Értelmezzük az alábbi jól ismert fogalmakat! Legkisebb kényszer elve, egyensúly eltolása, tömeghatás törvénye, Le Chatelier-Brown elv

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Értelmezzük az alábbi jól ismert fogalmakat! Legkisebb kényszer elve, egyensúly eltolása, tömeghatás törvénye, Le Chatelier-Brown elv"

Átírás

1 AZ EGYENSÚLYI REAKCIÓK: ALKALMAZÁSOK Az egyensúly eltolása, megfodítható eakciók Ételmezzük az alábbi jól ismet fogalmakat! Legkisebb kénysze elve, egyensúly eltolása, tömeghatás tövénye, Le Chatelie-Bown elv Tömeghatás tövénye: Adott T és p mellett egy eakció temodinamikai egyensúlyi állandója állandó! Ez nem meglep, igaz? ν B K a = a B, egyensúlyi B vagy észletesebben K a ν P Q = ap, egyensúlyiaq, egyensúlyi... ν A ν B a a.... A, egyensúlyi IV/1 ν B, egyensúlyi A kifejezésben nem maguk az individuális aktivitások, hanem az aktivitások aánya állandó. Bámely aktivitás megváltoztatása magával vonja az összes többi aktivitás megváltozását úgy, hogy az egyensúlyi állandó állandó maad! Az egyensúly eltolása: A tömeghatás tövényének elbb látott illusztációját (az aktivitások adott T és p melletti eltolásával) másképp az egyensúly eltolásának is nevezzük, hiszen megváltoztatjuk legalább az egyik egyensúlyi aktivitást, s ezzel az összes aktivitás (beleétve a megváltoztatottat is) megváltozik, felvéve egy új, az egyensúlyi állandónak megfelel étéket. Mi tolódik el? Az egyensúlyhoz tatozó! Az egyensúlyi aktivitások megváltoztatásának másik módja a hméséklet és/vagy a nyomás megváltoztatása. Ekko megváltozhat az egyensúlyi állandó étéke, s ezáltal temészetesen megváltozhatnak az egyensúlyi aktivitások is! Így úja megváltozik az egyensúlyi! Az egyensúlyhoz tatozó eakcióextenzitás megváltoztatása (ami az egyensúlyi aktivitások megváltozásában jelentkezik) jelenti tehát az egyensúly eltolását.

2 Le Chatelie-elv (más néven legkisebb kénysze elve): Láttuk a példákat az egyensúlyi állandó hméséklet- és nyomásfüggésénél, de az aktivitások megváltoztatása esetén is ugyanezt a hatást láthatjuk állandó T és p mellett. Megfodítható eakciók: G eljele egy adott kémiai eakcióban a eakció köülményeinek megváltoztatásával megváltoztatható. Ezzel megváltoztatható a eakcióextenzitás változásának iánya! Ugyanis, ha G < 0, akko a kémiai eakció önként végbemegy. Ez az egyenlet a eakciók önként lejátszódásának iányát is megmutatja! Ha olyan eakciót vizsgálunk, melye G > 0, akko a vizsgált eakció nem, megfodítottja viszont önként végbemegy! G = 0, akko a temodinamikai endsze, s így a kémiai eakció, egyensúlyban van. Ez az egyenlet a kémiai eakciók egyensúlyának a feltétele! Egy eakció szabadentalpia-változása: 0 B G + RT ln a ν B, pillanatnyi = G B Egyensúlyban: 0 ν B G + RT ln ab, egyensúlyi = 0 B Általában tehát: ν B ν B RT ln ab, egyensúlyi + RT ln ab, pillanatnyi = G, B B vagy tömöített fomában: RT ln K + RT ln I = G, a IV/

3 vagy egy másik fomában G RT ln I K a = eljelét tehát K a és I viszonya szabja meg! Ugyanis, ha I < K a akko a eakció az elehaladás iányában játszódik le, I > K a akko a eakció a eakcióegyenlethez képest fodított iányban játszódik le, I = K a akko temodinamikai egyensúly áll fenn. Ezek szeint a eakció iánya ( G eljele) a két tényez, K a és I, megváltoztatásával éhet el. Vizsgáljunk meg két esetet: 1. I megváltoztatása adott K a mellett. Ez a pillanatnyi aktivitások megváltoztatását jelenti adott T és p mellett. I étékét tehát úgy kell megváltoztatni az aktivitások megváltoztatásával, hogy a eakció a fenti elációk alapján a megkívánt iányban játszódják le. Ha K a = 10 4, akko a eakció elehaladásához az szükséges, hogy I < 10 4 legyen. Tapasztalat szeint azon eakciók iánya változtatható meg eálisan, melyeke 10-4 < K a < , vagy másképp G = kj/mol. Ez azzal a ténnyel van összefüggésben, hogy az aktivitások nem változtathatóak teljesen tetszés szeint.. K a megváltoztatása adott I mellett. Ez T és p megváltoztatását jelenti adott pillanatnyi aktivitások mellett. Ez is az I/K a hányados megváltoztatását jelenti. T változtatása eálisan a K tatományt, p változtatása az Pa nyomástatományt foghatja át. G IV/3

4 ÁBRA: RM. 7.1 ÁBRA: RM IV/4

5 Nem-megfodítható eakciók: Olyan eakciók, melyek esetén az elbb felsoolt két módsze egyike sem kivitelezhet a eakció megfodításáa. Példa: H + O = H O 0 G = -36 kj/mol Egyensúlya vezet eakciók: G étéke kezdetben nem nulla, de a eakció ele haladásával ( növekedésével) nullához tat. Egyensúlyi eakció: G étéke nulla, a eakció (és a visszafelé lejátszódó eakció is) folyamatosan végbemegy ( nem változik). IV/5

6 Heteogén kémiai egyensúlyok A eagáló komponensek több fázisban is jelen vannak, ezét mind a kémiai egyensúly, mind a fázisegyensúly feltételeinek fenn kell állnia. Két példát vizsgálunk, mely szilád-gáz heteogén endszeekben játszódik le. 1. Példa: szén oxidációja A eakcióegyenlet: C + O CO Feltételezéseink: - A endszeben az oxigén és a szén-dioxid csak a gázfázisban van jelen, a szén mindkét fázisban. ÁBRA: RM A gázok ideális gázként viselkednek, ezét a fugacitások használatától eltekinthetünk. - A endszeben fennáll mind a temikus, mind a mechanikai egyensúly. A endszeben fennálló fázisegyensúly feltétele: µ C ( g ) ( T, p) = µ C ( sz) ( T, p) A endszeben fennálló kémiai egyensúly feltétele (a gázfázisban): µ CO ( ) ( T, p) ( ) ( T, p) ( ) ( T, p) = g µ C g µ O g IV/6 0

