q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n)

Save this PDF as:
 WORD  PNG  TXT  JPG

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "q=h(termékek) H(Kiindulási anyagok) (állandó p-n) q=u(termékek) U(Kiindulási anyagok) (állandó V-n)"

Átírás

1 ERMOKÉMIA A vzsgált általános folyaatok és teodnaka jellezésük agyjuk egy pllanata az egysze D- endszeeket, s tekntsük azokat a változásokat, elyeket kísé entalpa- (ll. bels enega-) változásokkal á koább tanulányankban s találkoztunk! Általánosságban a változás egyenlete: Kndulás anyag(ok)eék(ek) a a nyoás (téfogat) állandó, a fent, teljesen végbeen folyaat jelleezhet a folyaatot kísé hvel: az entalpa egváltozásával (állandó nyoáson) vagy a bels enega egváltozásával (állandó téfogaton). q=(teékek) (Kndulás anyagok) (állandó p-n) q=u(teékek) U(Kndulás anyagok) (állandó V-n) A féleétések elkeülésée az azonos anyagennysége vonatkoztatott entalpa ll. bels enega változást kell egadn: olás entalpák és olás bels enegák szükségesek! Legyen tehát (ég ne egészen pontos!): (teékek) (Kndulás anyagok)= folyaat U (teékek) U (Kndulás anyagok)= folyaat U Pontosabban a változás egyenletée vonatkozóan (aelyet az általános eakcóegyenlettel íhatunk fel): =ν M M : a eakcóban észtvev -k kéa spécesz kéa szbólua, : az M kéa spécesz sztöchoeta száa. = folyaat ν, folyaatu =ν U, X/1

2 Standad állapotok, standad teodnaka függvények A folyaatok összehasonlíthatóságának édekében célsze a kndulás állapotokat és a végállapotokat s ugyanolyan állapotjelzkkel egadott köülények között vzsgáln! Ez például és p egadásával lehetséges: folyaat (,p), folyaat U(,p) a kndulás oldal és a teékoldal azonos héséklete és nyoása fgyelebe vételével adja eg a folyaatot jellez entalpa, lletve bels enega változást. ovább standadzálást tesz lehetvé, az hogy a teodnaka függvényeket általában a standad állapota vonatkoztatva adják eg. Egy anyag standad állapota egy adott hésékleten a tszta anyag állapotát jelent az adott hésékleten és 1 ba nyoáson. Fgyele! A standad állapotok fogalát késbb pontosítjuk (pl. gázok, oldatok esetée s) a IUPAC ajánlása szent! Általában a teokéa táblázatok 298,15 K hésékleten adják eg standad adatokat, de a héséklet változhat s! [A bels enega és az entalpa héséklet függését á sejük. Adott téfogaton és nyoáson tehát a olás ennységekkel felíva: U + ( ) = U ( ) CV, d (állandó V-n) + ( ) = ( ) C d (állandó p-n) A hésékletfüggés standad állapotoka ugyanígy száolható.] A teodnaka függvények jelölése standad állapotban U (), (298 K), (398 K), ( U ), (298K ), (398K ), stb. Megjegyzés: Ez a defnícó az entalpáa gazán kényeles! Önkényes kédés: M legyen az entalpa zéószntje? Defnícószeen: az eleek standad nyoáson és 298,15 K hésékleten létez stabl ódosulatának képzdés entalpája legyen nulla. (Ez vszont á ne jó a bels enegáa!) X/2

3 Exote folyaatok, endote folyaatok Exote folyaatok: az átalakulás soán h képzdk, a endsze ht ad le a könyezetnek, enega adódk át a könyezetnek. Endote folyaatok: az átalakulás soán h nyeldk el, a endsze ht vesz fel a könyezettl, enegát vesz fel a könyezettl. Fázsátalakulás: fázsátenet entalpák Megadásuk legtöbbszö a fázsátalakulás hésékletén töténk. Standad olvadás entalpa (olvadásh): 2 O(s) 2 O(l) fus (273 K)= 6,1 kj ol -1 Standad páolgás entalpa (páolgásh): fus ( 273K ) = ( l,273k ) ( s,273k ) 2 O(l) 2 O(g) vap (373 K)= 4,66 kj ol -1 Sok ás fajta átalakulás ld. Atkns 2.4. táblázat Különböz hésékletek között entalpa különbségek száítása (1(s)2(l) átalakulása) ( l, 2 ) = ( s, 1 ) + C ( s) d + fus + C t 1 2 t ( l) d (állandó nyoáson) X/3

4 Kéa eakcók: a eakcók entalpaváltozása Standad eakcóentalpa A kéa eakcó: tszta, ne összekevet, standad állapotú kndulás anyagok tszta, ne összekevet, standad állapotú teékek Keveedéssel késbb találkozunk! Általános eakcóegyenlettel ( ν : sztöchoeta száok, : koponensek): A standad eakcóentalpa: = ν = ν ( ), ahol ( ) a koponens standad olás entalpája. Az entalpa állapotfüggvény. Ennek eakcóentalpáka vonatkozó egfogalazása a ess-tétel. ess-tétel A eakcóentalpa (a eakcóh) csak a eakcó kndulás és végállapotától függ, az úttól, elyen végbeegy a eakcó, független. Más szavakkal, az eed eakcó entalpa változása (eakcóentalpája) egyenl a eakcót alkotó észeakcók eakcóentalpájának összegével. (Ugyanígy kondható a bels enegáa s, a eakcóh u. egegyezk a bels enega egváltozásával állandó téfogaton.) X/4

5 Standad képzdés entalpák a standad állapotú tszta eleekbl standad állapotú vegyület képzdk, a vegyület képzdését kísé entalpaváltozást standad képzdés entalpának nevezzük. Egy kéa eakcó standad entalpája kfejezhet, nt a eakcóban észt vev eaktánsok és teékek sztöchoeta száokkal súlyozott képzdés entalpának összege. = ν f ( ) A eakcóentalpák hésékletfüggését a Kchoff-tövény íja le. ahol ( ) = ( ) + C C = ν C ( ). d, Általánosabb kédés: ha sejük egy folyaat entalpaváltozását (p 1, 1 ) köülények között, akko enny lesz ez a ennység (p 2, 2 )-n? Válasz lesz késbb! X/5

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011

Termokémia. Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 Termokémia Hess, Germain Henri (1802-1850) A bemutatót összeállította: Fogarasi József, Petrik Lajos SZKI, 2011 A reakcióhő fogalma A reakcióhő tehát a kémiai változásokat kísérő energiaváltozást jelenti.

