazott, de éppen aludt. 10 s-ig tartott, amíg felébresztették és elmondták neki, mi történt. Ekkor azonnal (0 s alatt) odaszaladt az ajtó helyén tátongó lyukhoz és a) függlegesen lefelé v 0 kezdsebességgel elrugaszkodva utánaugrott az ajtónak. Mekkora kezdsebességgel ugrott ki Szupermen, ha 3 s alatt érte utol az ajtót? b) zérus kezdsebességgel, de különleges képességeit felhasználva állandó nagyságú, függleges gyorsulással indult az ajtó után (ezen a gyorsulás hozzáadódik a nehézségi erbl ered gyorsulásához). Legalább mekkorának kellett lenni ennek a gyorsulásnak, hogy még a levegben elérje az ajtót? A g értékét vegyük 9,9 m/s -nek. A légellenállást hanyagoljuk el! 5. Félgömbrl lecsúszó testre az ábrán látható helyzetében a bejelölt nehézségi ern és nyomóern kívül hat egy súrlódási er is. a) Szerkesszük meg a súrlódási ert, ha tudjuk, hogy az adott pontban a test tangenciális gyorsulása zérus! b) Rajzoljunk meg egy akkora súrlódási ert is, hogy az adott pontban a test sebessége csökkenjen! 6. Jancsi és Juliska állnak a jégen egymástól 9 m-re, fogják egy kötél két végét. a) Hol van a tömegközéppontjuk az ket összeköt egyenes mentén, ha Jancsi 50 kg, Juliska 40 kg tömeg? Jancsi hirtelen elkezdi húzni a kötelet. Egy pillanat alatt felgyorsulva mindketten súrlódásmentesen csúszni kezdenek egymás felé állandó sebességgel. Jancsi sebessége m/s. b) Mennyi Juliska sebessége? c) Milyen távol lesznek egymástól, amikor Jancsi 1 m-t csúszott? Ütközésük tökéletesen rugalmatlan ütközésnek tekinthet (összekapaszkodnak, nem eresztik el egymást). Az ütközésük 0,08 s-ig tartott. d) Mennyi lesz a közös sebességük? e) Mennyi Jancsi impulzusának változása? f) Mekkora er hatott Jancsira, ha feltesszük, hogy ütközéskor a köztük ható er állandó volt? g) Hány g gyorsulást jelentett ez Juliskának? 0

21 Fizika zh / környezetmérnök 006. nov.. B csoport 1. Newton II. és IV. axiómája. Egy fekete autó egyenes úton, egy fehér autó pedig R = 40 m sugarú köríven 108 km/h sebességrl 16 km/h sebességre gyorsít fel 5 s alatt állandó kerületi gyorsulással. Igaz-e, hogy a) a fehér autó gyorsulása nagyobb? b) a fehér autó motorja nagyobb munkát végez a gyorsítás alatt? A válaszokat indokoljuk! c) Írjuk fel a fehér autó szögsebességét az id függvényében! 3. Egy tömegpont harmonikus rezgmozgást végez az x tengely mentén: x(t) = x* cos (ωt π/), ahol x* =,4 m, ω = π/ s -1 a) Ábrázoljuk a test x koordinátáját a [0, T] idintervallumban! (Mennyi a T periódusid? Mekkora az A amplitúdó? Honnan indul a test a t = 0 s-ban?) b) Mennyi a sebesség átlagértéke egy teljes periódusra? c) Mennyi a sebesség nagyságának átlagértéke egy teljes periódusra? m magasságban állandó, 90 km/h vízszintes sebességgel haladó repülgéprl leesett az egyik ajtó. Szupermen is azon a repülgépen utazott, de éppen aludt. 1 s-ig tartott, amíg felébresztették és elmondták neki, mi történt. Ekkor azonnal (0 s alatt) odaszaladt az ajtó helyén tátongó lyukhoz és a) függlegesen lefelé v 0 kezdsebességgel elrugaszkodva utánaugrott az ajtónak. Mekkora kezdsebességgel ugrott ki Szupermen, ha 4 s alatt érte utol az ajtót? b) zérus kezdsebességgel, de különleges képességeit felhasználva állandó nagyságú, függleges gyorsulással indult az ajtó után (ez a gyorsulás hozzáadódik a nehézségi erbl ered gyorsulásához). Legalább mekkorának kellett lenni ennek a gyorsulásnak, hogy még a levegben elérje az ajtót? A g értékét vegyük 9,9 m/s -nek. A légellenállást hanyagoljuk el! 5. Félgömbrl lecsúszó testre az ábrán látható helyzetében a bejelölt nehézségi ern és nyomóern kívül hat egy súrlódási er is. a) Szerkesszük meg a súrlódási ert, ha tudjuk, hogy az adott pontban a test tangenciális gyorsulása zérus! b) Rajzoljunk meg egy akkora súrlódási ert is, hogy az adott pontban a test sebessége njön! 6. Jancsi és Juliska állnak a jégen egymástól 1 m-re, fogják egy kötél két végét. a) Hol van a tömegközéppontjuk az ket összeköt egyenes mentén, ha Jancsi 35 kg, Juliska 5 kg tömeg? Jancsi hirtelen elkezdi húzni a kötelet. Egy pillanat alatt felgyorsulva mindketten súrlódásmentesen csúszni kezdenek egymás felé állandó sebességgel. Jancsi sebessége 1,5 m/s. b) Mennyi Juliska sebessége? c) Milyen távol lesznek egymástól, amikor Jancsi 3 m-t csúszott? Ütközésük tökéletesen rugalmatlan ütközésnek tekinthet (összekapaszkodnak, nem eresztik el egymást). Az ütközésük 0,05 s-ig tartott. d) Mennyi lesz a közös sebességük? e) Mennyi Juliska impulzusának változása? f) Mekkora er hatott Juliskára, ha feltesszük, hogy ütközéskor a köztük ható er állandó volt? g) Hány g gyorsulást jelentett ez Jancsinak? 1