7 Ez az egyenlet mibl következik? Az egyes komponensek kémiai potenciáljai a következképp íhatók fel: µ O ( g ) T, p) = µ O ( T ( T ) + RT ln po / ( ) p µ CO ( g ) T, p) = µ CO ( g ( T ) + RT ln pco / ( ) p A széne pedig: µ C ( g ) ( T, p) = µ C ( g ) ( T ) + RT ln pc / p, de mivel µ T, p) = ( T, ), C ( g ) ( µ C ( sz) p megmutatható (tehát azét nem teljesen tiviális!), hogy * µ C ( g ) ( T, p) = µ C ( sz) ( T ) (ugyanis a szilád fázis tiszta szén) * µ C ( sz ) ( T ) = µ C ( g ) ( T ) + RT ln pc / p. Az egyenletekbl kétféle egyensúlyi állandó is felíható! 1. eset Ekko az egyensúlyi állandó megadható a nyomásokkal kifejezve: ahol G = µ RT ln K, CO ( g ) ( T ) µ O ( g ) ( T ) µ C ( g ) ( T ) = K ap = ( pco / p ) ( p / p )( p / p ) C O ap Ételmezés: a eakció csak a gázfázisban játszódik le. IV/7

8 Hátány: a gázfázisú szén paciális nyomása nagyon kicsi, nehezen méhet (ha egyáltalán méhet). A pobléma elkeülhet, ha felismejük, hogy a szén gázfázisbeli nyomása egy konstans, amit a fázisegyensúly szab meg.. eset Az egyensúlyi állandó ekko is megadható a nyomásokkal kifejezve: G = µ ( T ) µ ( T ) µ ( T ) = RT ln K ( * CO g ) O ( g ) C ( sz ) ap, ahol K ap ( pco / p ) ( p / p ) =. O Vegyük észe, hogy a szén gázfázisbeli kémiai potenciálja helyett a vele egyenl szilád fázisbeli kémiai potenciált használjuk. Az így definiált egyensúlyi állandó tekinthet egy észleges egyensúlyi állandónak, vagy egy vegyes egyensúlyi állandónak is. Ugyanis: ( pco / p ) ( p / p ) = ap = O O ( pco / p ) K apx ( p / p ) x K = ahol x C =1, a szén móltötje szilád fázisban. Ételmezés: a eakció a fázishatáon játszódik le. K ap és K ap abban különbözik, hogy az utóbbi má nem tatalmazza a szén gázfázisbeli nyomását, ami állandó. A. esetben tehát édektelen, hogy a szén jelen van-e a gázfázisban. Gyakolatban ez utóbbi módon szokás megadni a heteogén (szilád/gáz) eakcióka vonatkozó egyensúlyi állandót. C, IV/8

9 Tekintsünk egy másik példát is! CaCO 3 CaO + CO Ebben a eakcióban a CaCO 3 és a CaO jelen van tiszta szilád fázis fomájában, a CO gázfázisban található. Az elz eakcióban tekintett. eset analízisét felhasználva az egyensúlyi állandó: K ( p / p ) CO x CaO = = ( pco p ). x apx / CaCO 3 Mivel a fenti eakcióa igaz RT ln K a = G, K = G apx exp RT, vagy a szén-dioxid egyensúlyi nyomásával: ( ) G p p = CO / exp RT., vagy ( ) = S H pco / p exp exp RT R Általában fém-kabonátok bomlásáa S > 0. Az egyenlet tovább közelíthet: ( ) H p p = A CO / exp RT Az egyensúlyi nyomás hmésékletfüggését tehát H eljele hatáozza meg. Ha H > 0, akko az egyensúlyi nyomás n a hméséklettel. Azt a IV/9

10 hmésékletet, melyen a szén-dioxid egyensúlyi nyomása eléi a küls nyomást, bomlási hmésékletnek nevezzük. Figyelem! Mind H, mind S függenek a hméséklettl! ÁBRA: RM Édemes összehasonlítani a különböz egyensúlyok paaméteeinek hmésékletfüggését. Ismejük fel az egyenletek alaki hasonlóságát! Lásd táblázat a RM. Jegyzetben, Reakció egyensúly, 7. oldal. IV/10

11 A eakciók lefutásának megítélése: fémek elállítása oxidjaikból Egy eakció spontán lejátszódásának temodinamikai feltételét szabja meg. Mivel G eljele G = H T S, a eakcióh, H, eljele még nem feltétlenül adja meg a eakció iányát (ezt állítja a má túlhaladott Bethelot-Thomson elv), hiszen S is befolyásolja eljelét. G G (s így maga a eakció lejátszódásának kitéiuma is) temészetesen függ a endsze temodinamikai állapotjelzitl. Most csak a hmésékletfüggést vizsgáljuk. Induljunk ki az alábbi jól ismet összefüggésbl: G T p = S. Els lépésben tételezzük fel, hogy S független a hméséklettl. Ekko a eakció szabadentalpia-változása lineáisan változik a hméséklettel! S eljele temészetesen a kiindulási anyagok és a temékek moláis entópiáitól függ. Abban az esetben, ha a temékek endezetlenebbek a kiindulási anyagoknál (például gázképzdéssel jáó eakciók), S eljele pozitív, így G meedeksége a hméséklet függvényében negatív lesz. Ilyen esetekben T növelése növeli a eakció temodinamikai hajtóeejét. Példa: C + O CO Ha a endezetlenség nagyjából azonos, akko nulla lesz: S étéke megközelítleg C + O CO IV/11

12 Ha gázfázis tnik el, és kondenzált fázis jön léte, akko S eljele negatív, így G meedeksége a hméséklet függvényében pozitív lesz. Ilyen esetekben T növelése csökkenti a eakció temodinamikai hajtóeejét. Ilyenek a fémoxidációs eakciók. Kvantitatív következtetések levonásához az azonos típusú eakciók összehasonlítását azonos köülmények között kell vizsgálni. Ezét G hmésékletfüggése helyett G hmésékletfüggését szokás megvizsgálni. A G -T diagamokat Ellingham diagamoknak nevezzük. ÁBRA: RM Az ábán tehát G Fontos észevenni: -t ábázoljuk a hméséklet függvényében. - az itt feltüntetett összes fém oxidációs eakciójának csökken a temodinamikai hajtóeeje (pontosabban?) T növelésével. IV/1

13 - Mint azt jósoltuk, a C + O CO eakció temodinamikai hajtóeeje gyakolatilag független a hméséklettl. - Mint azt jósoltuk, a C + O CO eakció temodinamikai hajtóeeje n T növelésével. Az ába segítségével következtetések vonhatók le a fém-oxidok edukálhatóságáól. ÁBRA: RM MeO + C Me + CO eakció felíható, mint az ábán feltüntetett két eakció különbsége! Tehát: G ( edukció) = G ( CO) G ( MeO). Ez a kifejezés csak akko lesz negatív, ha. G ( CO) < G ( MeO) Az ába alapján az is megjósolható, hogy a edukció soán inkább CO, vagy CO keletkezik. IV/13