Részletesebben

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS

REÁLIS GÁZOK ÁLLAPOTEGYENLETEI FENOMENOLOGIKUS KÖZELÍTÉS REÁLIS GÁZOK ÁLLAPOEGYENLEEI FENOMENOLOGIKUS KÖZELÍÉS Száos odell gondoljunk potenciálo! F eltérés z ideális gáz odelljétl: éret és kölcsönhtás Moszkópikus következény: száos állpotegyenlet (ld. RM-jegyzet

Részletesebben

A termodinamika I. főtétele

A termodinamika I. főtétele A temodinamika I. főtétele Fizikai kémia előadások. uányi amás ELE Kémiai Intézet A temodinamika A temodinamika egy fucsa tudomány. Amiko az embe előszö tanula, egyáltalán nem éti. Amiko második alkalommal

Részletesebben

Acélcsövek szilárdsági számítása (írta: Bokros István)

Acélcsövek szilárdsági számítása (írta: Bokros István) célcsöe sziládsági száíása (ía: oos Isán). eezeés. Véonyfalú egyenes cs éeezése els úlnyoása. Csíe éeezése els úlnyoása 4. Hfeszülsége éonyfalú csöeen 5. Vasagfalú cs iszán ugalas állaoa 6. Vasagfalú cs

Részletesebben

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható

Kémiai egyensúly. Fizikai kémia előadások 6. Turányi Tamás ELTE Kémiai Intézet. ν j sztöchiometriai együttható émiai egyensúly Fizikai kémia előadások 6. Tuányi Tamás ELTE émiai Intézet Sztöchiometiai együttható ν sztöchiometiai együttható általános kémiai eakció: (a temokémiában használtuk előszö) ν A 0 ν A eaktánsa

Részletesebben

Merev testek kinematikája

Merev testek kinematikája Mechanka BL0E- 3. előadás 00. októbe 5. Meev testek knematkáa Egy pontendszet meev testnek tekntünk, ha bámely két pontának távolsága állandó. (f6, Eule) A meev test tetszőleges mozgása leíható elem tanszlácók

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint 81 ÉRETTSÉGI VIZSGA 9. ájus 1. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM A dolgozatokat az útutató utasításai szerint,

Részletesebben

Ujfalussy Balázs Idegsejtek biofizikája Első rész

Ujfalussy Balázs Idegsejtek biofizikája Első rész Ujfalussy Balázs Idegsejtek biofizikája Első rész MI A TITA? Ez a négyrészes sorozat azt a célt szolgálja, hogy az idegsejtek űködéséről ateatikai, fizikai odellekkel alkossunk képet középiskolás iseretekre

Részletesebben

D r.u J J A n d r i s ő r n a g y, f ő i s k o l a i a d ju n k t u s A G O N D O L A T T O L A M E G V A L Ó S U L A S IG, A V A G Y. I I I.

D r.u J J A n d r i s ő r n a g y, f ő i s k o l a i a d ju n k t u s A G O N D O L A T T O L A M E G V A L Ó S U L A S IG, A V A G Y. I I I. D r.u J J A n d r i s ő r n a g y, f ő i s k o l a i a d ju n k u s A G O N D O L A T T O L A M E G V A L Ó S U L A S IG, A V A G Y A S E M L E G E S S É G > d A L A K U L Á S Á N A K F O L Y A M A T A

Részletesebben

,...,q 3N és 3N impulzuskoordinátával: p 1,

,...,q 3N és 3N impulzuskoordinátával: p 1, Louvlle tétele Egy tetszőleges klasszkus mechanka rendszer állapotát mnden t dőpllanatban megadja a kanónkus koordnáták összessége. Legyen a rendszerünk N anyag pontot tartalmazó. Ilyen esetben a rendszer

Részletesebben

A szállítócsigák néhány elméleti kérdése

A szállítócsigák néhány elméleti kérdése A szállítócsigák néhány eléleti kédése DR BEKŐJÁOS GATE Géptani Intézet Bevezetés A szállítócsigák néhány eléleti kédése A tanulány tágya az egyik legégebben alkalazott folyaatos üzeűanyagozgató gép a

Részletesebben

Sűrűségmérés. 1. Szilárd test sűrűségének mérése

Sűrűségmérés. 1. Szilárd test sűrűségének mérése Sűrűségérés. Szilárd test sűrűségének érése A sűrűség,, definíciój hoogén test esetén: test töege osztv test V térfogtávl: V A sűrűség SI értékegysége kg/, hsználtos ég kg/d, kg/l és g/c Ne hoogén testnél

Részletesebben

KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK

KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK Környezetvédeli-vízgazdálkodási alaiseretek közéint ÉRETTSÉGI VIZSGA 0. október 5. KÖRNYEZETVÉDELMI- VÍZGAZDÁLKODÁSI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ EMBERI

Részletesebben

Mechanikai munka, energia, teljesítmény (Vázlat)

Mechanikai munka, energia, teljesítmény (Vázlat) Mechanikai unka, energia, eljesíény (Vázla). Mechanikai unka fogala. A echanikai unkavégzés fajái a) Eelési unka b) Nehézségi erő unkája c) Gyorsíási unka d) Súrlódási erő unkája e) Rugóerő unkája 3. Mechanikai

Részletesebben

GEGET057N DIAGNOSZTIKA ÉS KARBANTARTÁS. MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR GÉPELEMEK TANSZÉKE 3515 Miskolc-Egyetemváros

GEGET057N DIAGNOSZTIKA ÉS KARBANTARTÁS. MISKOLCI EGYETEM GÉPÉSZMÉRNÖKI ÉS INFORMATIKAI KAR GÉPELEMEK TANSZÉKE 3515 Miskolc-Egyetemváros MSKOC EGYETEM GÉÉSZMÉRÖK ÉS FORMTK KR GÉEEMEK TSZÉKE 355 Miskolc-Egyeteváos TTÁRGY DOSSZÉ GEGET57 DGOSZTK ÉS KRBTRTÁS Tágyfelelős Saka Feenc Előadó Saka Feenc Gyakolatvezető Miskolc, 7. szeptebe GEGET57

Részletesebben

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van?