22 Fizika zh / környezetmérnök 006. nov.. megoldások 1. A/ Newton I. és III. axiómája 1. B/ Newton II. és IV. axiómája. Egy fekete autó egyenes úton, egy fehér autó pedig A/ R = 50 m B/ R = 40 m sugarú köríven 108 km/h sebességrl 16 km/h sebességre gyorsít fel 5 s alatt állandó kerületi gyorsulással. Igaz-e, hogy a) a fehér autó gyorsulása nagyobb? Igaz, mert a kerületi/tangenciális gyorsulásuk azonos: a t = (16 108)/3,6/5 = 1 m/s ; de a fehér autónak a körpálya miatt centripetális gyorsulása is van, így annak gyorsulása a t + a cp > a t b) a fehér autó motorja nagyobb munkát végez a gyorsítás alatt? Nem igaz, mert a munka szempontjából csak az a gyorsulás-komponens számít, amelyik az elmozdulás irányába esik, vagyis a tangenciális gyorsulás, ami a két autóra egyforma. c) Írjuk fel a fehér autó szögsebességét az id függvényében! A/ ω 0 = v 0 / R = 30/50 = 0,6 s -1, β = a t / R = 1/50 = 0,0 s -, azaz ω = 0,6 + 0,0 t (s -1 ) B/ ω 0 = v 0 / R = 30/40 = 0,75 s -1, β = a t / R = 1/40 = 0,05 s -, azaz ω = 0,75 + 0,05 t (s -1 ) 3. Egy tömegpont harmonikus rezgmozgást végez az x tengely mentén: A/ x(t) = x* cos (ωt + π), ahol x* = m, ω = π/5 s -1 B/ x(t) = x* cos (ωt π/), ahol x* =,4 m, ω = π/ s -1 a) Ábrázoljuk a test x koordinátáját a [0, T] idintervallumban! (Mennyi a T periódusid? Mekkora az A amplitúdó? Honnan indul a test a t = 0 s-ban?) A/ T = π / ω = 5 s, A = * x = m, B/ T = π / ω = 4 s, A = * x =,4 m, x(0) = cos(ω0+π) = m x(0) =,4cos(ω0 π/) = 0 b) Mennyi a sebesség átlagértéke egy teljes periódusra? Mivel egy teljes periódus alatt a tömegpont visszatér a kiindulási helyzetébe, az elmozdulás zérus, vagyis a sebesség átlagértéke zérus. c) Mennyi a sebesség nagyságának átlagértéke egy teljes periódusra? Egy teljes periódus alatt a tömegpont kétszer megy ki a széls helyzetébe és megy vissza az origóba, azaz a megtett út 4-szerese az amplitúdónak, a sebesség nagyságának átlaga v átl = 4A / T, azaz A/ v átl = 4/5 = 1,6 m/s, B/ v átl = 4,4/4 =,4 m/s. 4. A/ 790 m B/ 7840 m magasságban állandó, A/ 960 km/h B/ 90 km/h vízszintes sebességgel haladó repülgéprl leesett az egyik ajtó. Szupermen is azon a repülgépen utazott, de éppen aludt. A/ 10 s-ig B/ 1 s-ig tartott, amíg felébresztették és elmondták neki, mi történt. Ekkor azonnal (0 s alatt) odaszaladt az ajtó helyén tátongó lyukhoz és a) függlegesen lefelé v 0 kezdsebességgel elrugaszkodva utánaugrott az ajtónak. Mekkora kezdsebességgel ugrott ki Szupermen, ha A/ 3 s B/ 4 s alatt érte utol az ajtót? b) zérus kezdsebességgel, de különleges képességeit felhasználva állandó nagyságú, függleges gyorsulással indult az ajtó után (ezen a gyorsulás hozzáadódik a nehézségi erbl ered gyorsulásához). Legalább mekkorának kellett lenni ennek a gyorsulásnak, hogy még a levegben elérje az ajtót? A g értékét vegyük 9,9 m/s -nek. A légellenállást hanyagoljuk el!

23 Ha a légellenállást elhanyagolhatjuk, akkor a leesett ajtóra nem hat vízszintes irányú er, megtartja a repülgép sebességével megegyez vízszintes sebességkomponensét, mindig a repülgép alatt lesz. A feladat megoldásához elég a z koordinátát felírni. a) A/ 10+3 s B/ 1+4 s alatt az ajtó s = A/ ½ 9,913 = 836,55 m B/ ½ 9,916 = 167, m -t zuhant. Szupermen t S = A/ 3 s B/ 4 s alatt v 0 kezdsebességrl indulva tesz meg ekkora utat: s = v 0 t S + ½ g t S v 0 = (s ½ g t S ) / t S A/ 64 m/s B/ 97 m/s. b) Az ajtó h = A/ 790 m B/ 7840 m magasságból t a = h / g A/ 40 s B/ 39,8 s alatt ér földet. Ennél A/ 10 s B/ 1 s -mal kevesebb id alatt kell Szupermennek földet érnie, ha még a levegben el akarja kapni az ajtót. s = ½ (g+a)t a = s/t g A/ 790/(40 10) 9,9 = 7,7 m/s B/ 7840/(39,8 1) 9,9 10,4 m/s (g értékét a B/ csoportnál 9,8 m/s -re gondoltam, azzal kerek eredmény jött volna ki ) 5. Félgömbrl lecsúszó testre az ábrán látható helyzetében a bejelölt nehézségi ern és nyomóern kívül hat egy súrlódási er is. a) Szerkesszük meg a súrlódási ert, ha tudjuk, hogy az adott pontban a test tangenciális gyorsulása zérus! érint irányú, nagysága G sinα b) Rajzoljunk meg egy akkora súrlódási ert is, hogy az adott pontban a test sebessége A/ csökkenjen! a hossza legyen nagyobb B/ njön! a hosszabb legyen kisebb 6. Jancsi és Juliska állnak a jégen egymástól A/ 9 m B/ 1 m-re, fogják egy kötél két végét. a) Hol van a tömegközéppontjuk az ket összeköt egyenes mentén, ha Jancsi A/ 50 kg B/ 35 kg, Juliska A/ 40 kg B/ 5 kg tömeg? Ha Jancsi az origóban van (x Jancsi = 0) és Juliska x Juliska = A/ 9 m B/ 1 m nél, akkor x s = (0m Jancsi + x Jujliska m Juliska ) /( m Jancsi + m Juliska ) A/ 4 m B/ 5 m a tömegközéppont távolsága Jancsitól. Jancsi hirtelen elkezdi húzni a kötelet. Egy pillanat alatt felgyorsulva mindketten súrlódásmentesen csúszni kezdenek egymás felé állandó sebességgel. Jancsi sebessége A/ m/s B/ 1,5 m/s. b) Mennyi Juliska sebessége? Kezdetben mindketten álltak, vagyis kettjük össz-impulzusa zérus, és mivel súrlódásmentesen csúsznak, a küls erk eredje zérus, kettjük össz-impulzusa zérus is marad: m Jancsi v Jancsi + m Juliska v Juliska = 0 Juliska sebességének nagysága v Juliska = A/,5 m/s B/,1 m/s c) Milyen távol lesznek egymástól, amikor Jancsi A/ 1 m-t B/ 3 m-t csúszott? Jancsi s Jancsi = A/ 1 m-t B/ 3 m-t t = s Jancsi / v Jancsi A/ 1/ = 0,5 s B/ 3/1,5 = s alatt tesz meg, ezalatt Juliska s Juliska = tv Juliska A/ 0,5,5 = 1,5 m B/,1 = 4, m-t tesz meg, marad köztük A/ 9 (1+1,5) = 6,75 m B/ 1 (3+4,) = 4,8 m. Ütközésük tökéletesen rugalmatlan ütközésnek tekinthet (összekapaszkodnak, nem eresztik el egymást). Az ütközésük A/ 0,08 s-ig B/ 0,05 s-ig tartott. d) Mennyi lesz a közös sebességük? Mivel az össz-impulzusuk zérus, a közös sebességük zérus. e) Mennyi A/ Jancsi B/ Juliska impulzusának változása? I J = m J v J : A/ I Jancsi = 50 = 100 kgm/s B/ I Juliska = 5,1 = 5,5 kgm/s természetesen nagyságra ugyanakkora Juliska/Jancsi impulzusváltozása is f) Mekkora er hatott A/ Jancsira B/ Juliskára, ha feltesszük, hogy ütközéskor a köztük ható er állandó volt? F = I / t : A/ 100 / 0,08 = 150 N B/ 5,5 / 0,05 = 1050 N (a Juliskára/Jancsira ható er csak irányában különbözik) g) Hány g gyorsulást jelentett ez A/ Juliskának B/ Jancsinak? a J = F / m J : A/ a Juliska = 150 / 40 = 31,5 m/s, ez 3,1 g B/ a Jancsi = 1050 / 35 = 30 m/s, ez 3 g 3