14 A eakciók lefutásának megítélése: két másik példa Szénhidogének elemeikbl való képzdési eakciójának szabadentalpiaváltozása: - az entópia változása S < 0 a képzdési eakció soán, ezét a meedekségek pozitívak - T növelésével a szénhidogének bomlása temodinamikailag lehetségessé válik - Kisebb T-n a paaffinok, nagyobb T-n az olefinek stabilabbak. - Kolaj nagy hmésékleten vezetett desztillációja (kakklepálás) ÁBRA: RM IV/14

15 Fém-kabonátok képzdési szabadentalpia-változásai fém-oxid és széndioxid eakciójából: - A képzdési eakció fodítottja a bomlási eakció Milyen kapcsolatban van egymással a képzdési és a bomlási eakció egyensúlyi állandója és standad szabadentalpia-változása? - Az a kabonát a stabilisabb, melynek képzdési szabadentalpia-változása negatívabb. Vigyázat! Az ábán lemaadt a negatív eljel! - A legkevésbé stabilis ZnCO 3 bomlásako a CO egyensúlyi nyomása a felsoolt kabonátok közül a legalacsonyabb hmésékleten éi el a bomlási nyomást! ÁBRA: RM IV/15

16 Biokémiai enegiatemel eakciók temodinamikája Az anyagcsee egyik központi enegiaaktáozó vegyülete az adenozintifoszfát (ATP). ÁBRA: Albets-Johnson-Lewis-Raff-Robets-Walte: The biology of the cell Hatásának lényege, hogy enegia felszabadulása mellett hidolízis soán képes teminális foszfát csopotjának leadásáa. Az ATP ekko ADP-vé alakul. A felszabadult enegia enzimek segítségével enegia befektetésével lejátszódó folyamatok enegiaigényének fedezésée fodítódhat az él szevezetekben. ÁBRA: Albets-Johnson-Lewis-Raff-Robets-Walte: The biology of the cell IV/16

17 A hidolízis egyenlete: ATP(aq) + H O(l) ADP(aq) + P - (aq) + H + (aq) Temodinamikai pontosítás: - a hidolízis standad szabadentalpia-változásáa vagyunk kíváncsiak például az embei szevezet hmésékletén, 37 C-on. - Mi legyen a standad állapot? Standad állapotban az aktivitás egységnyi. (Ezt honnan tudjuk?) - A H + (aq) standad állapota ph=0-t jelentene! Nem paktikus. Legyen a biológiai standadállapotban ph=7. - A temodinamikai és a biológiai standadállapot között egysze kapcsolat található: ( db H + (aq) keletkezésével jáó hidolízis esetén) G = G + 7ν RT ln10 - Az ATP hidolízisée 37 C-on: G =-30 kj/mol, H =-0 kj/mol, S =+34 J/mol K, - A eakció végbemenetének temodinamikai hajtóeeje nagy. - A eakció hméséklete ézékeny (lásd az entópia nagy étékét). - ATP képzdése aeob vagy anaeob köülmények között. IV/17

18 - Aeob anyagcsee: Glükóz pioszlsava mitokondiumban Acetyl-CoAcitátkö, teminális oxidáció (CO és H O képzdésével)38 ATP molekula képzdik 1 glükóz molekulából! Mivel a glükz égésée G =-880 kj/mol, ez a hozzáféhet enegia köülbelül 40 %-a. Ennyi enegia aktáozódik el a sejt céljaia! Mitokondium: sejtbe integálódott si baktéium, speciális sejtoganellum, melyben ATP szintetizálása mellett a sejtlégzés játszódik le. AcetylCoA: acetil-koenzim-a ÁBRA: Gombköt-Sajgó: Biokémia IV/18

19 - Anaeob anyagcsee: a belélegzett oxigén nem játszik szeepet benne (oxigénhiányos könyezet). Például: a szülés soán a magzatban, vagy nagy intenzitású izommunkánál, de a kokodil hitelen mozdulatai soán is! A folyamat neve glikolízis. A eakció soán molekula tejsav, vagy molekula etanol keletkezik ATP mellett. Például: Glükóz + ADP + P - tejsav + ATP + H O A folyamata: G =-18 kj/mol, így önként lejátszódik. Ez a glükóz lebontásának egy si útvonala, ugyanis minden sejt képes á, azok amelyekben nincs mitokondium (pl. vöösvésejtek) csak így juthatnak glükózból enegiához. IV/19

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható émiai egyensúly Fizikai kémia előadások 6. Tuányi Tamás ELTE émiai Intézet Sztöchiometiai együttható ν sztöchiometiai együttható általános kémiai eakció: (a temokémiában használtuk előszö) ν A 0 ν A eaktánsa

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 6'-1 6'-2 6'-3 6'-4 6'-5 Dinamikus egyensúly Az egyensúlyi állandó Az egyensúlyi állandókkal kapcsolatos összefüggések Az egyensúlyi állandó számértékének jelentősége A reakció hányados, Q:

Részletesebben

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27

Az egyensúly. Általános Kémia: Az egyensúly Slide 1 of 27 Az egyensúly 10-1 Dinamikus egyensúly 10-2 Az egyensúlyi állandó 10-3 Az egyensúlyi állandókkal kapcsolatos összefüggések 10-4 Az egyensúlyi állandó számértékének jelentősége 10-5 A reakció hányados, Q:

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 6-1 Spontán folyamat 6-2 Entrópia 6-3 Az entrópia kiszámítása 6-4 Spontán folyamat: a termodinamika második főtétele 6-5 Standard szabadentalpia változás, ΔG 6-6 Szabadentalpia változás

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai

Kémiai átalakulások. A kémiai reakciók körülményei. A rendszer energiaviszonyai Kémiai átalakulások 9. hét A kémiai reakció: kötések felbomlása, új kötések kialakulása - az atomok vegyértékelektronszerkezetében történik változás egyirányú (irreverzibilis) vagy megfordítható (reverzibilis)

Részletesebben

Bevezetés a biokémiába fogorvostan hallgatóknak

Bevezetés a biokémiába fogorvostan hallgatóknak Bevezetés a biokémiába fogorvostan hallgatóknak Munkafüzet 14. hét METABOLIZMUS III. LIPIDEK, ZSÍRSAVAK β-oxidációja Szerkesztette: Jakus Péter Név: Csoport: Dátum: Labor dolgozat kérdések 1.) ATP mennyiségének

Részletesebben

Spontaneitás, entrópia

Spontaneitás, entrópia Spontaneitás, entrópia 11-1 Spontán és nem spontán folyamat 11-2 Entrópia 11-3 Az entrópia kiszámítása 11-4 Spontán folyamat: a termodinamika második főtétele 11-5 Standard szabadentalpia változás, ΔG

Részletesebben

A metabolizmus energetikája

A metabolizmus energetikája A metabolizmus energetikája Dr. Bódis Emőke 2015. október 7. JJ9 Miért tanulunk bonyolult termodinamikát? Miért tanulunk bonyolult termodinamikát? Mert a biokémiai rendszerek anyag- és energiaáramlásának

Részletesebben

Elektrokémia 03. (Biologia BSc )

