Mérés alapelve, mértékegységek, számolási szabályok. Gyenes Róbert, Tarsoly Péter
|
|
- Mariska Horváthné
- 9 évvel ezelőtt
- Látták:
Átírás
1 Geodézia I. Mérés alapelve, mértékegységek, számolási szabályok Gyenes Róbert, Tarsoly Péter 1
2 A mérés alapelve Mérendı mennyiség és az alapegység összehasonlítása Jellemzés kvantitatív úton ( egy adott jelenség számszerő jellemzése ) Feltétel: az alapegység, továbbiakban MÉRTÉKEGYSÉG ismerete Mérıeszközök és mőszerek, amelyek a mértékegységet hitelesen hordozzák Mértékegység definiálása valamely természeti jelenséghez kapcsolódjon 2
3 Példa: hosszmérés A mérés alapelve 3
4 Példa: elektrooptikai távmérés A mérés alapelve 4
5 A mérés alapelve Példa: szögmérés 1 5
6 A méter története Kezdetben köznapi életbıl választva (nyíllövés,könyökláb hossz, valamely értéktárgy mérete, stb.) 1791: Pierre Simon Laplace ( ) javaslata: Föld méretéhez történı meghatározás Meridián hosszának 1/40 milliomod része=méter (metron) Megvalósítás etalon:platina-irídium rúd (90% platina, 10% irídium) 1 / Pierre Simon Laplace ( ) 6
7 A méter története 1791: Mértékek és súlyok bizottsága Eredmény: Politikától független mértékegység 10-es számrendszer Törvénybe iktatás (Franciaország): 1799 december Belgium (1815), Hollandia(1816), Ausztria-Magyarország (1873) 1870, Párizs: Nemzetközi Méter Bizottság másolatok készítése a csatlakozó országoknak Magyarország: évi VIII. törvénycikk rendelete. Hatályba lépés: január 1., elıtte a bécsi öl használata, 1böl= , Canberra: méter definíciójának módosítása a fény terjedése alapján 1/ s, Bay Zoltán magyar származású fizikus 7
8 A méter története 1796 Február-1797 december 16 db márvány emlékmő Párizsban 2 maradt fenn napjainkra, egy eredeti állapotában és helyszínen 8
9 A terület mértékegységei A terület alapmértékegysége az 1 m x 1 m-nek megfelelı terület, a négyzetméter (m2). A négyzetméter további váltóegységei a hektár (ha), amely egy 100 méter x 100 méteres területnek felel meg. A definíciónak megfelelıen 1 ha = 100 m x 100 m = m2. Elsısorban a távérzékelésben alkalmazzuk a négyzetkilométert, amely 1000 m x 1000 m-es területnek, azaz 1 millió négyzetméternek felel meg. A leírtakból következik, hogy 1 km2 = 100 ha. A bécsi ölhöz kapcsolódóan területegységnek a négyszögölt vezették be, azaz az 1 öl x 1 öl nagyságú területet. A négyszögöl jelölésére egy négyzet szimbólumot és az öl szavat kombinálva használjuk ( öl ). 1 öl körülbelül 3.6 m2. A négyszögöl váltóegysége a kataszteri hold, amely 1600 négyszögölnek felel meg. 9
10 A térfogat mértékegységei A térfogat mértékegységeit a területhez hasonlóan a méterbıl vezetjük le. Az alapegység az 1 m x 1 m x 1 m-nek megfelelı köbtartalom, a köbméter (m3). Köbtartalom számításokra van szükség például út- és vasútépítések során végzett terepmunkák esetén, vagy külszíni fejtéső bányák termelésének számítására vonatkozóan. Egyes térinformatikai és fıleg földrajzi alkalmazásokban használjuk a köbkilométert (1 km x 1 km x 1 km = 1 millió m3), elsısorban állóvizek köbtartalmának számítására. 10