24 Fizika zh3 / környezetmérnök 006. dec Írja le szövegben vagy képletben a következ erterek definícióját! a) Stacionárius: b) Konzervatív:. Az alábbi állítások közül melyek azok, - amelyek általános esetben érvényesek; - amelyek soha nem igazak; - amelyek csak egyes speciális esetekben érvényesek (mikor)? <1> Ha két test helyvektora minden idben megegyezik, akkor megegyezik a gyorsulásvektoruk is. <> Ferde hajításnál a függleges sebességkomponens állandó. <3> Ha az er és a sebesség vektora egyirányúak, a sebesség iránya nem változik. 3. a) Írjunk fel általánosan érvényes összefüggéseket a t, r, v, s fizikai mennyiségek között! Képletben és szöveggel is! b) Írjunk fel olyan összefüggéseket a t, r, v, s között, amelyek valamely speciális esetben érvényesek, és adjuk meg azt is, hogy milyen esetre érvényesek! 4. Egy m tömeg tömegpont gyorsulása a. A tömegpontra két er hat, az egyik er (F 1 ) ismert. Határozzuk meg képletben és szerkesztéssel az ismeretlen másik ert (F )! 5. Egy kg tömeg tömegpont 8 m sugarú körpályán mozog. a) Mekkora er hat rá akkor, amikor a sebessége 16 m/s, szöggyorsulása pedig 5 s -? b) Milyen irányú az er? c) Mekkora a forgatónyomatéka? (Vonatkoztatási pont a kör középpontja legyen!) d) Mekkora és milyen irányú a tömegpont impulzusmomentuma ugyanekkor? 6. Mekkora F er szükséges ahhoz, hogy állandó gyorsulással t = 6 s alatt nyugalmi helyzetbl indulva felhúzzunk egy m = 4 kg tömeg testet egy α = 30 -os, h = 4,5 m magas lejtn, ha a súrlódási együttható 0,16? 7. Vízszintes, súrlódásmentes síkon egy rugó végére m = 1 kg tömeg golyót rögzítettünk. A rugó másik vége rögzítve van. A rugó 0 cm-re való kihúzásához 5 N erre van szükség. a) A golyót elengedve mekkora lesz a rezgésid? b) Mekkora a golyó sebessége a nyugalmi helyzeten való áthaladáskor? 4

25 Fizika zh3 / környezetmérnök 006. dec Írja le szövegben vagy képletben a következ erterek definícióját! a) Homogén: b) Centrális:. Az alábbi állítások közül melyek azok, - amelyek általános esetben érvényesek; - amelyek soha nem igazak; - amelyek csak egyes speciális esetekben érvényesek (mikor)? <1> Ha két test sebességvektora minden idben megegyezik, akkor megegyezik a gyorsulásvektoruk is. <> Ferde hajításnál a vízszintes sebességkomponens állandó. <3> Ha az er és a sebesség vektora merlegesek egymásra, a sebesség nagysága nem változik. 3. a) Írjunk fel általánosan érvényes összefüggéseket a t, r, v, s fizikai mennyiségek között! Képletben és szöveggel is! b) Írjunk fel olyan összefüggéseket a t, r, v, s között, amelyek valamely speciális esetben érvényesek, és adjuk meg azt is, hogy milyen esetre érvényesek! 4. Egy m tömeg tömegpont gyorsulása a. A tömegpontra két er hat, az egyik er (F 1 ) ismert. Határozzuk meg képletben és szerkesztéssel az ismeretlen másik ert (F )! 5. Egy 6 kg tömeg tömegpont 5 m sugarú körpályán mozog. a) Mekkora er hat rá akkor, amikor a sebessége 8 m/s, szöggyorsulása pedig s -? b) Milyen irányú az er? c) Mekkora a forgatónyomatéka? (Vonatkoztatási pont a kör középpontja legyen!) d) Mekkora és milyen irányú a tömegpont impulzusmomentuma ugyanekkor? 6. Mekkora F er szükséges ahhoz, hogy állandó gyorsulással t = 4 s alatt nyugalmi helyzetbl indulva felhúzzunk egy m = 5 kg tömeg testet egy α = 30 -os, h = 4 m magas lejtn, ha a súrlódási együttható 0,18? 7. Vízszintes, súrlódásmentes síkon egy rugó végére m = 4 g tömeg golyót rögzítettünk. A rugó másik vége rögzítve van. A rugó 5 cm-re való kihúzásához 4 N erre van szükség. a) A golyót elengedve mekkora lesz a rezgésid? b) Mekkora a golyó sebessége a nyugalmi helyzeten való áthaladáskor? 5

Nem igaz; a helyvektor deriváltja egyenl a gyorsulás integráljával (megfelel kezdeti feltételekkel)

Nem igaz; a helyvektor deriváltja egyenl a gyorsulás integráljával (megfelel kezdeti feltételekkel) K1A vizsgazh gyakorló anyag 007.11.7. Fizika K1A zh1 005. nov. 14. 1. Az alábbi állítások közül melyek azok, - amelyek általános esetben érvényesek; - amelyek soha nem igazak; - amelyek csak egyes speciális

Részletesebben

Tömegpontok mozgása egyenes mentén, hajítások

Tömegpontok mozgása egyenes mentén, hajítások 2. gyakorlat 1. Feladatok a kinematika tárgyköréből Tömegpontok mozgása egyenes mentén, hajítások 1.1. Feladat: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel

Részletesebben

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS

KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS KÖRMOZGÁS, REZGŐMOZGÁS, FORGÓMOZGÁS 1 EGYENLETES KÖRMOZGÁS Pálya kör Út ív Definíció: Test körpályán azonos irányban haladva azonos időközönként egyenlő íveket tesz meg. Periodikus mozgás 2 PERIODICITÁS

Részletesebben

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont)

Gépészmérnöki alapszak, Mérnöki fizika ZH, október 10.. CHFMAX. Feladatok (maximum 3x6 pont=18 pont) 1. 2. 3. Mondat E1 E2 Gépészmérnöki alapszak, Mérnöki fizika ZH, 2017. október 10.. CHFMAX NÉV: Neptun kód: Aláírás: g=10 m/s 2 Előadó: Márkus / Varga Feladatok (maximum 3x6 pont=18 pont) 1) Az l hosszúságú

Részletesebben

1. Feladatok a dinamika tárgyköréből

1. Feladatok a dinamika tárgyköréből 1. Feladatok a dinamika tárgyköréből Newton három törvénye 1.1. Feladat: Három azonos m tömegű gyöngyszemet fonálra fűzünk, egymástól kis távolságokban a fonálhoz rögzítünk, és az elhanyagolható tömegű

Részletesebben

Adatok: fénysebesség, Föld sugara, Nap Föld távolság, Föld Hold távolság, a Föld és a Hold keringési és forgási ideje.