Elektrokémia 03. (Biologia BSc ) lektokéma 03. (Bologa BSc ) Cellaeakcó potencálja, elektódeakcó potencálja, Nenst-egyenlet Láng Győző Kéma Intézet, Fzka Kéma Tanszék ötvös Loánd Tudományegyetem Budapest Cellaeakcó Közvetlenül nem méhető

Részletesebben

Biofizika (molekuláris biofizika és biológiai anyagtan) 2014, tavaszi szemeszter

Biofizika (molekuláris biofizika és biológiai anyagtan) 2014, tavaszi szemeszter A biofizika a biológia és fizika hatátudománya, mely fizikai és fizikai-kémiai módszeeket használ az élő endszeek tanulmányozásáa. Biofizika (molekuláis biofizika és biológiai anyagtan) 014, tavaszi szemeszte

Részletesebben

III. Differenciálszámítás

III. Differenciálszámítás III. Diffeenciálszámítás A diffeenciálszámítás számunka elsősoban aa való hogy megállaítsuk hogyan változnak a (fizikai) kémiában nagy számban előfoló (többváltozós) függvények. A diffeenciálszámítás megadja

Részletesebben

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai

Rugalmas hullámok terjedése. A hullámegyenlet és speciális megoldásai Rugalmas hullámok tejedése. A hullámegyenlet és speciális megoldásai Milyen hullámok alakulhatnak ki ugalmas közegben? Gázokban és folyadékokban csak longitudinális hullámok tejedhetnek. Szilád közegben

Részletesebben

Kémiai reakciók sebessége

Kémiai reakciók sebessége Kémiai reakciók sebessége reakciósebesség (v) = koncentrációváltozás változáshoz szükséges idő A változás nem egyenletes!!!!!!!!!!!!!!!!!! v= ± dc dt a A + b B cc + dd. Melyik reagens koncentrációváltozását

Részletesebben

HETEROGÉN ELEKTROKÉMIAI RENDSZEREK EGYENSÚLYAI II. ELEKTRÓDOK

HETEROGÉN ELEKTROKÉMIAI RENDSZEREK EGYENSÚLYAI II. ELEKTRÓDOK HETEROGÉN ELEKTROKÉMIAI RENDSZEREK EGYENSÚLYAI II. ELEKTRÓDOK Elektódok Elektód: olyan heteogén elektokémiai endsze, amelyben legalább két fázis éintkezik, s ezek közül az egyik elekton- vagy félvezet,

Részletesebben

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont

1. feladat Összesen: 8 pont. 2. feladat Összesen: 11 pont. 3. feladat Összesen: 7 pont. 4. feladat Összesen: 14 pont 1. feladat Összesen: 8 pont 150 gramm vízmentes nátrium-karbonátból 30 dm 3 standard nyomású, és 25 C hőmérsékletű szén-dioxid gáz fejlődött 1800 cm 3 sósav hatására. A) Írja fel a lejátszódó folyamat

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van!

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI II. Ismerjük fel, hogy többkomponens fázisegyensúlyokban a folyadék fázisnak kitüntetett szerepe van! TÖKOMPONENS RENDSZEREK FÁZISEGYENSÚLYI II Ismerjük fel hogy többkomonens fázisegyensúlyokban a folyadék fázisnak kitüntetett szeree van! Eddig: egymásban korátlanul oldódó folyadékok folyadék-gz egyensúlyai

Részletesebben

Az előadás vázlata:

Az előadás vázlata: Az előadás vázlata: I. emokémiai egyenletek. A eakcióhő temodinamikai definíciója. II. A standad állapot. Standad képződési entalpia. III. Hess-tétel. IV. Reakcióentalpia számítása képződési entalpia (képződéshő)

Részletesebben

q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n)

q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n) ERMOKÉMIA A vzsgált általános folyaatok és teodnaka jellezésük agyjuk egy pllanata az egysze D- endszeeket, s tekntsük azokat a változásokat, elyeket kísé entalpa- (ll. bels enega-) változásokkal á koább

Részletesebben

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.

Részletesebben

13 Elektrokémia. Elektrokémia Dia 1 /52

13 Elektrokémia. Elektrokémia Dia 1 /52 13 Elektrokémia 13-1 Elektródpotenciálok mérése 13-2 Standard elektródpotenciálok 13-3 E cella, ΔG és K eq 13-4 E cella koncentráció függése 13-5 Elemek: áramtermelés kémiai reakciókkal 13-6 Korrózió:

Részletesebben

A METABOLIZMUS ENERGETIKÁJA

A METABOLIZMUS ENERGETIKÁJA A METABOLIZMUS ENERGETIKÁJA Futó Kinga 2014.10.01. Metabolizmus Metabolizmus = reakciók együttese, melyek a sejtekben lejátszódnak. Energia nyerés szempontjából vannak fototrófok ill. kemotrófok. szervesanyag

Részletesebben

A METABOLIZMUS ENERGETIKÁJA

A METABOLIZMUS ENERGETIKÁJA A METABOLIZMUS ENERGETIKÁJA Futó Kinga 2013.10.02. Metabolizmus Metabolizmus = reakciók együttese, melyek a sejtekben lejátszódnak. Energia nyerés szempontjából vannak fototrófok ill. kemotrófok. szervesanyag

Részletesebben

A vas-oxidok redukciós folyamatainak termodinamikája

A vas-oxidok redukciós folyamatainak termodinamikája BUDAESTI MŰSZAKI EGYETEM Anyagtudomány és Technológia Tanszék Anyag- és gyártástechnológia (hd) féléves házi feladat A vas-oxidok redukciós folyamatainak termodinamikája Thiele Ádám WTOSJ Budapest, 11

Részletesebben

Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző

Elektrokémia 04. Cellareakció potenciálja, elektródreakció potenciálja, termodinamikai paraméterek meghatározása példa. Láng Győző Elektokémi 04. Cellekció potenciálj, elektódekció potenciálj, temodinmiki pméteek meghtáozás péld Láng Győző Kémii Intézet, Fiziki Kémii Tnszék Eötvös Loánd Tudományegyetem Budpest Az elmélet lklmzás konkét

Részletesebben

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 1. forduló Haladók III. kategória

Arany Dániel Matematikai Tanulóverseny 2017/2018-as tanév 1. forduló Haladók III. kategória Bolyai János Matematikai Tásulat Aany Dániel Matematikai Tanulóveseny 017/018-as tanév 1. foduló Haladók III. kategóia Megoldások és javítási útmutató 1. Anna matematika házi feladatáa áfolyt a tinta.

Részletesebben

462 Trigonometrikus egyenetek II. rész

462 Trigonometrikus egyenetek II. rész Tigonometikus egyenetek II ész - cosx N cosx Alakítsuk át az egyenletet a következô alakúa: + + N p O O Ebbôl kapjuk, hogy cos x $ p- Ennek az egyenletnek akko és csak akko van valós megoldása, ha 0 #

Részletesebben

2012.05.02. 1 tema09_20120426

2012.05.02. 1 tema09_20120426 9. Elektokémia kísélet: vasszög éz-szulfát oldatban cink eszelék éz-szulfát oldatban buttó eakció: + = + oxidációs folyamat: = + 2e edukciós folyamat: + 2e = Tegyünk egy ézlemezt éz-szulfát oldatba! Rövid

Részletesebben

A bioenergetika a biokémiai folyamatok során lezajló energiaváltozásokkal foglalkozik.