11 A szög mértékegségei 360-as rendszer 1 1 π K = 2π = egység R=1 A 360-as fokrendszer esetén az 1 fok az alapegység, amely a kör kerületének 360- ad részéhez tartozó középponti szögnek felel meg. Egy fokot továbbosztunk 60 ívpercre (jele: ), és 1 ívpercet további 60 ívmásodpercre (jele: ). Az ívperc és ívmásodperc helyett gyakran alkalmazzuk a szögperc vagy szögmásodperc kifejezéseket, vagy röviden csak perc és a másodperc fogalmakat. A fok, perc és másodperc értékek között az alábbi összefüggések írhatóak fel: 1 = 60 =
12 A szög mértékegségei 400-as rendszer 1 gon R=1 1 1 π K = 2π = egység A 400-as fokrendszer esetén egy fok alatt a kör kerületének 400-ad részéhez tartozó középponti szöget értjük, amelyet gonnak vagy újfoknak nevezünk. A 400-as fokrendszer 10-es számrendszert használ. Egy gont 100 részre osztunk tovább, amelyet centezimális percnek nevezünk, egy centezimális percet pedig továbbosztunk 100 centezimális másodpercre gon=141g 81c 22cc Kis szögek esetén a szögek jellemzésére a milligon nagyságrendet használjuk (1 mgon = gon). A 360-as és a 400-as fokrendszer definíciójából következik, hogy egy adott α szög esetén az átváltás a következı: α o = 360 α gon 400 gon α = 400 o α 360 és Amibıl következik, hogy 1 szögmásodperc 0.3 mgon-nal egyenlı. 12
13 A szög mértékegségei analítikus rendszer R 1 rad R Az analitikus szögegység, vagy más néven ívmérték, az egységnyi sugárral egyenlı ívhosszhoz tartozó középponti szögnek felel meg. Mértékegysége a radián. A gyakorlati számítások során gyakran alkalmazzuk a 360-as, egyes országokban a 400-as, és az analitikus szögegység közötti átváltást. Mivel 360 megfelel 2π radiánnak, ezért o '' 180 o rad = = = 3600 = ' ' π π ρ =
14 Hımérséklet és légnyomás mértékegységei A hımérséklet mértékegysége a Kelvin, de a gyakorlatban és a mindennapi életben a Celsiust használjuk. Az átváltás a két mennyiség között a következı: T[ Celsius] = T[ Kelvin] A légnyomás mértékegységére a higanymilliméter (Hgmm vagy mmhg) vagy a Bar, esetleg a millibar a használatos. A Hgmm annak a nyomásnak az értéke, amely a higanyoszlop 1 mm-es emelkedését okozza. Az említett mértékegységek között az alábbi átváltások alkalmazhatók: 760 Hgmm = mbar = Pascal A páranyomás a levegıben lévı vízgız parciális nyomása. Mivel a levegı gázkeverék, ezért nyomása egyenlı a keveréket alkotó anyagok parciális nyomásainak az összegével. Ha a nedves levegı nyomását p-vel, a száraz levegıjét pedig p0-val jelöljük, akkor e = p p 0 Magyarországon a parciális páranyomás értéke kisebb, mint 3%, ami kb. 30 mbar-nak felel meg. 14
15 SI Mértékegységrendszer 1960: Nemzetközi Súly- és Mértékügyi Bizottság Magyarországon az SI mértékegységrendszer óta hatályos 7 alap és 2 kiegészítı mértékegység Alapmennyiség Neve Hosszúság Tömeg Idı Áramerısség Termodinamikai hımérséklet Fényerısség Anyagmennyiség Mértékegysége Méter Kilogramm Másodperc Amper Kelvin Kandela Mól 15
16 m m m Pontosság és élesség fogalma, Példa: egy távolság mérése 10-szeres ismétléssel m m m m m m m számolási szabályok Elméleti függvény 210: 1 211: 1 212: 1 213: 1 214: 2 215: : 1 219:
17 Pontosság és élesség fogalma, számolási szabályok Pontosság # élesség!!! Pontosság(accuracy): Élesség, értékes helyértékek száma (significant digits): 17