Adatok: fénysebesség, Föld sugara, Nap Föld távolság, Föld Hold távolság, a Föld és a Hold keringési és forgási ideje. FOGALMAK, DEFINÍCIÓK Az SI rendszer alapmenniségei. Síkszög, térszög. Prefixumok. Adatok: fénsebesség, Föld sugara, Nap Föld távolság, Föld Hold távolság, a Föld és a Hold keringési és forgási ideje. Fogalmak,

Részletesebben

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel

1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel 1. Feladatok munkavégzés és konzervatív erőterek tárgyköréből. Munkatétel Munkavégzés, teljesítmény 1.1. Feladat: (HN 6B-8) Egy rúgót nyugalmi állapotból 4 J munka árán 10 cm-rel nyújthatunk meg. Mekkora

Részletesebben

Az SI rendszer alapmennyiségei. Síkszög, térszög. Prefixumok. Mértékegységek átváltása.

Az SI rendszer alapmennyiségei. Síkszög, térszög. Prefixumok. Mértékegységek átváltása. Az SI rendszer alapmenniségei. Síkszög, térszög. Prefixumok. Mértékegségek átváltása. Fizika K1A zh1 anag 014 Adatok: fénsebesség, Föld sugara, Nap-Föld távolság, Föld-Hold távolság, a Föld és a Hold keringési

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:...

Gépészmérnöki alapszak Mérnöki fizika ZH NÉV: október 18. Neptun kód:... 1. 2. 3. Mondat E1 E2 Össz Gépészmérnöki alapszak Mérnöki fizika ZH NÉV:.. 2018. október 18. Neptun kód:... g=10 m/s 2 Előadó: Márkus/Varga Az eredményeket a bekeretezett részbe be kell írni! 1. Egy m=3

Részletesebben

Mechanika. Kinematika

Mechanika. Kinematika Mechanika Kinematika Alapfogalmak Anyagi pont Vonatkoztatási és koordináta rendszer Pálya, út, elmozdulás, Vektormennyiségek: elmozdulásvektor Helyvektor fogalma Sebesség Mozgások csoportosítása A mozgásokat

Részletesebben

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek

Kinematika szeptember Vonatkoztatási rendszerek, koordinátarendszerek Kinematika 2014. szeptember 28. 1. Vonatkoztatási rendszerek, koordinátarendszerek 1.1. Vonatkoztatási rendszerek A test mozgásának leírása kezdetén ki kell választani azt a viszonyítási rendszert, amelyből

Részletesebben

1. Feladatok merev testek fizikájának tárgyköréből

1. Feladatok merev testek fizikájának tárgyköréből 1. Feladatok merev testek fizikájának tárgyköréből Forgatónyomaték, impulzusmomentum, impulzusmomentum tétel 1.1. Feladat: (HN 13B-7) Homogén tömör henger csúszás nélkül gördül le az α szög alatt hajló

Részletesebben

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika

rnök k informatikusoknak 1. FBNxE-1 Klasszikus mechanika Fizika mérnm rnök k informatikusoknak 1. FBNxE-1 Mechanika. előadás Dr. Geretovszky Zsolt 1. szeptember 15. Klasszikus mechanika A fizika azon ága, melynek feladata az anyagi testek mozgására vonatkozó

Részletesebben

Fizika feladatok - 2. gyakorlat

Fizika feladatok - 2. gyakorlat Fizika feladatok - 2. gyakorlat 2014. szeptember 18. 0.1. Feladat: Órai kidolgozásra: Mekkora az átlagsebessége annak pontnak, amely mozgásának első szakaszában v 1 sebességgel s 1 utat, második szakaszában

Részletesebben

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ

Osztályozó, javító vizsga 9. évfolyam gimnázium. Írásbeli vizsgarész ELSŐ RÉSZ Írásbeli vizsgarész ELSŐ RÉSZ 1. Egy téglalap alakú háztömb egyik sarkából elindulva 80 m, 150 m, 80 m utat tettünk meg az egyes házoldalak mentén, míg a szomszédos sarokig értünk. Mekkora az elmozdulásunk?

Részletesebben

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt

Képlet levezetése :F=m a = m Δv/Δt = ΔI/Δt Lendület, lendületmegmaradás Ugyanakkora sebességgel mozgó test, tárgy nagyobb erőhatást fejt ki ütközéskor, és csak nagyobb erővel fékezhető, ha nagyobb a tömege. A tömeg és a sebesség együtt jellemezheti

Részletesebben

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása.

Dinamika. A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Dinamika A dinamika feladata a test(ek) gyorsulását okozó erők matematikai leírása. Newton törvényei: I. Newton I. axiómája: Minden nyugalomban lévő test megtartja nyugalmi állapotát, minden mozgó test

Részletesebben

Tömegvonzás, bolygómozgás

Tömegvonzás, bolygómozgás Tömegvonzás, bolygómozgás Gravitációs erő tömegvonzás A gravitációs kölcsönhatásban csak vonzóerő van, taszító erő nincs. Bármely két test között van gravitációs vonzás. Ez az erő nagyobb, ha a két test

Részletesebben

Irányításelmélet és technika I.

Irányításelmélet és technika I. Irányításelmélet és technika I. Mechanikai rendszerek dinamikus leírása Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 2010

Részletesebben

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13.

Fizika. Fizika. Nyitray Gergely (PhD) PTE PMMIK február 13. Fizika Nyitray Gergely (PhD) PTE PMMIK 017. február 13. A lejtő mint kényszer A lejtő egy ún. egyszerű gép. A következő problémában először a lejtőt rögzítjük, és egy m tömegű test súrlódás nélkül lecsúszik

Részletesebben

Adatok: fénysebesség; a Föld sugara; a Nap-Föld távolság; a Föld-Hold távolság; a Föld és a Hold keringési ideje.

Adatok: fénysebesség; a Föld sugara; a Nap-Föld távolság; a Föld-Hold távolság; a Föld és a Hold keringési ideje. ELMÉLET Az SI rendszer alapmennyiségei. Síkszög, térszög. Prefixumok. Adatok: fénysebesség; a Föld sugara; a Nap-Föld távolság; a Föld-Hold távolság; a Föld és a Hold keringési ideje. Fogalmak, definíciók:

Részletesebben

Bevezető fizika (VBK) zh1 tesztkérdések Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2

Bevezető fizika (VBK) zh1 tesztkérdések Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2 Mi az erő mértékegysége? NY) kg m 2 s 1 GY) Js LY) kg m 2 s 2 TY) kg m s 2 Mi a csúszási súrlódási együttható mértékegysége? NY) kg TY) N GY) N/kg LY) Egyik sem. Mi a csúszási súrlódási együttható mértékegysége?