SZÁMOLÁSI FELADATOK. 2. Mekkora egy klíma teljesítménytényező maximális értéke, ha a szobában 20 C-ot akarunk elérni és kint 35 C van? SZÁMOLÁSI FELADATOK 1. Egy fehérje kcsapásához tartozó standard reakcóentalpa 512 kj/mol és standard reakcóentrópa 1,60 kj/k/mol. Határozza meg, hogy mlyen hőmérséklettartományban játszódk le önként a

Részletesebben

Műszaki folyamatok közgazdasági elemzése. Kevert stratégiák és evolúciós játékok

Műszaki folyamatok közgazdasági elemzése. Kevert stratégiák és evolúciós játékok Műszak folyamatok közgazdaság elemzése Kevert stratégák és evolúcós átékok Fogalmak: Példa: 1 szta stratéga Vegyes stratéga Ha m tszta stratéga létezk és a 1 m annak valószínűsége hogy az - edk átékos

Részletesebben

4. FELADATSOR (2015. 03. 02.)

4. FELADATSOR (2015. 03. 02.) 4 FELADATSOR (2015 03 02) 1 feladat Egy rendszer fundamentális egyenlete a következő:,,= a) Írd fel az egyenletet intenzív mennyiségekkel! b) Írd fel az egyenletet entrópiareperezentációban! c) Ellenőrizd,

Részletesebben

HETEROGÉN ELEKTROKÉMIAI RENDSZEREK EGYENSÚLYAI I. GALVÁNCELLÁK

HETEROGÉN ELEKTROKÉMIAI RENDSZEREK EGYENSÚLYAI I. GALVÁNCELLÁK HTROGÉN LKTROKÉMIAI RNDSZRK GYNSÚLYAI I GALVÁNCLLÁK evezetés a heteogén (egyensúly ÉS nem-egyensúly) elektokéma endszeekbe: az elektódok A vzsgált endszeek: töltött észecskéket tatalmazó többfázsú temodnamka

Részletesebben

III. Áramkör számítási módszerek, egyenáramú körök

III. Áramkör számítási módszerek, egyenáramú körök . Árakör száítás ódszerek, egyenáraú körök A vllaos ára a vllaos töltések rendezett áralása (ozgása) a fellépő erők hatására. Az áralás ránya a poztív töltéshordozók áralásának ránya, aelyek a nagyobb

Részletesebben

a domború tükörrıl az optikai tengellyel párhuzamosan úgy verıdnek vissza, meghosszabbítása

a domború tükörrıl az optikai tengellyel párhuzamosan úgy verıdnek vissza, meghosszabbítása α. ömbtükök E gy gömböt síkkal elmetszve egy gömbsüveget kapunk (a sík a gömböt egy köben metsz). A gömbtükök gömbsüveg alakúak, lehetnek homoúak (konkávok) vagy domboúak (konvexek) annak megfelelıen,

Részletesebben

Ujfalussy Balázs Idegsejtek biofizikája

Ujfalussy Balázs Idegsejtek biofizikája M A TTA? Ujfalussy Balázs degsejtek biofizikája Második rész A nyugali potenciál A sorozat előző cikkében nekiláttunk egfejteni az idegrendszer alapjelenségeit. Az otivált bennünket, hogy a száítógépeink

Részletesebben

XV. A NITROGÉN, A FOSZFOR ÉS VEGYÜLETEIK

XV. A NITROGÉN, A FOSZFOR ÉS VEGYÜLETEIK XV. A NITROGÉN, A FOSZFOR ÉS VEGYÜLETEIK XV. 1. FELELETVÁLASZTÁSOS TESZTEK 0 1 4 5 6 7 8 9 0 D C C D D A B D D 1 D B E B D D D A A A A B C A D A (C) A C A B XV.. TÁBLÁZATKIEGÉSZÍTÉS Az ammónia és a salétromsav

Részletesebben

Egyenletek, egyenlőtlenségek X.

Egyenletek, egyenlőtlenségek X. Egyenletek, egyenlőtlenségek X. DEFINÍCIÓ: (Logaritmus) Ha egy pozitív valós számot adott, 1 - től különböző pozitív alapú hatvány alakban írunk fel, akkor ennek a hatványnak a kitevőjét logaritmusnak

Részletesebben

MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ

MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ MEGOLDÁSOK ÉS PONTOZÁSI ÚTMUTATÓ. Egy kerékpáro zakazonként egyene vonalú egyenlete ozgát végez. Megtett útjának elő k hatodát 6 nagyágú ebeéggel, útjának további kétötödét 6 nagyágú ebeéggel, az h útjának

Részletesebben

13. a) Oldja meg a valós számok halmazán a következ egyenletet! 2

13. a) Oldja meg a valós számok halmazán a következ egyenletet! 2 A 13. a) Oldja eg a valós száok halazán a következ egyenletet! ( x ) 90 5 (0,5x 17) 3 x b) Oldja eg a valós száok halazán a egyenl tlenséget! 7x a) 5 pont b) 7 pont 1 pont írásbeli vizsga, II. összetev

Részletesebben

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer

Általános Kémia. Dr. Csonka Gábor 1. Gázok. Gázok. 2-1 Gáznyomás. Barométer. 6-2 Egyszerű gáztörvények. Manométer Gázok -1 Gáznyoás - Egyszerű gáztörvények -3 Gáztörvények egyesítése: Tökéletes gáz egyenlet és általánosított gáz egyenlet -4 tökéletes gáz egyenlet alkalazása -5 Gáz halazállapotú reakciók -6 Gázkeverékek

Részletesebben

2 Wigner Fizikai Kutatóintézet augusztus / 17

2 Wigner Fizikai Kutatóintézet augusztus / 17 Táguló sqgp tűzgömb többkomponensű kéma kfagyása Kasza Gábor 1 és Csörgő Tamás 2,3 1 Eötvös Loránd Tudományegyetem 2 Wgner Fzka Kutatóntézet 3 Károly Róbert Főskola 2015. augusztus 17. Gyöngyös - KRF 1