18 Pontosság és élesség fogalma, számolási szabályok K = 2 ( ) = m X X
19 Pontosság és élesség fogalma, számolási szabályok Kerekítési szabályok (rounding rules) Klasszikus : páros felé, ; Mai, ún. számítógépes kerekítés felfelé : 5, 6, 7, 8, 9, lefelé : 1, 2, 3, 4, 19
20 Lineáris eltérés értelmezése gyakorlatban gyakran elıfordul Távoli kis látószög alatt látszódó tárgyak sugarának vagy átmérıjének meghatározásához Tájékozáshoz Mérnökgeodéziában közvetlen nem mérhetı szerkezeti elemek hosszának meghatározásához Szabatos képlet (általános alkalmazásokhoz), közelítı képlet (csak tájékozáshoz) E lineáris eltérés jele E t mért távolság, elég a közelítı ismerete e - látószög t e E E [dim] [ cm] " e = " ρ " e = " ρ t t [dim] [ km] szabatos képlet közelítı képlet 20
21 Lineáris eltérés értelmezése t r e=30 t= m r=?, ahol r=e e " e 15 " E = tcm = = cm = r " ρ szabatos képlet " " " " e E = tcm = = 4,50000 = 4,5 = cm = r , közelítı képlet bevezetésével 21
22 A térkép méretaránya Nem szabatos definíció: A térkép méretaránya a térképen mért hossz és a neki megfelelı terepi hossznak a hányadosa. Pl. 1:10 000, ami a térképen 1 cm, az a valóságban cm, azaz 100 m Szabatos definíció: A térkép méretaránya a térképen mért hossz, és a neki megfelelı vetületi hossznak (vízszintesre redukált hossznak) a hányadosa. ttérképi ttérképi M = = t terepi t vetületi M=1: cm = 250 m M=1: cm = 500 m M=1: cm = 2500 m 22
Debreceni Egyetem szaki kar Épít mérnöki tanszék
Debreceni Egyetem szaki kar Épít mérnöki tanszék 1. el adás Mértékegységek és alapm veletek 2011/12 tanév,1.félév Varga Zsolt Készült: Dr. Csepregi Szabolcs:Földmérési ismeretek c. jegyzete alapján,valamint
Nemzetközi Mértékegységrendszer
Nemzetközi Mértékegységrendszer 1.óra A fizika tárgya, mérés, mértékegységek. Fűzisz Természet Fizika Mérés, mennyiség A testek, anyagok bizonyos tulajdonságait számszerűen megadó adatokat mennyiségnek
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY
EÖTVÖS LORÁND SZAKKÖZÉP- ÉS SZAKISKOLA TANÍTÁST SEGÍTŐ OKTATÁSI ANYAGOK MÉRÉS TANTÁRGY ALAPMÉRTÉKEGYSÉGEK A fizikában és a méréstudományban mértékegységeknek hívjuk azokat a méréshez használt egységeket,
A klasszikus mechanika alapjai
A klasszikus mechanika alapjai FIZIKA 9. Mozgások, állapotváltozások 2017. október 27. Tartalomjegyzék 1 Az SI egységek Az SI alapegységei Az SI előtagok Az SI származtatott mennyiségei 2 i alapfogalmak
Az SI alapegysegei http://web.inc.bme.hu/fpf/kemszam/alapegysegek.html 1 of 2 10/23/2008 10:34 PM Az SI alapegységei 1. 2. 3. 4. 5. 6. 7. A hosszúság mértékegysége a méter (m). A méter a kripton-86-atom
A NEMZETKÖZI MÉRTÉKEGYSÉG-RENDSZER (AZ SI)
A NEMZETKÖZI MÉRTÉKEGYSÉG-RENDSZER (AZ SI) A Nemzetközi Mértékegység-rendszer bevezetését, az erre épült törvényes mértékegységeket hazánkban a mérésügyről szóló 1991. évi XLV. törvény szabályozza. Az
HOSSZ FIZIKAI MENNYISÉG
HOSSZMÉRÉS, TÁVMÉRÉS Geometriai és fizikai távolságmérés Budapest 2016. június Földmérési és Távérzékelési Intézet HOSSZ FIZIKAI MENNYISÉG MÉRTÉKEGYSÉG: MÉRŐSZÁM: MÉRÉS ALAPEGYSÉGE MENNYISÉG ALAPEGYSÉGHEZ
FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