Részletesebben

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport

Elméleti kérdések 11. osztály érettségire el ı készít ı csoport Elméleti kérdések 11. osztály érettségire el ı készít ı csoport MECHANIKA I. 1. Definiálja a helyvektort! 2. Mondja meg mit értünk vonatkoztatási rendszeren! 3. Fogalmazza meg kinematikailag, hogy mikor

Részletesebben

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések

Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések Mechanikai rezgések Ismétlő kérdések és feladatok Kérdések 1. Melyek a rezgőmozgást jellemző fizikai mennyiségek?. Egy rezgés során mely helyzetekben maximális a sebesség, és mikor a gyorsulás? 3. Milyen

Részletesebben

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p

A nagyobb tömegű Peti 1,5 m-re ült a forgástengelytől. Összesen: 9p Jedlik 9-10. o. reg feladat és megoldás 1) Egy 5 m hosszú libikókán hintázik Évi és Peti. A gyerekek tömege 30 kg és 50 kg. Egyikük a hinta végére ült. Milyen messze ült a másik gyerek a forgástengelytől,

Részletesebben

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya.

Lendület. Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendület Lendület (impulzus): A test tömegének és sebességének szorzata. vektormennyiség: iránya a sebesség vektor iránya. Lendülettétel: Az lendület erő hatására változik meg. Az eredő erő határozza meg

Részletesebben

ÁLTALÁNOS JÁRMŰGÉPTAN

ÁLTALÁNOS JÁRMŰGÉPTAN ÁLTALÁNOS JÁRMŰGÉPTAN ELLENŐRZŐ KÉRDÉSEK 3. GÉPEK MECHANIKAI FOLYAMATAI 1. Definiálja a térbeli pont helyvektorát! r helyvektor előáll ortogonális (a 3 tengely egymásra merőleges) koordinátarendszer koordinátairányú

Részletesebben

Fizika alapok. Az előadás témája

Fizika alapok. Az előadás témája Az előadás témája Körmozgás jellemzőinek értelmezése Általános megoldási módszer egyenletes körmozgásnál egy feladaton keresztül Testek mozgásának vizsgálata nem inerciarendszerhez képest Centripetális

Részletesebben

Gyakorló feladatok Feladatok, merev test dinamikája

Gyakorló feladatok Feladatok, merev test dinamikája Gyakorló feladatok Feladatok, merev test dinamikája 4.5.1. Feladat Határozza meg egy súlytalannak tekinthető súlypontját. 2 m hosszú rúd két végén lévő 2 kg és 3 kg tömegek Feltéve, hogy a súlypont a 2

Részletesebben

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa

1. gyakorlat. Egyenletes és egyenletesen változó mozgás. 1. példa 1. gyakorlat Egyenletes és egyenletesen változó mozgás egyenletes mozgás egyenletesen változó mozgás gyorsulás a = 0 a(t) = a = állandó sebesség v(t) = v = állandó v(t) = v(0) + a t pályakoordináta s(t)

Részletesebben

A mechanikai alaptörvények ismerete

A mechanikai alaptörvények ismerete A mechanikai alaptörvények ismerete Az oldalszám hivatkozások a Hudson-Nelson Útban a modern fizikához c. könyv megfelelő szakaszaira vonatkoznak. A Feladatgyűjtemény a Mérnöki fizika tárgy honlapjára

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő:

Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: Erők (rug., grav., súrl., közegell., centripet.,), és körmozgás, bolygómozgás Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót erőmérőnek

Részletesebben

Fizika 1 Mechanika órai feladatok megoldása 10. hét

Fizika 1 Mechanika órai feladatok megoldása 10. hét Fizika 1 Mechanika órai feladatok megoldása 10. hét Tehetetlenségi nyomaték m tömegű, a forgástengelytől l távolságra lévő tömegpont tehetetlenségi nyomatéka a rögzített tengelyre vonatkoztatva: Θ = m

Részletesebben

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk

Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

A Hamilton-Jacobi-egyenlet

A Hamilton-Jacobi-egyenlet A Hamilton-Jacobi-egyenlet Ha sikerül olyan kanonikus transzformációt találnunk, amely a Hamilton-függvényt zérusra transzformálja akkor valamennyi új koordináta és impulzus állandó lesz: H 0 Q k = H P

Részletesebben

Tehetetlenségi nyomaték, impulzusmomentum-tétel, -megmaradás

Tehetetlenségi nyomaték, impulzusmomentum-tétel, -megmaradás Tehetetlenségi nyomaték, impulzusmomentum-tétel, -megmaradás Tehetetlenségi nyomaték számítása pontrendszerre: Θ = Σ m i l i, ahol l i az m i tömegű test távolsága a forgástengelytől, kiterjedt testre:

Részletesebben

Munka, energia Munkatétel, a mechanikai energia megmaradása

Munka, energia Munkatétel, a mechanikai energia megmaradása Munka, energia Munkatétel, a mechanikai energia megmaradása Munkavégzés történik ha: felemelek egy könyvet kihúzom az expandert A munka Fizikai értelemben munkavégzésről akkor beszélünk, ha egy test erő

Részletesebben

1. ábra. 24B-19 feladat

1. ábra. 24B-19 feladat . gyakorlat.. Feladat: (HN 4B-9) A +Q töltés egy hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld.. ábra.). Számítsuk ki az E elektromos térerősséget a vonal. ábra. 4B-9 feladat irányában lévő,

Részletesebben

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra

A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld ábra ábra . Gyakorlat 4B-9 A +Q töltés egy L hosszúságú egyenes szakasz mentén oszlik el egyenletesen (ld. 4-6 ábra.). Számítsuk ki az E elektromos térerősséget a vonal irányában lévő, annak.. ábra. 4-6 ábra végpontjától

Részletesebben

Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények

Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények Periódikus mozgás, körmozgás, bolygók mozgása, Newton törvények Az olyan mozgást, amelyben a test ugyanazt a mozgásszakaszt folyamatosan ismételi, periódikus mozgásnak nevezzük. Pl. ingaóra ingája, rugó

Részletesebben

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó

Mechanika Kinematika. - Kinematikára: a testek mozgását tanulmányozza anélkül, hogy figyelembe venné a kiváltó Mechanika Kinematika A mechanika a fizika része mely a testek mozgásával és egyensúlyával foglalkozik. A klasszikus mechanika, mely a fénysebességnél sokkal kisebb sebességű testekre vonatkozik, feloszlik:

Részletesebben

Fizika példák a döntőben

Fizika példák a döntőben Fizika példák a döntőben F. 1. Legyen két villamosmegálló közötti távolság 500 m, a villamos gyorsulása pedig 0,5 m/s! A villamos 0 s időtartamig gyorsuljon, majd állandó sebességgel megy, végül szintén