Részletesebben

Földgáz égéshıjének és főtıértékének meghatározása

Földgáz égéshıjének és főtıértékének meghatározása BME Eneretikai Géek é Rendzerek Tanzék Földáz ééhıjének é főtıértékének ehatározáa 1. A éré célja A éré célja a tüzelétechnikai célra felhaználható ázok közül a laboratóriuban rendelkezére álló földáz

Részletesebben

Vízműtani számítás. A vízműtani számítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha]

Vízműtani számítás. A vízműtani számítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha] Vízűtani száítás A vízűtani száítás készítése során az alábbi összefüggéseket használtuk fel: A csapadék intenzitása: i = a t [l/s ha] ahol ip a p visszatérési csapadék intenzitása, /h a a 10 perces időtartaú

Részletesebben

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV.

TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBKOMPONENS RENDSZEREK FÁZISEGYENSÚLYAI IV. TÖBBFÁZISÚ, TÖBBKOMPONENS RENDSZEREK Kétkomponens szilárd-folyadék egyensúlyok Néhány fogalom: - olvadék - ötvözetek - amorf anyagok Állapotok feltüntetése:

Részletesebben

Integrált rendszerek n é v; dátum

Integrált rendszerek n é v; dátum Integrált rendszerek n é v; dátum.) Az dentfkálás (folyamatdentfkácó) a.) elsődleges feladata absztrahált leírás fzka modell formában b.) legfőbb feladata a struktúradentfkálás (modellszerkezet felállítása)

Részletesebben

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1

1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 1 Műszaki hőtan Termodinamika. Ellenőrző kérdések-02 1 Kérdések. 1. Mit mond ki a termodinamika nulladik főtétele? Azt mondja ki, hogy mindenegyes termodinamikai kölcsönhatáshoz tartozik a TDR-nek egyegy

Részletesebben

NÖVÉNYTERMESZTÉSTAN. Az egyes növények termesztésének a részleteivel foglalkozik

NÖVÉNYTERMESZTÉSTAN. Az egyes növények termesztésének a részleteivel foglalkozik NÖVÉNYTERMESZTÉSTAN Az egyes növények termesztésének a részleteivel foglalkozik Növénytermesztés irányzatai: Hagyományos vagy konvencionális Integrált (fenntartható, környezetbarát) Ökológiai, biotermesztés

Részletesebben

2.9. Az egyszerű, tiszta anyagok fázisátalakulásai

2.9. Az egyszerű, tiszta anyagok fázisátalakulásai Kéiai potenciál Fejezetek a fizikai kéiából 2.9. Az egyszerű, tiszta anyagok fázisátalakulásai A indennapi életben találkozunk olyan kifejezésekkel, int fagyás, forrás, párolgás, stb. Mint a kifejezésekből

Részletesebben

Matematika III. harmadik előadás

Matematika III. harmadik előadás Matematika III. harmadik előadás Kézi Csaba Debreceni Egyetem, Műszaki Kar Debrecen, 2013/14 tanév, I. félév Kézi Csaba (DE) Matematika III. harmadik előadás 2013/14 tanév, I. félév 1 / 13 tétel Az y (x)

Részletesebben

2007/2008. tanév. Szakács Jenő Megyei Fizika Verseny I. forduló. 2007. november 9. MEGOLDÁSOK

2007/2008. tanév. Szakács Jenő Megyei Fizika Verseny I. forduló. 2007. november 9. MEGOLDÁSOK 007/008. tané Szakác Jenő Megyei Fizika Vereny I. forduló 007. noeber 9. MEGOLDÁSOK 007-008. tané - Szakác Jenő Megyei Fizika Vereny I. forduló Megoldáok. d = 50 = 4,4 k/h = 4 / a) t =? b) r =? c) =?,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 9 IX. ROBUsZTUs statisztika 1. ROBUsZTUssÁG Az eddig kidolgozott módszerek főleg olyanok voltak, amelyek valamilyen értelemben optimálisak,

Részletesebben

Általános Kémia Gyakorlat II. zárthelyi október 10. A1

Általános Kémia Gyakorlat II. zárthelyi október 10. A1 2008. október 10. A1 Rendezze az alábbi egyenleteket! (5 2p) 3 H 3 PO 3 + 2 HNO 3 = 3 H 3 PO 4 + 2 NO + 1 H 2 O 2 MnO 4 + 5 H 2 O 2 + 6 H + = 2 Mn 2+ + 5 O 2 + 8 H 2 O 1 Hg + 4 HNO 3 = 1 Hg(NO 3 ) 2 +

Részletesebben

A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI

A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI A TERMODINAMIKA MIKROSZKOPIKUS ÉRTELMEZÉSE: A STATISZTIKUS TERMODINAMIKA ALAPJAI BEVEZETÉS Alkotórészek: molekulárs modell + statsztka Mért kell a statsztka? Mert 0 23 nagyságrend mkroszkopkus változója

Részletesebben

Központi fúvókás injektor (In) mérése

Központi fúvókás injektor (In) mérése Közont úókás njektor (In) érése A érés élja: egatározanó az njektor (légsugár-légszattyú) jelleggörbéje, azaz a nyoásszá és a atások a ennység szá üggényében és az ereények ábrázolása agraban. A berenezés

Részletesebben

Mivel az erőkar mindkét oldalon ugyanakkora (t.i. a csiga sugara), az erőknek is meg kell egyezniük.