FÖLDMÉRÉS ISMERETEK EMELT SZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ 1 / 6 feladatlap Elméleti szöveges feladatok 1. Egészítse ki az alábbi szöveget a Glonassz GNSS alaprendszerrel
Fizikai mennyiség megadása Egy fizikai mennyiség megadásához meg kell adnunk a mérés alapegységét, ezt mértékegységnek nevezzük, valamint a mennyiség
MÉRTÉKEGYSÉGEK Fizikai mennyiség megadása Egy fizikai mennyiség megadásához meg kell adnunk a mérés alapegységét, ezt mértékegységnek nevezzük, valamint a mennyiség alapegységhez viszonyított nagyságát,
Az SI mértékegység rendszer
Az SI mértékegység rendszer Az egyes fizikai mennyiségek közötti kapcsolatokat méréssel tudjuk meghatározni, de egy mennyiség méréséhez valamilyen rögzített értéket kell alapul választanunk. Ezt az alapul
Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek. Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem
Mérés szerepe a mérnöki tudományokban Mértékegységrendszerek Dr. Berta Miklós Fizika és Kémia Tanszék Széchenyi István Egyetem Alapinformációk a tantárgyról a tárgy oktatója: Dr. Berta Miklós Fizika és
Mit nevezünk nehézségi erőnek?
Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt
4. A kézfogások száma pont Összesen: 2 pont
I. 1. A páros számokat tartalmazó részhalmazok: 6 ; 8 ; 6 ; 8. { } { } { }. 5 ( a ) 17 Összesen: t = = a a Összesen: ot kaphat a vizsgázó, ha csak két helyes részhalmazt ír fel. Szintén jár, ha a helyes
Az SI mértékegységrendszer
PTE Műszaki és Informatikai Kar DR. GYURCSEK ISTVÁN Az SI mértékegységrendszer http://hu.wikipedia.org/wiki/si_mértékegységrendszer 1 2015.09.14.. Az SI mértékegységrendszer Mértékegységekkel szembeni
5. osztály. Matematika
5. osztály A természetes számok értelmezése 100 000-ig. A tízes számrendszer helyértékes írásmódja. A A természetes számok írásbeli összeadása, kivonása. A műveleti eredmények becslése. Ellenőrzés 3. A
A FIZIKA MÓDSZEREI. Fáról leesı alma zuhanás. Kísérletes természettudomány: a megfigyelt jelenségek leírása és értelmezése
A FIZIKA MÓDSZEREI Kísérletes természettudomány: a megfigyelt jelenségek leírása és értelmezése A módszer lépései: Megfigyelés Kísérlet Mérés-kiértékelés Modellalkotás A modell mőködése a gyakorlatban
1. SI mértékegységrendszer
I. ALAPFOGALMAK 1. SI mértékegységrendszer Alapegységek 1 Hosszúság (l): méter (m) 2 Tömeg (m): kilogramm (kg) 3 Idő (t): másodperc (s) 4 Áramerősség (I): amper (A) 5 Hőmérséklet (T): kelvin (K) 6 Anyagmennyiség
GPS mérési jegyz könyv
GPS mérési jegyz könyv Mérést végezte: Csutak Balázs, Laczkó Hunor Mérés helye: ITK 320. terem és az egyetem környéke Mérés ideje: 2016.03.16 A mérés célja: Ismerkedés a globális helymeghatározó rendszerrel,
1. előadás. Gáztörvények. Fizika Biofizika I. 2015/2016. Kapcsolódó irodalom:
1. előadás Gáztörvények Kapcsolódó irodalom: Fizikai-kémia I: Kémiai Termodinamika(24-26 old) Chemical principles: The quest for insight (Atkins-Jones) 6. fejezet Kapcsolódó multimédiás anyag: Youtube:
A méretaránytényező kérdése a földmérésben és néhány szakmai következménye
A méretaránytényező kérdése a földmérésben és néhány szakmai következménye Dr. Busics György c. egyetemi tanár Óbudai Egyetem Alba Regia Műszaki Kar Székesfehérvár MFTTT Vándorgyűlés, Békéscsaba, 2019.