Részletesebben

Oktatási Hivatal FIZIKA. II. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló. Javítási-értékelési útmutató

Oktatási Hivatal FIZIKA. II. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló. Javítási-értékelési útmutató Oktatási Hivatal A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 1. forduló FIZIKA II. kategória Javítási-értékelési útmutató 1. feladat. Az m tömeg, L hosszúságú, egyenletes keresztmetszet,

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3

Hatvani István fizikaverseny forduló megoldások. 1. kategória. J 0,063 kg kg + m 3 Hatvani István fizikaverseny 016-17. 1. kategória 1..1.a) Két eltérő méretű golyó - azonos magasságból - ugyanakkora végsebességgel ér a talajra. Mert a földfelszín közelében minden szabadon eső test ugyanúgy

Részletesebben

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

FIZIKA II. Dr. Rácz Ervin. egyetemi docens

FIZIKA II. Dr. Rácz Ervin. egyetemi docens FIZIKA II. Dr. Rácz Ervin egyetemi docens Fontos tudnivalók e-mail: racz.ervin@kvk.uni-obuda.hu web: http://uni-obuda.hu/users/racz.ervin/index.htm Iroda: Bécsi út, C. épület, 124. szoba Fizika II. - ismertetés

Részletesebben

PÉLDÁK ERŐTÖRVÉNYEKRE

PÉLDÁK ERŐTÖRVÉNYEKRE PÉLÁ ERŐTÖRVÉNYERE Szabad erők: erőtörvénnyel megadhatók, általában nem függenek a test mozgásállapotától (sebességtől, gyorsulástól) Példák: nehézségi erő, súrlódási erők, rugalmas erők, felhajtóerők,

Részletesebben

Hatvani István fizikaverseny forduló megoldások. 1. kategória

Hatvani István fizikaverseny forduló megoldások. 1. kategória . kategória.... Téli időben az állóvizekben a +4 -os vízréteg helyezkedik el a legmélyebben. I. év = 3,536 0 6 s I 3. nyolcad tonna fél kg negyed dkg = 5 55 g H 4. Az ezüst sűrűsége 0,5 g/cm 3, azaz m

Részletesebben

Q 1 D Q 2 (D x) 2 (1.1)

Q 1 D Q 2 (D x) 2 (1.1) . Gyakorlat 4B-9 Két pontszerű töltés az x tengelyen a következőképpen helyezkedik el: egy 3 µc töltés az origóban, és egy + µc töltés az x =, 5 m koordinátájú pontban van. Keressük meg azt a helyet, ahol

Részletesebben

Kifejtendő kérdések december 11. Gyakorló feladatok

Kifejtendő kérdések december 11. Gyakorló feladatok Kifejtendő kérdések 2016. december 11. Gyakorló feladatok 1. Adja meg és a pályagörbe felrajzolásával értelmezze egy tömegpont általános síkbeli mozgását jellemző kinematikai mennyiségeket (1p)! Vezesse

Részletesebben

U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :...

U = 24 V I = 4,8 A. Mind a két mellékágban az ellenállás külön-külön 6 Ω, ezért az áramerősség mindkét mellékágban egyenlő, azaz :... Jedlik Ányos Fizikaverseny regionális forduló Öveges korcsoport 08. A feladatok megoldása során végig századpontossággal kerekített értékekkel számolj! Jó munkát! :). A kapcsolási rajz adatai felhasználásával

Részletesebben

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N

IMPULZUS MOMENTUM. Impulzusnyomaték, perdület, jele: N IPULZUS OENTU Impulzusnyomaték, perdület, jele: N Definíció: Az (I) impulzussal rendelkező test impulzusmomentuma egy tetszőleges O pontra vonatkoztatva: O I r m Az impulzus momentum vektormennyiség: két

Részletesebben

1 2. Az anyagi pont kinematikája

1 2. Az anyagi pont kinematikája 1. Az anyagi pont kinematikája 1. Ha egy P anyagi pont egyenes vonalú mozgását az x = 1t +t) egyenlet írja le x a megtett út hossza m-ben), határozzuk meg a pont sebességét és gyorsulását az indulás utáni

Részletesebben

Komplex természettudomány 3.

Komplex természettudomány 3. Komplex természettudomány 3. 1 A lendület és megmaradása Lendület (impulzus): A test tömegének és sebességének a szorzata. Jele: I. Képlete: II = mm vv mértékegysége: kkkk mm ss A lendület származtatott

Részletesebben

Oktatási Hivatal FIZIKA. I. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 2. forduló. Javítási-értékelési útmutató

Oktatási Hivatal FIZIKA. I. kategória. A 2017/2018. tanévi Országos Középiskolai Tanulmányi Verseny 2. forduló. Javítási-értékelési útmutató Oktatási Hivatal A 017/018. tanévi Országos Középiskolai Tanulmányi Verseny. forduló FIZIKA I. kategória Javítási-értékelési útmutató A versenyz k gyelmét felhívjuk arra, hogy áttekinthet en és olvashatóan

Részletesebben

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2)

Gyakorlat 30B-14. a F L = e E + ( e)v B képlet, a gravitációs erőt a (2.1) G = m e g (2.2) 2. Gyakorlat 30B-14 Az Egyenlítőnél, a földfelszín közelében a mágneses fluxussűrűség iránya északi, nagysága kb. 50µ T,az elektromos térerősség iránya lefelé mutat, nagysága; kb. 100 N/C. Számítsuk ki,

Részletesebben

Exponenciális és logaritmusos kifejezések, egyenletek

Exponenciális és logaritmusos kifejezések, egyenletek Eponenciális és logaritmusos kifejezések, egyenletek. Hatványozási azonosságok. Számítsd ki a következő hatványok pontos értékét! a) 8 b) 4 c) d) 7 e) f) 9 0, g) 0, 9 h) 6 0, 7,, i) 8 j) 6 k) 4 l) 49,.

Részletesebben

Kényszerfeltételek február 10. F = ma

Kényszerfeltételek február 10. F = ma Kényszerfeltételek 2017. február 10. A dinamika alapegyenletei nagyon egyszer ek. Ha a testek forgását csak síkban vizsgáljuk (azaz a forgástengely mindig egy irányba mutat, nem tanulmányozzuk például

Részletesebben

5. Körmozgás. Alapfeladatok

5. Körmozgás. Alapfeladatok 5. Körmozgás Alapfeladatok Kinematika, elemi dinamika 1. Egy 810 km/h sebességu repülogép 10 km sugarú körön halad. a) Mennyi a repülogép gyorsulása? b) Mennyi ido alatt tesz meg egy félkört? 2. Egy centrifugában

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

8. Egy r sugarú gömb tetpontjából egy kisméret részecske súrlódás nélkül csúszik le a gravitációs er hatására. Hol hagyja el a gömbfelületet?