Mivel az erőkar mindkét oldalon ugyanakkora (t.i. a csiga sugara), az erőknek is meg kell egyezniük. 1. Könnyű: [1] Az alább ozgások közül elyknél használható a v=s/t képlet? A) A) szabadesés B) egyenletes körozgás C) gyorsuló körozgás B) D) ndegyknél E) egyknél se [2] Ha felfelé hajítunk egy követ és

Részletesebben

Termodinamikai bevezető

Termodinamikai bevezető Termodinamikai bevezető Alapfogalmak Termodinamikai rendszer: Az univerzumnak az a részhalmaza, amit egy termodinamikai vizsgálat során vizsgálunk. Termodinamikai környezet: Az univerzumnak a rendszeren

Részletesebben

NATRII HYALURONAS. Nátrium-hialuronát

NATRII HYALURONAS. Nátrium-hialuronát Natrii hyaluronas Ph.Hg.VIII. Ph.Eur.6.0. - 1 01/2008:1472 NATRII HYALURONAS Nátriu-hialuronát (C 14 H 20 NNaO 11 ) n [9067-32-7] DEFINÍCIÓ A nátriu-hialuronát a hialuronsav nátriusója. A hialuronsav D-glükuronsav

Részletesebben

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK

BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK BUDAPESTI MŰ SZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM KÖZLEKEDÉSMÉRNÖKI ÉS JÁRMŰMÉRNÖKI KAR VASÚTI JÁRMŰVEK ÉS JÁRMŰRENDSZERANALÍZIS TANSZÉK MÉRNÖKI MATAMATIKA Segédlet a Bessel-függvények témaköréhez a Közlekedésmérnök

Részletesebben

Membránsebesség-visszacsatolásos mélysugárzó direkt digitális szabályozással

Membránsebesség-visszacsatolásos mélysugárzó direkt digitális szabályozással udapeti Műzaki é Gazdaágtudoányi Egyete Villaoérnöki é Inforatikai Kar TUDOMÁNYOS DIÁKKÖRI DOLGOZT Mebránebeég-vizacatoláo élyugárzó direkt digitáli zabályozáal Kézítetteték: aláz Géza V. Vill., greae@evtz.be.hu

Részletesebben

2. E L Ő A D Á S D R. H U S I G É Z A

2. E L Ő A D Á S D R. H U S I G É Z A Mechatronika alapjai 2. E L Ő A D Á S D R. H U S I G É Z A elmozdulás erő nyomaték elmozdulás erő nyomaték Mechanizmusok Mechanizmus: általánosságban: A gép mechanikus elven működő részei Definíció: A

Részletesebben

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ

KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ 1 oldal KÉMIA ÍRÁSBELI ÉRETTSÉGI- FELVÉTELI FELADATOK 1995 JAVÍTÁSI ÚTMUTATÓ I A VÍZ - A víz molekulája V-alakú, kötésszöge 109,5 fok, poláris kovalens kötések; - a jég molekularácsos, tetraéderes elrendeződés,

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

Univerzális ultisplitek Több int 0 lehetséges kobináció, és 4 utas ultisplit rendszereknél a kültéri egység egegyezik. Eszerint a kültéri egység szabadon csatlakoztatható a különbözõ teljesítényû beltéri

Részletesebben

Kémia emelt szintű érettségi írásbeli vizsga ELEMZÉS (BARANYA) ÉS AJÁNLÁS KÉSZÍTETTE: NAGY MÁRIA

Kémia emelt szintű érettségi írásbeli vizsga ELEMZÉS (BARANYA) ÉS AJÁNLÁS KÉSZÍTETTE: NAGY MÁRIA Kémia emelt szintű érettségi írásbeli vizsga ELEMZÉS (BARANYA) ÉS AJÁNLÁS KÉSZÍTETTE: NAGY MÁRIA Idei gyorsjelentés http://eduline.hu/erettsegi_felveteli/2 015/7/16/Az_elmult_7_ev_legrosszab b_eredmenye_szulet_azozlb

Részletesebben

KOVÁCS BÉLA, MATEMATIKA I.

KOVÁCS BÉLA, MATEMATIKA I. KOVÁCS BÉLA, MATEmATIkA I 9 IX MÁTRIxOk 1 MÁTRIx FOGALmA, TULAJDONSÁGAI A mátrix egy téglalap alakú táblázat, melyben az adatok, a mátrix elemei, sorokban és oszlopokban vannak elhelyezve Az (1) mátrixnak

Részletesebben

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei

Gauss-Jordan módszer Legkisebb négyzetek módszere, egyenes LNM, polinom LNM, függvény. Lineáris algebra numerikus módszerei A Gauss-Jordan elimináció, mátrixinvertálás Gauss-Jordan módszer Ugyanazzal a technikával, mint ahogy a k-adik oszlopban az a kk alatti elemeket kinulláztuk, a fölötte lévő elemeket is zérussá lehet tenni.

Részletesebben

Megjegyzések a mesterséges holdak háromfrekvenciás Doppler-mérésének hibaelemzéséhez

Megjegyzések a mesterséges holdak háromfrekvenciás Doppler-mérésének hibaelemzéséhez H E L L E R MÁRTA DR. FERENCZ CSABA Megjegyzések esteséges holdk háofekvencás Dopple-éésének hbelezéséhez ETO 62.396.962.33.8.46: 629.783: 88.3.6 Mnt z á előző ckkünkből [] s set, kuttás bn és esteséges

Részletesebben

XX. OXIGÉNTARTALMÚ SZERVES VEGYÜLETEK

XX. OXIGÉNTARTALMÚ SZERVES VEGYÜLETEK XX. OXIGÉNTARTALMÚ SZERVES VEGYÜLETEK XX. 1 2. FELELETVÁLASZTÁSOS TESZTEK 0 1 2 4 5 6 7 8 9 0 B D A * C A B C C 1 B B B A B D A B C A 2 C B E C E C A D D A C B D B C A B A A A 4 D B C C C C * javítandó

Részletesebben

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31.