A bioenergetika a biokémiai folyamatok során lezajló energiaváltozásokkal foglalkozik. Modul cím: MEDICINÁLIS ALAPISMERETEK BIOKÉMIA BIOENERGETIKA I. 1. kulcsszó cím: Energia A termodinamika első főtétele kimondja, hogy a különböző energiafajták átalakulhatnak egymásba ez az energia megmaradásának

Részletesebben

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján.

A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. A 27/2012. (VIII. 27.) NGM rendelet (29/2016. (VIII. 26.) NGM rendelet által módosított) szakmai és vizsgakövetelménye alapján. Szakképesítés azonosítószáma és megnevezése 54 524 03 Vegyész technikus Tájékoztató

Részletesebben

Mire költi a szervezet energiáját?

Mire költi a szervezet energiáját? Glükóz lebontás Lebontó folyamatok A szénhidrátok és zsírok lebontása során széndioxid és víz keletkezése közben energia keletkezik (a széndioxidot kilélegezzük, a vizet pedig szervezetünkben felhasználjuk).

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV.

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBFÁZISÚ, TÖBBKOMPONENS RENDSZEREK Kétkomponens szilárd-folyadék egyensúlyok Néhány fogalom: - olvadék - ötvözetek - amorf anyagok Állapotok feltüntetése:

Részletesebben

Elektrokémia 02. (Biologia BSc )

Elektrokémia 02. (Biologia BSc ) Elektokéma 02. (Bologa BSc ) Elektokéma cella, Kapocsfeszültség, Elektódpotencál, Elektomotoos eő Láng Győző Kéma Intézet, Fzka Kéma Tanszék Eötvös Loánd Tudományegyetem Budapest Temodnamka paaméteek TERMODINAMIKAI

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53

Reakciókinetika. Általános Kémia, kinetika Dia: 1 /53 Reakciókinetika 9-1 A reakciók sebessége 9-2 A reakciósebesség mérése 9-3 A koncentráció hatása: a sebességtörvény 9-4 Nulladrendű reakció 9-5 Elsőrendű reakció 9-6 Másodrendű reakció 9-7 A reakciókinetika

Részletesebben

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz

Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz Fizikai kémia 2 Reakciókinetika házi feladatok 2016 ősz A házi feladatok beadhatóak vagy papír alapon (ez a preferált), vagy e-mail formájában is az rkinhazi@gmail.com címre. E-mail esetén ügyeljetek a

Részletesebben

Általános Kémia, 2008 tavasz

Általános Kémia, 2008 tavasz 9 Elektrokémia 9-1 Elektródpotenciálok mérése 9-1 Elektródpotenciálok mérése 9-2 Standard elektródpotenciálok 9-3 E cell, ΔG, és K eq 9-4 E cell koncentráció függése 9-5 Elemek: áramtermelés kémiai reakciókkal

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása

Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása Oktatási Hivatal I. FELADATSOR Országos Középiskolai Tanulmányi Verseny 2009/2010. Kémia I. kategória II. forduló A feladatok megoldása 1. B 6. E 11. A 16. E 2. A 7. D 12. A 17. C 3. B 8. A 13. A 18. C

Részletesebben

A termodinamika I. főtétele

A termodinamika I. főtétele A temodinamika I. főtétele Fizikai kémia előadások biológusoknak 1. uányi amás ELE Kémiai Intézet A temodinamika tanulása elé: A temodinamika Ó-Egyiptom: közéthető módszeek téglalap és kö alakú földek

Részletesebben

Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye

Kémiai egyensúlyok [CH 3 COOC 2 H 5 ].[H 2 O] [CH3 COOH].[C 2 H 5 OH] K = k1/ k2 = K: egyensúlyi állandó. Tömeghatás törvénye Kémiai egyensúlyok CH 3 COOH + C 2 H 5 OH CH 3 COOC 2 H 5 + H 2 O v 1 = k 1 [CH 3 COOH].[C 2 H 5 OH] v 2 = k 2 [CH 3 COOC 2 H 5 ]. [H 2 O] Egyensúlyban: v 1 = v 2 azaz k 1 [CH 3 COOH].[C 2 H 5 OH] = k

Részletesebben

7 Elektrokémia. 7-1 Elektródpotenciálok mérése

7 Elektrokémia. 7-1 Elektródpotenciálok mérése 7 Elektrokémia 7-1 Elektródpotenciálok mérése 7-2 Standard elektródpotenciálok 7-3 E cell, ΔG, és K eq 7-4 E cell koncentráció függése 7-5 Elemek: áramtermelés kémiai reakciókkal 7-6 Korrózió: nem kívánt

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2.

6. változat. 3. Jelöld meg a nem molekuláris szerkezetű anyagot! A SO 2 ; Б C 6 H 12 O 6 ; В NaBr; Г CO 2. 6. változat Az 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Jelöld meg azt a sort, amely helyesen

Részletesebben

Tiszta anyagok fázisátmenetei

Tiszta anyagok fázisátmenetei Tiszta anyagok fázisátenetei Fizikai kéia előadások 4. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 1. oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1997 JAVÍTÁSI ÚTMUTATÓ I. A HIDROGÉN, A HIDRIDEK 1s 1, EN=2,1; izotópok:,, deutérium,, trícium. Kétatomos molekula, H 2, apoláris. Szobahőmérsékleten

Részletesebben

TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek

TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek TALAJVÉDELEM XI. A szennyezőanyagok terjedését, talaj/talajvízbeli viselkedését befolyásoló paraméterek A talajszennyezés csökkenése/csökkentése bekövetkezhet Természetes úton Mesterséges úton (kármentesítés,

Részletesebben

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei

Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdasá Adatgyűjtés, mérési alapok, a környezetgazdálkodás fontosabb műszerei KÖRNYEZETGAZDÁLKODÁSI

Részletesebben

Savak bázisok. Csonka Gábor Általános Kémia: 7. Savak és bázisok Dia 1 /43

Savak bázisok. Csonka Gábor Általános Kémia: 7. Savak és bázisok Dia 1 /43 Savak bázisok 12-1 Az Arrhenius elmélet röviden 12-2 Brønsted-Lowry elmélet 12-3 A víz ionizációja és a p skála 12-4 Erős savak és bázisok 12-5 Gyenge savak és bázisok 12-6 Több bázisú savak 12-7 Ionok

Részletesebben

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható!