6. OSZTÁLY. Az évi munka szervezése, az érdeklõdés felkeltése Feladatok a 6. osztály anyagából. Halmazok Ismétlés (halmaz megadása, részhalmaz)
6. OSZTÁLY Óraszám 1. 1. Az évi munka szervezése, az érdeklõdés felkeltése a 6. osztály anyagából Tk. 13/elsõ mintapélda 42/69 70. 96/elsõ mintapélda 202/16. 218/69. 2 3. 2 3. Halmazok Ismétlés (halmaz
Mértékrendszerek, az SI, a legfontosabb származtatott mennyiségek és egységeik
Mértékrendszerek, az SI, a legfontosabb származtatott mennyiségek és egységeik A fizikában és a méréstudományban mértékegységeknek hívjuk azokat a méréshez használt egységeket, amivel a fizikai mennyiségeket
Compton-effektus. Zsigmond Anna. jegyzıkönyv. Fizika BSc III.
Compton-effektus jegyzıkönyv Zsigmond Anna Fizika BSc III. Mérés vezetıje: Csanád Máté Mérés dátuma: 010. április. Leadás dátuma: 010. május 5. Mérés célja A kvantumelmélet egyik bizonyítékának a Compton-effektusnak
Matematika 5. osztály Osztályozó vizsga
Matematika 5. osztály Osztályozó vizsga A TERMÉSZETES SZÁMOK A tízes számrendszer A természetes számok írása, olvasása 1 000 000-ig. Helyi-értékes írásmód a tízes számrendszerben, a helyiérték-táblázat
Tartalom Fogalmak Törvények Képletek Lexikon
Fizikakönyv ifj. Zátonyi Sándor, 2014. Tartalom Fogalmak Törvények Képletek Lexikon Fogalmak Bevezetés A fizikai megismerés módszerei megfigyelés A megfigyelés olyan (tudományos) megismerési módszer, melynek
. Számítsuk ki a megadott szög melletti befogó hosszát.
Szögek átváltása fokról radiánra és fordítva 2456. Hány fokosak a következő, radiánban (ívmértékben) megadott szögek? π π π π 2π 5π 3π 4π 7π a) π ; ; ; ; ; b) ; ; ; ;. 2 3 4 8 3 6 4 3 6 2457. Hány fokosak
Méréstechnikai alapfogalmak
Méréstechnikai alapfogalmak 1 Áttekintés Tulajdonság, mennyiség Mérés célja, feladata Metrológia fogalma Mérıeszközök Mérési hibák Mérımőszerek metrológiai jellemzıi Nemzetközi mértékegységrendszer Munka
Trigonometria. Szögfüggvények alkalmazása derékszög háromszögekben. Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1
Szent István Egyetem Gépészmérnöki Kar Matematika Tanszék 1 Trigonometria Szögfüggvények alkalmazása derékszög háromszögekben 1. Az ABC hegyesszög háromszögben BC = 14 cm, AC = 1 cm, a BCA szög nagysága
MÉRÉSTECHNIKA. Mérés története I. Mérés története III. Mérés története II. A mérésügy jogi szabályozása Magyarországon. A mérés szerepe a mai világban
Mérés története I. MÉRÉSTECHNIKA - A mérés első jogi szabályozása (i.e. 3000): Halálbüntetésre számíthat aki elmulasztja azon kötelességét, hogy "Ami számítható, azt számítsd ki, ami mérhető, azt mérd
Ideális gáz és reális gázok
Ideális gáz és reális gázok Fizikai kémia előadások 1. Turányi Tamás ELTE Kémiai Intézet Állaotjelzők állaotjelző: egy fizikai rendszer makroszkoikus állaotát meghatározó mennyiség egykomonensű gázok állaotjelzői:
Melyik több? Egy szekrény súlya vagy egy papírlap tömege?