2010/2011. tanév Szakács Jenő Megyei Fizika Verseny II. forduló. 2011. január 31. 2010/2011. tanév Szakác enő Megyei Fizika Vereny II. forduló 2011. január 31. Minden verenyzőnek a záára kijelölt négy feladatot kell egoldania. A zakközépikoláoknak az A vagy a B feladatort kell egoldani

Részletesebben

A KAB-HEGYI ERDŐTERVEZÉSI KÖRZET KÖZJÓLÉTI FEJLESZTÉSI TERVE

A KAB-HEGYI ERDŐTERVEZÉSI KÖRZET KÖZJÓLÉTI FEJLESZTÉSI TERVE NÉBIH Erdészeti Igazgatóság Erdőtervezési és Terészetvédeli Osztály 023 Budapest, Frankel Leó utca 42-44. A KAB-HEGYI ERDŐTERVEZÉSI KÖRZET KÖZJÓLÉTI FEJLESZTÉSI TERVE 202 Tervező: Dávid József... Kalincsák

Részletesebben

VEGYIPARI ALAPISMERETEK

VEGYIPARI ALAPISMERETEK Vegyipari alapiseretek eelt szint 08 ÉRETTSÉGI VIZSGA 008. ájus 6. VEGYIPARI ALAPISMERETEK EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Fontos

Részletesebben

Egyszerő kémiai számítások

Egyszerő kémiai számítások Egyszerő kéiai száítások z egyes fizikai, illetve kéiai eyiségek közötti összefüggéseket éréssel állapítjuk eg. hhoz, hogy egy eyiséget éri tudjuk, a eyiségek valaely rögzített értékét (értékegység) kell

Részletesebben

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése:

MUNKAANYAG. Szabó László. Áramlástani alaptörvények. A követelménymodul megnevezése: Szabó László Áralástani alaptörények A köetelényodul egneezése: Kőolaj- és egyipari géprendszer üzeeltetője és egyipari technikus feladatok A köetelényodul száa: 07-06 A tartaloele azonosító száa és célcsoportja:

Részletesebben

A mérési eredmény megadása

A mérési eredmény megadása A mérési eredmény megadása A mérés során kapott értékek eltérnek a mérendő fizikai mennyiség valódi értékétől. Alapvetően kétféle mérési hibát különböztetünk meg: a determinisztikus és a véletlenszerű

Részletesebben

A Szakács Jenő Megyei Fizika Verseny I. forduló feladatainak megoldása 1

A Szakács Jenő Megyei Fizika Verseny I. forduló feladatainak megoldása 1 A Szkác Jenő Megyei Fizik Vereny I. forduló feldtink egoldá. 0, c 0,7 /, /, 0, /. c )? d? ) Az elő ut ebeége: c +,7 /. pont A áodik ut ebeége: c 0, /. 3 pont Az elő ut ozgáánk ideje: 0 t 30. pont,7 A áodik

Részletesebben

Bázistranszformáció és alkalmazásai 2.

Bázistranszformáció és alkalmazásai 2. Bázistranszformáció és alkalmazásai 2. Lineáris algebra gyakorlat Összeállította: Bogya Norbert Tartalomjegyzék 1 Mátrix rangja 2 Mátrix inverze 3 Mátrixegyenlet Mátrix rangja Tartalom 1 Mátrix rangja

Részletesebben

Mekkora az égés utáni elegy térfogatszázalékos összetétele

Mekkora az égés utáni elegy térfogatszázalékos összetétele 1) PB-gázelegy levegőre 1 vonatkoztatott sűrűsége: 1,77. Hányszoros térfogatú levegőben égessük, ha 1.1. sztöchiometrikus mennyiségben adjuk a levegőt? 1.2. 100 % levegőfelesleget alkalmazunk? Mekkora

Részletesebben

ÉLELMISZER-IPARI ALAPISMERETEK

ÉLELMISZER-IPARI ALAPISMERETEK ÉRETTSÉGI VIZSGA 014. május 0. ÉLELMISZER-IPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 014. május 0. 8:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati Piszkozati EMBERI ERŐFORRÁSOK

Részletesebben

FAIPARI ALAPISMERETEK

FAIPARI ALAPISMERETEK Faipari alapiseretek középszit 1211 ÉRETTSÉGI VIZSGA 213. ájus 23. FAIPARI ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMTATÓ EMBERI ERŐFORRÁSOK MINISZTÉRIMA Fotos tudivalók

Részletesebben

Biofizika (molekuláris biofizika és biológiai anyagtan) 2014, tavaszi szemeszter

Biofizika (molekuláris biofizika és biológiai anyagtan) 2014, tavaszi szemeszter A biofizika a biológia és fizika hatátudománya, mely fizikai és fizikai-kémiai módszeeket használ az élő endszeek tanulmányozásáa. Biofizika (molekuláis biofizika és biológiai anyagtan) 014, tavaszi szemeszte

Részletesebben

Exponenciális, logaritmikus függvények

Exponenciális, logaritmikus függvények Exponenciális, logaritmikus függvények DEFINÍCIÓ: (Összetett függvény) Ha az értékkészlet elemeihez, mint értelmezési tartományhoz egy újabb egyértelmű hozzárendelést adunk meg, akkor összetett (közvetett)

Részletesebben

7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL

7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL 7. VIZES OLDATOK VISZKOZITÁSÁNAK MÉRÉSE OSTWALD-FENSKE-FÉLE VISZKOZIMÉTERREL Számos technológiai folyamat, kémiai reakció színtere gáz, vagy folyékony közeg (fluid közeg). Gondoljunk csak a fémek előállításakor

Részletesebben

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika eelt szint Javítási-értékelési útutató 063 ÉRETTSÉGI VIZSGA 006. ájus 5. FIZIKA EMELT SZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI MINISZTÉRIUM Fizika eelt szint Javítási-értékelési

Részletesebben

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése

Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése Mikroszkóp vizsgálata Lencse görbületi sugarának mérése Folyadék törésmutatójának mérése (Mérési jegyzőkönyv) Hagymási Imre 2007. március 19. (hétfő délelőtti csoport) 1. Mikroszkóp vizsgálata 1.1. A mérés

Részletesebben

2. Rugalmas állandók mérése

2. Rugalmas állandók mérése . Rugalas állandók érése PÁPICS PÉTER ISTVÁN csillagász, 3. évfolya 00.10.7. Beadva: 00.1.1. 1. A -ES, AZAZ AZ ABLAK FELLI MÉRHELYEN MÉRTEM. Ezen a laboron a férudak Young-oduluszát értük, pontosabban

Részletesebben

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC

DIFFERENCIÁLEGYENLETEK. BSc. Matematika II. BGRMA2HNND, BGRMA2HNNC BSC MATEMATIKA II. MÁSODRENDŰ LINEÁRIS DIFFERENCIÁLEGYENLETEK BSc. Matematika II. BGRMAHNND, BGRMAHNNC MÁSODRENDŰ DIFFERENCIÁLEGYENLETEK Egy explicit közönséges másodrendű differenciálegyenlet általános