A feladatok megoldásához csak a kiadott periódusos rendszer és számológép használható! 1 MŰVELTSÉGI VERSENY KÉMIA TERMÉSZETTUDOMÁNYI KATEGÓRIA Kedves Versenyző! A versenyen szereplő kérdések egy része általad már tanult tananyaghoz kapcsolódik, ugyanakkor a kérdések másik része olyan ismereteket

Részletesebben

O k t a t á si Hivatal

O k t a t á si Hivatal k t a t á si Hivatal I. FELADATSR 2013/2014. tanévi rszágos Középiskolai Tanulmányi Verseny második forduló KÉMIA I. KATEGÓRIA Javítási-értékelési útmutató A következő kérdésekre az egyetlen helyes választ

Részletesebben

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:...

T I T - M T T. Hevesy György Kémiaverseny. A megyei forduló feladatlapja. 8. osztály. A versenyző jeligéje:... Megye:... T I T - M T T Hevesy György Kémiaverseny A megyei forduló feladatlapja 8. osztály A versenyző jeligéje:... Megye:... Elért pontszám: 1. feladat:... pont 2. feladat:... pont 3. feladat:... pont 4. feladat:...

Részletesebben

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4.

1. változat. 4. Jelöld meg azt az oxidot, melynek megfelelője a vas(iii)-hidroxid! A FeO; Б Fe 2 O 3 ; В OF 2 ; Г Fe 3 O 4. 1. változat z 1-től 16-ig terjedő feladatokban négy válaszlehetőség van, amelyek közül csak egy helyes. Válaszd ki a helyes választ és jelöld be a válaszlapon! 1. Melyik sor fejezi be helyesen az állítást:

Részletesebben

7. Kémia egyenletek rendezése, sztöchiometria

7. Kémia egyenletek rendezése, sztöchiometria 7. Kémia egyenletek rendezése, sztöchiometria A kémiai egyenletírás szabályai (ajánlott irodalom: Villányi Attila: Ötösöm lesz kémiából, Példatár) 1.tömegmegmaradás, elemek átalakíthatatlansága az egyenlet

Részletesebben

Reakció kinetika és katalízis

Reakció kinetika és katalízis Reakció kinetika és katalízis 1. előadás: Alapelvek, a kinetikai eredmények analízise Felezési idők 1/22 2/22 : A koncentráció ( ) időbeli változása, jele: mol M v, mértékegysége: dm 3. s s Legyen 5H 2

Részletesebben

Általános Kémia Gyakorlat II. zárthelyi október 10. A1

Általános Kémia Gyakorlat II. zárthelyi október 10. A1 2008. október 10. A1 Rendezze az alábbi egyenleteket! (5 2p) 3 H 3 PO 3 + 2 HNO 3 = 3 H 3 PO 4 + 2 NO + 1 H 2 O 2 MnO 4 + 5 H 2 O 2 + 6 H + = 2 Mn 2+ + 5 O 2 + 8 H 2 O 1 Hg + 4 HNO 3 = 1 Hg(NO 3 ) 2 +

Részletesebben

AZ ELEKTROKÉMIA VÁLOGATOTT ALKALMAZÁSI TERÜLETEI

AZ ELEKTROKÉMIA VÁLOGATOTT ALKALMAZÁSI TERÜLETEI AZ ELEKTROKÉMIA VÁLOGATOTT ALKALMAZÁSI TERÜLETEI Elektrokémiai áramforrások Csoportosításuk: - primer elemek: nem tölthetk újra - szekunder elemek: újabb kisütési-feltöltési ciklus lehetséges - tüzelanyag

Részletesebben

Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1

Általános Kémia. Sav-bázis egyensúlyok. Ecetsav és sósav elegye. Gyenge sav és erős sav keveréke. Példa8-1. Példa 8-1 Sav-bázis egyensúlyok 8-1 A közös ion effektus 8-1 A közös ion effektus 8-2 ek 8-3 Indikátorok 8- Semlegesítési reakció, titrálási görbe 8-5 Poliprotikus savak oldatai 8-6 Sav-bázis egyensúlyi számítások,

Részletesebben

Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik.

Redox reakciók. azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Redox reakciók azok a reakciók, melyekben valamely atom oxidációs száma megváltozik. Az oxidációs szám megadja, hogy egy atomnak mennyi lenne a töltése, ha gondolatban a kötő elektronpárokat teljes mértékben

Részletesebben

Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo

Fluidum-kőzet kölcsönhatás: megváltozik a kőzet és a fluidum összetétele és új egyensúlyi ásványparagenezis jön létre Székyné Fux V k álimetaszo Hidrotermális képződmények genetikai célú vizsgálata Bevezetés a fluidum-kőzet kölcsönhatás, és a hidrotermális ásványképződési környezet termodinamikai modellezésébe Dr Molnár Ferenc ELTE TTK Ásványtani

Részletesebben

Fázisok. Fizikai kémia előadások 3. Turányi Tamás ELTE Kémiai Intézet. Fázisok

Fázisok. Fizikai kémia előadások 3. Turányi Tamás ELTE Kémiai Intézet. Fázisok Fázisok Fizikai kéia előadások 3. Turányi Taás ELTE Kéiai Intézet Fázisok DEF egy rendszer hoogén, ha () nincsenek benne akroszkoikus határfelülettel elválasztott részek és () az intenzív állaotjelzők

Részletesebben

REDOXI REAKCIÓK GYAKORLÁSA. Készítette: V.Baráth Csilla

REDOXI REAKCIÓK GYAKORLÁSA. Készítette: V.Baráth Csilla REDOXI REAKCIÓK GYAKORLÁSA Készítette: V.Baráth Csilla Milyen kapcsolat van köztük és a redoxi reakció között? 1.NEVEZD MEG A KÉPEN LÁTHATÓ RAJZFILM FIGURÁKAT! 1.NEVEZD MEG A KÉPEN LÁTHATÓ RAJZFILM FIGURÁKAT!

Részletesebben

Reakciókinetika és katalízis

Reakciókinetika és katalízis Reakciókinetika és katalízis 2. előadás: 1/18 Kinetika: Kísérletekkel megállapított sebességi egyenlet(ek). A kémiai reakció makroszkópikus, fenomenológikus jellemzése. 1 Mechanizmus: Az elemi lépések

Részletesebben

Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot

Reakciókinetika. aktiválási energia. felszabaduló energia. kiindulási állapot. energia nyereség. végállapot Reakiókinetika aktiválási energia kiindulási állapot energia nyereség felszabaduló energia végállapot Reakiókinetika kinetika: mozgástan reakiókinetika (kémiai kinetika): - reakiók időbeli leírása - reakiómehanizmusok

Részletesebben

9. ábra. A 25B-7 feladathoz

9. ábra. A 25B-7 feladathoz . gyakolat.1. Feladat: (HN 5B-7) Egy d vastagságú lemezben egyenletes ρ téfogatmenti töltés van. A lemez a ±y és ±z iányokban gyakolatilag végtelen (9. ába); az x tengely zéuspontját úgy választottuk meg,

Részletesebben

K=1, tiszta anyagokról van szó. Példa: víz, széndioxid. Jelöljük a komponenst A-val.