8. Egy r sugarú gömb tetpontjából egy kisméret részecske súrlódás nélkül csúszik le a gravitációs er hatására. Hol hagyja el a gömbfelületet? Példák gyakorláshoz 1. Egy testre állandó nagyságú er hat úgy, hogy a pályára az er mindig merleges. Egy adott idpillanatban a test impulzusa 0.2kgm/s és 0.05s alatt az impulzusvektor megváltozását 0.2kgm/s

Részletesebben

2.3 Newton törvények, mozgás lejtőn, pontrendszerek

2.3 Newton törvények, mozgás lejtőn, pontrendszerek Keresés (http://wwwtankonyvtarhu/hu) NVDA (http://wwwnvda-projectorg/) W3C (http://wwww3org/wai/intro/people-use-web/) A- (#) A (#) A+ (#) (#) English (/en/tartalom/tamop425/0027_fiz2/ch01s03html) Kapcsolat

Részletesebben

Newton törvények, erők

Newton törvények, erők Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső

Részletesebben

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz.

Pálya : Az a vonal, amelyen a mozgó tárgy, test végighalad. Út: A pályának az a része, amelyet adott idő alatt a mozgó tárgy megtesz. Haladó mozgások A hely és a mozgás viszonylagos. A testek helyét, mozgását valamilyen vonatkoztatási ponthoz, vonatkoztatási rendszerhez képest adjuk meg, ahhoz viszonyítjuk. pl. A vonatban utazó ember

Részletesebben

A bolygók mozgására vonatkozó Kepler-törvények igazolása

A bolygók mozgására vonatkozó Kepler-törvények igazolása A bolygók mozgására vonatkozó Kepler-törvények igazolása Geometriai alapok. A kúpszeletek polárkoordinátás egyenlete A síkbeli másodrend görbék közül az ellipszist, a hiperbolát és a parabolát mondjuk

Részletesebben

Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő:

Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő: Erők (rug., grav., súly, súrl., közegell., centripet.,), forgatónyomaték, egyensúly Rugalmas erő: A rugalmas test (pl. rugó) megnyúlása egyenesen arányos a rugalmas erő nagyságával. Ezért lehet a rugót

Részletesebben

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1)

Kirchhoff 2. törvénye (huroktörvény) szerint az áramkörben levő elektromotoros erők. E i = U j (3.1) 3. Gyakorlat 29A-34 Egy C kapacitású kondenzátort R ellenálláson keresztül sütünk ki. Mennyi idő alatt csökken a kondenzátor töltése a kezdeti érték 1/e 2 ed részére? Kirchhoff 2. törvénye (huroktörvény)

Részletesebben

FIZIKA ZÁRÓVIZSGA 2015

FIZIKA ZÁRÓVIZSGA 2015 FIZIKA ZÁRÓVIZSGA 2015 TESZT A következő feladatokban a három vagy négy megadott válasz közül pontosan egy helyes. Írd be az általad helyesnek vélt válasz betűjelét a táblázat megfelelő cellájába! Indokolni

Részletesebben

Felvételi, 2017 július -Alapképzés, fizika vizsga-

Felvételi, 2017 július -Alapképzés, fizika vizsga- Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2017 július -Alapképzés, fizika vizsga- Minden tétel kötelező. Hivatalból 10 pont jár. Munkaidő 3 óra. I. Az alábbi kérdésekre adott

Részletesebben

Koordináta-geometria feladatok (középszint)

Koordináta-geometria feladatok (középszint) Koordináta-geometria feladatok (középszint) 1. (KSZÉV Minta (1) 2004.05/I/4) Adott az A(2; 5) és B(1; 3) pont. Adja meg az AB szakasz felezőpontjának koordinátáit! 2. (KSZÉV Minta (2) 2004.05/I/7) Egy

Részletesebben

Newton törvények, lendület, sűrűség

Newton törvények, lendület, sűrűség Newton törvények, lendület, sűrűség Newton I. törvénye: Minden tárgy megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja

Részletesebben

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele

Rezgőmozgás. A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele Rezgőmozgás A mechanikai rezgések vizsgálata, jellemzői és dinamikai feltétele A rezgés fogalma Minden olyan változás, amely az időben valamilyen ismétlődést mutat rezgésnek nevezünk. A rezgések fajtái:

Részletesebben

Hatvani István fizikaverseny Döntő. 1. kategória

Hatvani István fizikaverseny Döntő. 1. kategória 1. kategória 1.D.1. A villamosiparban a repülő drónok nagyon hasznosak, például üzemzavar esetén gyorsan és hatékonyan tudják felderíteni, hogy hol van probléma. Egy ilyen hibakereső drón felszállás után,

Részletesebben

Fizika 1X, pótzh (2010/11 őszi félév) Teszt

Fizika 1X, pótzh (2010/11 őszi félév) Teszt Fizika X, pótzh (00/ őszi félév) Teszt A sebessé abszolút értékének időszerinti interálja meadja az elmozdulást. H Az átlayorsulás a sebesséváltozás és az eltelt idő hányadosa. I 3 A harmonikus rező mozást

Részletesebben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben

Lássuk be, hogy nem lehet a három pontot úgy elhelyezni, hogy egy inerciarendszerben Feladat: A háromtest probléma speciális megoldásai Arra vagyunk kiváncsiak, hogy a bolygó mozgásnak milyen egyszerű egyensúlyi megoldásai vannak három bolygó esetén. Az így felmerülő három-test probléma

Részletesebben

3. fizika előadás-dinamika. A tömeg nem azonos a súllyal!!! A súlytalanság állapotában is van tömegünk!

3. fizika előadás-dinamika. A tömeg nem azonos a súllyal!!! A súlytalanság állapotában is van tömegünk! 3. fizika előadás-dinamika A tömeg a testek tehetetlenségének mértéke. (kilogramm (SI), gramm, dekagramm, tonna, métermázsa, stb.) Annak a testnek nagyobb a tehetetlensége/tömege, amelynek nehezebb megváltoztatni

Részletesebben

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz?

Rezgés tesztek. 8. Egy rugó által létrehozott harmonikus rezgés esetén melyik állítás nem igaz? Rezgés tesztek 1. Egy rezgés kitérés-idő függvénye a következő: y = 0,42m. sin(15,7/s. t + 4,71) Mekkora a rezgés frekvenciája? a) 2,5 Hz b) 5 Hz c) 1,5 Hz d) 15,7 Hz 2. Egy rezgés sebesség-idő függvénye

Részletesebben

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga -

Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Sapientia Erdélyi Magyar Tudományegyetem Marosvásárhelyi Kar Felvételi, 2018 szeptember - Alapképzés, fizika vizsga - Minden tétel kötelező Hivatalból 10 pont jár Munkaidő 3 óra I Az alábbi kérdésekre

Részletesebben

Fizika feladatok október 19.

Fizika feladatok október 19. Fizika feladatok 2014. október 19. Ez a feladatgyűjtemény a villamosmérnök hallgatók korábbi jogos igényének megfelelve, nagy hiányt pótol. A kitűzött feladatok az I. féléves fizika tárgyának anyagához

Részletesebben

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés.