Részletesebben

TÁJÉKOZTATÓ A VILLAMOS ENERGIA ALÁGAZATOT ÉRINTŐ FELADATOKRÓL

TÁJÉKOZTATÓ A VILLAMOS ENERGIA ALÁGAZATOT ÉRINTŐ FELADATOKRÓL http://www.ekh.hu g et TÁJÉOZTATÓ A VILLAOS NRGIA ALÁGAZATOT ÉRINTŐ FLADATORÓL Beda Jenő otyvezető Vllaosega- Távhő-felügyelet, - Főoty Infastuktúavédel a nap 2014. ácus 10. http://www.ekh.hu g et Jogk

Részletesebben

Halmazállapot-változások vizsgálata ( )

Halmazállapot-változások vizsgálata ( ) Halmazállapot-változások vizsgálata Eddigi tanulmányaik során a szilárd, folyékony és légnemő, valamint a plazma állapottal találkoztak. Ezen halmazállapotok mindegyikében más és más összefüggés áll fenn

Részletesebben

1. feladat Összesen 15 pont

1. feladat Összesen 15 pont 1. feladat Összesen 15 pont Metánt és propánt tartalmazó gázelegyet elégetünk. A gázelegy összetétele a következő: φ = 60% propán, és φ = 40% metán. A) Írja fel a két gáz tökéletes égésének termokémiai

Részletesebben

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

KÉMIA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Kémia középszint 0821 É RETTSÉGI VIZSGA 2009. október 28. KÉMIA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Az írásbeli feladatok értékelésének

Részletesebben

0. Matematika és mértékegységek

0. Matematika és mértékegységek . Matematka és métékegységek Defnált fogalom Meghatáozás Kö keülete, teülete K = π [m], = π [m ] églalap keülete, teülete K = (a+b) [m], = ab [m ] Deékszögű háomszög keülete, teülete K = a+b+c [m], = ab

Részletesebben

ĺ ö ö ü ű Ü ü ĺ ü ú ö ű ö ö ü ĺĺ ź Ü ö Ĺĺ Ü ĺ É Ü ľ ö ę ü ĺ

ĺ ö ö ü ű Ü ü ĺ ü ú ö ű ö ö ü ĺĺ ź Ü ö Ĺĺ Ü ĺ É Ü ľ ö ę ü ĺ Á ö É ö Á ö ö ö ö ö ö ö Ö ü ö ö Ü ü ű ö ú ű ö ű Ü ö ö ö ü ö ľ ü ö ű ö ö ö ű ö ö ĺ ö ö ü ű Ü ü ĺ ü ú ö ű ö ö ü ĺĺ ź Ü ö Ĺĺ Ü ĺ É Ü ľ ö ę ü ĺ ü ö ű ö ĺ ö ú ö ö Ü ö ü Á ü ű ĺ ü ö ö ü ű ö Á ü Ü ö ű ö Ü ö ö

Részletesebben

Tiszta és kevert stratégiák

Tiszta és kevert stratégiák sza és kever sraégák sza sraéga: Az -edk áékos az sraégá és ez alkalmazza. S sraégahalmazból egyérelműen válasz k egy eknsük a kövekező áéko. Ké vállala I és II azonos erméke állí elő. Azon gondolkodnak,

Részletesebben

Egy negyedrendű rekurzív sorozatcsaládról

Egy negyedrendű rekurzív sorozatcsaládról Egy negyedrendű rekurzív sorozatcsaládról Pethő Attla Emlékül Kss Péternek, a rekurzív sorozatok fáradhatatlan kutatójának. 1. Bevezetés Legyenek a, b Z és {1, 1} olyanok, hogy a 2 4b 2) 0, b 2 és ha 1,

Részletesebben

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben.

Egy forgáskúp metszéséről. Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Egy forgáskúp metszéséről Egy forgáskúpot az 1. ábra szerint helyeztünk el egy ( OXYZ ) derékszögű koordináta - rendszerben. Az O csúcsú, O tengelyű, γ félnyílásszögű kúpot az ( XY ) sík itt két alkotóban

Részletesebben

Hely és elmozdulás - meghatározás távolságméréssel

Hely és elmozdulás - meghatározás távolságméréssel Hely és elmozdulás - meghatározás távolságméréssel Bevezetés A repülő szerkezetek repülőgépek, rakéták, stb. helyének ( koordnátának ) meghatározása nem új feladat. Ezt a szakrodalom részletesen taglalja

Részletesebben

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ

FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Fizika középszint Jaítási-értékelési útutató 0623 ÉRETTSÉGI VIZSGA 2007. ájus 14. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ OKTATÁSI ÉS KULTURÁLIS MINISZTÉRIUM Jaítási-értékelési

Részletesebben

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága

7. gyakorlat. Lineáris algebrai egyenletrendszerek megoldhatósága 7. gyakorlat Lineáris algebrai egyenletrendszerek megoldhatósága Egy lineáris algebrai egyenletrendszerrel kapcsolatban a következ kérdések merülnek fel: 1. Létezik-e megoldása? 2. Ha igen, hány megoldása

Részletesebben

II. MELLÉKLET AJÁNLATI/RÉSZVÉTELI FELHÍVÁS I. SZAKASZ: AJÁNLATKÉRŐ I.1) NÉV, CÍM ÉS KAPCSOLATTARTÁSI PONT(OK)

II. MELLÉKLET AJÁNLATI/RÉSZVÉTELI FELHÍVÁS I. SZAKASZ: AJÁNLATKÉRŐ I.1) NÉV, CÍM ÉS KAPCSOLATTARTÁSI PONT(OK) II. MELLÉKLET EURÓPAI UNIÓ Az Európai Unió Hivatalos Lapjának Kiegészítő Kiadványa 2, rue Mercier, L-2985 Luxebourg Fax: (352) 29 29 42 670 E-ail: p-ojs@opoce.cec.eu.int Inforáció és on-line foranyotatványok:

Részletesebben

1. Parciális függvény, parciális derivált (ismétlés)

1. Parciális függvény, parciális derivált (ismétlés) Operációkutatás NYME Gazdaságinformatikus mesterképzés El adó: Kalmár János (kalmar[kukac]inf.nyme.hu) Többváltozós széls érték számítás Parciális függvény, parciális derivált Széls érték korlátos zárt

Részletesebben

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia.