K=1, tiszta anyagokról van szó. Példa: víz, széndioxid. Jelöljük a komponenst A-val. EGYKOMPONENS RENDSZEREK FÁZISEGYENSÚLYA FÁZISOK STABILITÁSA: A FÁZISDIAGRAMOK K1, tiszta anyagokról van szó Példa: víz, széndioxid Jelöljük a komonenst A-val Legyen jelen egy ázis Hogyan változik az A

Részletesebben

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások

Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások Oktatási Hivatal Országos Középiskolai Tanulmányi Verseny 2010/2011. tanév Kémia I. kategória 2. forduló Megoldások I. FELADATSOR 1. C 6. C 11. E 16. C 2. D 7. B 12. E 17. C 3. B 8. C 13. D 18. C 4. D

Részletesebben

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk.

A TERMODINAMIKA I. AXIÓMÁJA. Egyszerű rendszerek egyensúlya. Első észrevétel: egyszerű rendszerekről beszélünk. A TERMODINAMIKA I. AXIÓMÁJA Egyszerű rendszerek egyensúlya Első észrevétel: egyszerű rendszerekről beszélünk. Második észrevétel: egyensúlyban lévő egyszerű rendszerekről beszélünk. Mi is tehát az egyensúly?

Részletesebben

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia középszint 1512 ÉRETTSÉGI VIZSGA 2015. október 20. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Az írásbeli feladatok értékelésének alapelvei

Részletesebben

A termodinamika I. főtétele

A termodinamika I. főtétele A temodinamika I. főtétele Fizikai kémia előadások. uányi amás ELE Kémiai Intézet A temodinamika A temodinamika egy fucsa tudomány. Amiko az embe előszö tanula, egyáltalán nem éti. Amiko második alkalommal

Részletesebben

Szervetlen kémia I. kollokvium, (DEMO) , , K/2. Írják fel a nevüket, a Neptun kódjukat és a dátumot minden lapra!

Szervetlen kémia I. kollokvium, (DEMO) , , K/2. Írják fel a nevüket, a Neptun kódjukat és a dátumot minden lapra! Szervetlen kémia I. kollokvium, (DEMO) 16. 05. 17., 00-12 00, K/2 Írják fel a nevüket, a Neptun kódjukat és a dátumot minden lapra! TESZT KÉRDÉSEK Kérdésenként 60 s áll rendelkezésre a válaszadásra. Csak

Részletesebben

Bé ni. Barna 5. Benc e. Boton d

Bé ni. Barna 5. Benc e. Boton d Egy asztalon háom halomban 009 db kavics van Egyet eldobok belőle, és a többit két kupacba osztom Ezután megint eldobok egyet az egyik halomból (amelyikben egynél több kavics van) és az egyik halmot ismét

Részletesebben

Kinetika. Általános Kémia, kinetika Dia: 1 /53

Kinetika. Általános Kémia, kinetika Dia: 1 /53 Kinetika 15-1 A reakciók sebessége 15-2 Reakciósebesség mérése 15-3 A koncentráció hatása: a sebességtörvény 15-4 Nulladrendű reakció 15-5 Elsőrendű reakció 15-6 Másodrendű reakció 15-7 A reakció kinetika

Részletesebben

Kémiai alapismeretek 6. hét

Kémiai alapismeretek 6. hét Kémiai alapismeretek 6. hét Horváth Attila Pécsi Tudományegyetem, Természettudományi Kar, Kémia Intézet, Szervetlen Kémiai Tanszék biner 2013. október 7-11. 1/15 2013/2014 I. félév, Horváth Attila c Egyensúly:

Részletesebben

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia középszint 1412 ÉRETTSÉGI VIZSGA 2015. május 14. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIUMA Az írásbeli feladatok értékelésének alapelvei

Részletesebben

c A Kiindulási anyag koncentrációja c A0 idő t 1/2 A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

c A Kiindulási anyag koncentrációja c A0 idő t 1/2 A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 c A Kiindulási anyag koncentrációja c A0 c A0 2 t 1/2 idő A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakciókinetika tárgya A reakciókinetika a fizikai kémia egyik részterülete.

Részletesebben

Kémiai energia - elektromos energia

Kémiai energia - elektromos energia Általános és szervetlen kémia 12. hét Elızı héten elsajátítottuk, hogy a redoxi reakciók lejátszódásának milyen feltételei vannak a galvánelemek hogyan mőködnek Mai témakörök az elektrolízis és alkalmazása

Részletesebben

Az edzés és energiaforgalom. Rácz Katalin

Az edzés és energiaforgalom. Rácz Katalin Az edzés és energiaforgalom Rácz Katalin katalinracz@gmail.com Homeosztázis Az élő szervezet belső állandóságra törekszik. Homeosztázis: az élő szervezet a változó külső és belső körülményekhez való alkalmazkodó

Részletesebben

Kémia OKTV I. kategória II. forduló A feladatok megoldása

Kémia OKTV I. kategória II. forduló A feladatok megoldása ktatási ivatal Kémia KTV I. kategória 2008-2009. II. forduló A feladatok megoldása I. FELADATSR 1. A 6. E 11. A 16. C 2. A 7. C 12. D 17. B 3. E 8. D 13. A 18. C 4. D 9. C 14. B 19. C 5. B 10. E 15. E

Részletesebben

1. feladat Összesen 15 pont. 2. feladat Összesen 6 pont. 3. feladat Összesen 6 pont. 4. feladat Összesen 7 pont

1. feladat Összesen 15 pont. 2. feladat Összesen 6 pont. 3. feladat Összesen 6 pont. 4. feladat Összesen 7 pont 1. feladat Összesen 15 pont Egy lombikba 60 g jégecetet és 46 g abszolút etanolt öntöttünk. A) Számítsa ki a kiindulási anyagmennyiségeket! B) Határozza meg az egyensúlyi elegy összetételét móltörtben

Részletesebben

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r

1. ábra. r v. 2. ábra A soros RL-kör fázorábrái (feszültség-, impedancia- és teljesítmény-) =tg ϕ. Ez a meredekség. r A VAÓÁO TEKE É A VAÓÁO KONDENÁTO A JÓÁ A soos -modell vizsgálata A veszteséges tekecs egy tiszta induktivitással, valamint a veszteségi teljesítményből számaztatható ellenállással modellezhető. Ez utóbbi

Részletesebben

Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g

Glikolízis. emberi szervezet napi glukózigénye: kb. 160 g Glikolízis Minden emberi sejt képes glikolízisre. A glukóz a metabolizmus központi tápanyaga, minden sejt képes hasznosítani. glykys = édes, lysis = hasítás emberi szervezet napi glukózigénye: kb. 160

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia középszint 0801 ÉRETTSÉGI VIZSGA 2008. május 15. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Az írásbeli feladatok értékelésének alapelvei

Részletesebben

2011/2012 tavaszi félév 3. óra

2011/2012 tavaszi félév 3. óra 2011/2012 tavaszi félév 3. óra Redoxegyenletek rendezése (diszproporció, szinproporció, stb.); Sztöchiometria Vegyületek sztöchiometriai együtthatóinak meghatározása elemösszetétel alapján Adott rendezendő