Előszó.. Bevezetés. 1. A fizikai megismerés alapjai Tér is idő. Hosszúság- és időmérés. SZABÓ JÁNOS: Fizika (Mechanika, hőtan) I. TARTALOMJEGYZÉK Előszó.. Bevezetés. 1. A fizikai megismerés alapjai... 2. Tér is idő. Hosszúság- és időmérés. MECHANIKA I. Az anyagi pont mechanikája 1. Az anyagi

Részletesebben

Az elméleti mechanika alapjai

Az elméleti mechanika alapjai Az elméleti mechanika alapjai Tömegpont, a továbbiakban részecske. A jelenségeket a háromdimenziós térben és időben játszódnak le: r helyzetvektor v dr dt ṙ, a dr dt r a részecske sebessége illetve gyorsulása.

Részletesebben

1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések

1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések K1A labor 1. MECHANIKA Periodikus mozgások: körmozgás, rezgések, lengések A mérés célja A címben szereplő mozgásokat mindennapi tapasztalatainkból jól ismerjük, és korábbi tanulmányainkban is foglakoztunk

Részletesebben

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika

Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika Az alábbi fogalmak és törvények jelentését/értelmezését/matematikai alakját (megfelelő mélységben) ismerni kell: Newtoni mechanika 1. előadás Vonatkoztatási rendszer Hely-idő-tömeg standardok 3-dimenziós

Részletesebben

Fizika 1 Mechanika órai feladatok megoldása 3. hét. x és z irányú komponense legyen:

Fizika 1 Mechanika órai feladatok megoldása 3. hét. x és z irányú komponense legyen: Fizika 1 Mechanika órai feladatok megoldása 3. hét Hajítás összefoglalás A testre állandó erő hat, így a gyorsulása állandó: a = F/m = konst., méghozzá a = g. Mutasson a koordinátarendszerünk z tengelye

Részletesebben

Mérnöki alapok 2. előadás

Mérnöki alapok 2. előadás Mérnöki alapok. előadás Készítette: dr. Váradi Sándor Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék 1111, Budapest, Műegyetem rkp. 3. D ép. 334. Tel:

Részletesebben

Newton törvények, erők

Newton törvények, erők Newton törvények, erők Newton I. törvénye: Minden test megtartja nyugalmi állapotát, vagy egyenes vonalú egyenletes mozgását (állandó sebességét), amíg a környezete ezt meg nem változtatja (amíg külső

Részletesebben

Mechanika I-II. Példatár

Mechanika I-II. Példatár Budapesti Műszaki és Gazdaságtudományi Egyetem Műszaki Mechanika Tanszék Mechanika I-II. Példatár 2012. május 24. Előszó A példatár célja, hogy támogassa a mechanika I. és mechanika II. tárgy oktatását

Részletesebben

Newton törvények és a gravitációs kölcsönhatás (Vázlat)

Newton törvények és a gravitációs kölcsönhatás (Vázlat) Newton törvények és a gravitációs kölcsönhatás (Vázlat) 1. Az inerciarendszer fogalma. Newton I. törvénye 3. Newton II. törvénye 4. Newton III. törvénye 5. Erők szuperpozíciójának elve 6. Különböző mozgások

Részletesebben

Oktatási Hivatal FIZIKA. I. kategória. A 2018/2019. tanévi Országos Középiskolai Tanulmányi Verseny els forduló. Javítási-értékelési útmutató

Oktatási Hivatal FIZIKA. I. kategória. A 2018/2019. tanévi Országos Középiskolai Tanulmányi Verseny els forduló. Javítási-értékelési útmutató Oktatási Hivatal A 2018/2019. tanévi Országos Középiskolai Tanulmányi Verseny els forduló FIZIKA I. kategória Javítási-értékelési útmutató A versenyz k gyelmét felhívjuk arra, hogy áttekinthet en és olvashatóan

Részletesebben

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében:

3. Az alábbi adatsor egy rugó hosszát ábrázolja a rá ható húzóerő függvényében: 1. A mellékelt táblázat a Naphoz legközelebbi 4 bolygó keringési időit és pályagörbéik félnagytengelyeinek hosszát (a) mutatja. (A félnagytengelyek Nap- Föld távolságegységben vannak megadva.) a) Ábrázolja

Részletesebben

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra

azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra ábra 4. Gyakorlat 31B-9 A 31-15 ábrán látható, téglalap alakú vezetőhurok és a hosszúságú, egyenes vezető azonos sikban fekszik. A vezetőhurok ellenállása 2 Ω. Számítsuk ki a hurok teljes 4.1. ábra. 31-15 ábra

Részletesebben

Fizika 1i, 2018 őszi félév, 4. gyakorlat

Fizika 1i, 2018 őszi félév, 4. gyakorlat Fizika 1i, 018 őszi félév, 4. gyakorlat Szükséges előismeretek: erőtörvények: rugóerő, gravitációs erő, közegellenállási erő, csúszási és tapadási súrlódás; kényszerfeltételek: kötél, állócsiga, mozgócsiga,

Részletesebben

W = F s A munka származtatott, előjeles skalármennyiség.

W = F s A munka származtatott, előjeles skalármennyiség. Ha az erő és az elmozdulás egymásra merőleges, akkor fizikai értelemben nem történik munkavégzés. Pl.: ha egy táskát függőlegesen tartunk, és úgy sétálunk, akkor sem a tartóerő, sem a nehézségi erő nem

Részletesebben

Hely, idő, haladó mozgások (sebesség, gyorsulás)

Hely, idő, haladó mozgások (sebesség, gyorsulás) Hely, idő, haladó mozgások (sebesség, gyorsulás) Térben és időben élünk. A tér és idő végtelen, nincs kezdete és vége. Minden tárgy, esemény, vagy jelenség helyét és idejét a térben és időben valamihez

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben

1. Feladatok rugalmas és rugalmatlan ütközések tárgyköréből

1. Feladatok rugalmas és rugalmatlan ütközések tárgyköréből 1. Feladatok rugalmas és rugalmatlan ütközések tárgyköréből Impulzustétel, impulzusmegmaradás törvénye 1.1. Feladat: Órai megoldásra 1. feladat Egy m = 4 kg tömegű kalapács v 0 = 6 m/s sebességgel érkezik

Részletesebben

Az éjszakai rovarok repüléséről

Az éjszakai rovarok repüléséről Erről ezt olvashatjuk [ ] - ben: Az éjszakai rovarok repüléséről Az a kijelentés, miszerint a repülés pályája logaritmikus spirális, a következőképpen igazolható [ 2 ].. ábra Az állandó v nagyságú sebességgel

Részletesebben

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN

A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN A LÉGKÖRBEN HATÓ ERŐK, EGYENSÚLYI MOZGÁSOK A LÉGKÖRBEN Egy testre ható erő, a más testekkel való kölcsönhatás mértékére jellemző fizikai mennyiség. A légkörben ható erők Külső erők: A Föld tömegéből következő

Részletesebben