4. Lineáris csillapítatlan szabad rezgés. Lineáris csillapított szabad rezgés. Gyenge csillapítás. Ger-jesztett rezgés. Amplitúdó rezonancia. 4 Lneárs csllapíalan szabad rezgés Lneárs csllapío szabad rezgés Gyenge csllapíás Ger-jesze rezgés Aplúdó rezonanca Lneárs csllapíalan szabad rezgés: Téelezzük fel hogy a öegponra a kvázelaszkus vagy közel

Részletesebben

Vályogos homoktalaj terepprofil mérése

Vályogos homoktalaj terepprofil mérése Vályogos hooktalaj terepprofl érése Pllnger György Szent István Egyete, Gépészérnök Kar Folyaatérnök Intézet, Járűtechnka Tanszék PhD hallgató, pllnger.gyorgy@gek.sze.hu Összefoglalás A terepen haladó

Részletesebben

Elektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye

Elektromos töltés helyzeti energiája, elektromos potenciál, az elektrosztatika I. alaptörvénye Tóth : lektosztatka/2 lektomos töltés helyzet enegája, elektomos potencál, az elektosztatka I alaptövénye mechankában láttuk, hogy konzevatív eőtében helyzet enega vezethető be zt a kédést, hogy az elektosztatkus

Részletesebben

Megint egy keverési feladat

Megint egy keverési feladat Megnt egy keveré feladat Az alább feladatot [ 1 ] - ben találtuk nylván egoldá nélkül Itt azért vezetjük elő ert a egoldáa orán előálló özefüggéek egybecengenek egy korább dolgozatunkéval elynek cíe: Ragaztóanyag

Részletesebben

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben.

1. Az adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb elemmel, a legegyszerűbben. 1 1. z adott kifejezést egyszerűsítse és rajzolja le a lehető legkevesebb eleel, a legegyszerűbben. F függvény 4 változós. MEGOLÁS: legegyszerűbb alak egtalálása valailyen egyszerűsítéssel lehetséges algebrai,

Részletesebben

Bertrand-duopólium. Profitmaximum a Bertrand-modellben. Az árak egyenlõk és megegyeznek a. Kovács Norbert SZE KGYK, GT

Bertrand-duopólium. Profitmaximum a Bertrand-modellben. Az árak egyenlõk és megegyeznek a. Kovács Norbert SZE KGYK, GT 6. Elõadás Saikus Jáékok folyaás Az árverseny: Berrand, Berrand hiái, éreli Berrand Dinaikus Jáékok: Sakelerg-odell Kovás orer SZE KGYK, GT Berrand-duoóliu A. vállala erékei iráni keresle Berrand versenyen

Részletesebben

Lineáris egyenletrendszerek

Lineáris egyenletrendszerek Lineáris egyenletrendszerek Lineáris egyenletrendszernek nevezzük az a 11 x 1 + a 12 x 2 +... +a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... +a 2n x n = b 2.. a k1 x 1 + a k2 x 2 +... +a kn x n = b k n ismeretlenes,

Részletesebben

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015

7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 7. OSZTÁLY TANMENETE MATEMATIKÁBÓL 2014/2015 Évi óraszá: 108 óra Heti óraszá: 3 óra 1. téa: Racionális száok, hatványozás 11 óra 2. téa: Algebrai kifejezések 12 óra 1. téazáró dolgozat 3. téa: Egyenletek,

Részletesebben

é é ő í é é ü é ü í é ó é é ó ü é é ú Ö é é í ö ó ó é é é é é é ű ö é ö ö é ó ú ő ő é ö é ö é ó ő é ü é é ő ő ö é í í ő é ó ö é é é é ö ú é ő ó é é ő

é é ő í é é ü é ü í é ó é é ó ü é é ú Ö é é í ö ó ó é é é é é é ű ö é ö ö é ó ú ő ő é ö é ö é ó ő é ü é é ő ő ö é í í ő é ó ö é é é é ö ú é ő ó é é ő Á Á É É É Ü Á Ú í é ő ó ó ő é ő í í é Á é é é ő í Í ó ó í ü é ó ó ő ó ő é ű ő ő í í ü ő í ó ő é ü ő í ö ü ő í í ó ő é é ó é ó é é é é é é é ü ó é é é é é é ó é ö é é é é í ü ü ő é ő é ó é ő é ü ő í ó ü

Részletesebben

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere :

A Coulomb-törvény : ahol, = coulomb = 1C. = a vákuum permittivitása (dielektromos álladója) k 9 10 F Q. elektromos térerősség : ponttöltés tere : Villamosságtan A Coulomb-tövény : F QQ 4 ahol, Q = coulomb = C = a vákuum pemittivitása (dielektomos álladója) 4 9 k 9 elektomos téeősség : E F Q ponttöltés tee : E Q 4 Az elektosztatika I. alaptövénye

Részletesebben

Oktatáskutató és Fejlesztő Intézet TÁMOP / XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz KÉMIA 3.

Oktatáskutató és Fejlesztő Intézet TÁMOP / XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz KÉMIA 3. Oktatáskutató és Fejlesztő Intézet TÁMOP-.1.1-11/1-2012-0001 XXI. századi közoktatás (fejlesztés, koordináció) II. szakasz KÉMIA. MINTAFELADATSOR KÖZÉPSZINT 2015 JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ Oktatáskutató

Részletesebben

Szennyvíztisztítási technológiai számítások és vízminőségi értékelési módszerek

Szennyvíztisztítási technológiai számítások és vízminőségi értékelési módszerek Szennyvíztsztítás technológa számítások és vízmnőség értékelés módszerek Segédlet a Szennyvíztsztítás c. tantárgy gyakorlat foglalkozásahoz Dr. Takács János ME, Eljárástechnka Tsz. 00. BEVEZETÉS Áldjon,

Részletesebben