Részletesebben

6. Termodinamikai egyensúlyok és a folyamatok iránya

6. Termodinamikai egyensúlyok és a folyamatok iránya 6. ermodinamikai egyensúlyok és a folyamatok iránya A természetben végbemenő folyamatok kizárólagos termodinamikai hajtóereje az entróia növekedése. Minden makroszkoikusan észlelhető folyamatban a rendszer

Részletesebben

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei

Adatgyőjtés, mérési alapok, a környezetgazdálkodás fontosabb mőszerei GazdálkodásimodulGazdaságtudományismeretekI.Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSIMÉRNÖKIMScTERMÉSZETVÉDELMIMÉRNÖKIMSc Tudományos kutatásmódszertani, elemzési és közlési ismeretek modul Adatgyőjtés, mérési

Részletesebben

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag,

t 2 Hőcsere folyamatok ( Műv-I. 248-284.o. ) Minden hővel kapcsolatos művelet veszteséges - nincs tökéletes hőszigetelő anyag, Hősee folyamaok ( Műv-I. 48-84.o. ) A ménöki gyakola endkívül gyakoi feladaa: - a közegek ( folyadékok, gázok ) Minden hővel kapsolaos művele veszeséges - nins ökélees hőszigeelő anyag, hűése melegíése

Részletesebben

Alkalmazás a makrókanónikus sokaságra: A fotongáz

Alkalmazás a makrókanónikus sokaságra: A fotongáz Alkalmazás a makrókanónikus sokaságra: A fotongáz A fotonok az elektromágneses sugárzás hordozó részecskéi. Spinkvantumszámuk S=, tehát kvantumstatisztikai szempontból bozonok. Fotonoknak habár a spinkvantumszámuk,

Részletesebben

Glikolízis. Csala Miklós

Glikolízis. Csala Miklós Glikolízis Csala Miklós Szubsztrát szintű (SZF) és oxidatív foszforiláció (OF) katabolizmus Redukált tápanyag-molekulák Szállító ADP + P i ATP ADP + P i ATP SZF SZF Szállító-H 2 Szállító ATP Szállító-H

Részletesebben

R R C X C X R R X + C H R CH CH R H + BH 2 + Eliminációs reakciók

R R C X C X R R X + C H R CH CH R H + BH 2 + Eliminációs reakciók Eliminációs reakciók Amennyiben egy szénatomhoz távozó csoport kapcsolódik és ugyanazon a szénatomon egy (az ábrákon vel jelölt) bázis által protonként leszakítható hidrogén is található, a nukleofil szubsztitúció

Részletesebben

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia középszint 0622 ÉRETTSÉGI VIZSGA 2007. október 31. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Az írásbeli feladatok értékelésének

Részletesebben

9. évfolyam II. félév 2. dolgozat B csoport. a. Arrheneus szerint bázisok azok a vegyületek, amelyek... b. Arrheneus szerint a sók...

9. évfolyam II. félév 2. dolgozat B csoport. a. Arrheneus szerint bázisok azok a vegyületek, amelyek... b. Arrheneus szerint a sók... 9. évfolyam II. félév 2. dolgozat B csoport 1. Egészítsd ki az alábbi mondatokat! a. Arrheneus szerint bázisok azok a vegyületek, amelyek... b. Arrheneus szerint a sók.... c. Az erős savak vízben........

Részletesebben

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás

A L Hospital-szabály, elaszticitás, monotonitás, konvexitás A L Hospital-szabály, elaszticitás, monotonitás, konvexitás 9. előadás Farkas István DE ATC Gazdaságelemzési és Statisztikai Tanszék A L Hospital-szabály, elaszticitás, monotonitás, konvexitás p. / A L

Részletesebben

Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet.

Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet. Termodinamikai egyensúlyi potenciál (Nernst, Donnan). Diffúziós potenciál, Goldman-Hodgkin-Katz egyenlet. Biológiai membránok passzív elektromos tulajdonságai. A sejtmembrán kondenzátorként viselkedik

Részletesebben

Katalízis. Tungler Antal Emeritus professzor 2017

Katalízis. Tungler Antal Emeritus professzor 2017 Katalízis Tungler Antal Emeritus professzor 2017 Fontosabb időpontok: sósav oxidáció, Deacon process 1860 kéndioxid oxidáció 1875 ammónia oxidáció 1902 ammónia szintézis 1905-1912 metanol szintézis 1923

Részletesebben

Savak bázisok. Csonka Gábor Általános Kémia: 7. Savak és bázisok Dia 1 /43

Savak bázisok. Csonka Gábor Általános Kémia: 7. Savak és bázisok Dia 1 /43 Savak bázisok 121 Az Arrhenius elmélet röviden 122 BrønstedLowry elmélet 123 A víz ionizációja és a p skála 124 Erős savak és bázisok 125 Gyenge savak és bázisok 126 Több bázisú savak 127 Ionok mint savak

Részletesebben

1. feladat Maximális pontszám: 5. 2. feladat Maximális pontszám: 8. 3. feladat Maximális pontszám: 7. 4. feladat Maximális pontszám: 9

1. feladat Maximális pontszám: 5. 2. feladat Maximális pontszám: 8. 3. feladat Maximális pontszám: 7. 4. feladat Maximális pontszám: 9 1. feladat Maximális pontszám: 5 Mennyi az egyes komponensek parciális nyomása a földből feltörő 202 000 Pa össznyomású földgázban, ha annak térfogatszázalékos összetétele a következő: φ(ch 4 ) = 94,7;

Részletesebben

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA

HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA HOMOGÉN EGYENSÚLYI ELEKTROKÉMIA: ELEKTROLITOK TERMODINAMIKÁJA I. Az elektrokémia áttekintése. II. Elektrolitok termodinamikája. A. Elektrolitok jellemzése B. Ionok termodinamikai képződési függvényei C.

Részletesebben

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont)

Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) Égés és oltáselmélet I. (zárójelben a helyes válaszra adott pont) 1. "Az olyan rendszereket, amelyek határfelülete a tömegáramokat megakadályozza,... rendszernek nevezzük" (1) 2. "Az olyan rendszereket,

Részletesebben

Képletek és összefüggések a 3. és 4. szemináriumra Hosszú távú modell

Képletek és összefüggések a 3. és 4. szemináriumra Hosszú távú modell Képletek és összefüggések a 3. és 4. szemináriumra Hosszú távú modell 1. Termelési függvény Y = f(k, L) konstans skálahozadék: n Y = f(n K, n L) Cobb-Douglas termelési függvény: Y = ak α L 1 α α és (1

Részletesebben

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van?

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van? SZÁMOLÁSI FELADATOK 1. Egy fehérje kcsapásához tartozó standard reakcóentalpa 512 kj/mol és standard reakcóentrópa 1,60 kj/k/mol. Határozza meg, hogy mlyen hőmérséklettartományban játszódk le önként a

Részletesebben