Melyik több? Egy szekrény súlya vagy egy papírlap tömege? Régi súly, hosszúság és űrmértékek Süsü: tátsd ki a szád! Három és fél akó. Mai mértékegységben 1 akó 41,97 liter és 85,6 liter közé esett. A bécsi
Calibrare necesse est
Calibrare necesse est VIRÁG Gábor KGO 40 konferencia Földmérési és Távérzékelési Intézet Kozmikus Geodéziai Obszervatórium Kalibrálás: azoknak a műveleteknek az összessége, amelyekkel - meghatározott feltételek
MÉRÉSI JEGYZİKÖNYV. A mérési jegyzıkönyvet javító oktató tölti ki! Mechatronikai mérnök Msc tananyagfejlesztés TÁMOP
MÉRÉSI JEGYZİKÖNYV Katalizátor hatásfok Tanév/félév Mérés dátuma Mérés helye Jegyzıkönyvkészítı e-mail cím Neptun kód Mérésvezetı oktató Beadás idıpontja Mechatronikai mérnök Msc tananyagfejlesztés TÁMOP-4.1.2.A/1-11/1-2011-0042
Követelmény az 5. évfolyamon félévkor matematikából
Követelmény az 5. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Néhány elem kiválasztása adott szempont szerint. Néhány elem sorba rendezése, az összes lehetséges sorrend felsorolása.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával.
ALKÍMIA MA Az anyagról mai szemmel, a régiek megszállottságával www.chem.elte.hu/pr Kvíz az előző előadáshoz Programajánlatok december 2. 16:00 ELTE Kémiai Intézet 065-ös terem Észbontogató (www.chem.elte.hu/pr)
Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek
2013. 11.19. Háromszögek ismétlés Háromszög egyenlőtlenség(tétel a háromszög oldalairól.) Háromszög szögei (Belső, külső szögek fogalma és összegük) Háromszögek csoportosítása szögeik szerint (hegyes-,
Számtani alapok. - Alapmőveletek, anyaghányad számítás - Mértékegység-átváltások - Százalékszámítás - Átlagszámítás, súlyozott átlag TÉMAKÖR TARTALMA
Számtani alapok TÉMAKÖR TARTALMA - Alapmőveletek, anyaghányad számítás - Mértékegység-átváltások - Százalékszámítás - Átlagszámítás, súlyozott átlag ALAPMŐVELETEK A matematikai alapmőveletek az összeadás
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK
9. Laboratóriumi gyakorlat NYOMÁSÉRZÉKELŐK 1.A gyakorlat célja Az MPX12DP piezorezisztiv differenciális nyomásérzékelő tanulmányozása. A nyomás feszültség p=f(u) karakterisztika megrajzolása. 2. Elméleti
Modern Fizika Labor Fizika BSC
Modern Fizika Labor Fizika BSC A mérés dátuma: 2009. április 20. A mérés száma és címe: 20. Folyadékáramlások 2D-ban Értékelés: A beadás dátuma: 2009. április 28. A mérést végezte: Márton Krisztina Zsigmond
Mennyiségek, mértékegységek nemzetközi rendszere
Ismerd meg Mennyiségek, mértékegységek nemzetközi rendszere 1. Alapmennyiségek. Származtatott mennyiségek A tudományok rohamos fejlődése szükségessé tette a mértékegységek elnevezésének és a jelrendszer
térképet, és válaszolj a kérdésekre római számokkal!
A római számok 1. Budapesten a kerületeket római számokkal jelölik. Vizsgáld meg a térképet, és válaszolj a kérdésekre római számokkal! Hányadik kerületben található a Parlament épülete? Melyik kerületbe
Geodézia terepgyakorlat számítási feladatok ismertetése 1.
A Geodézia terepgyakorlaton Sukorón mért geodéziai hálózat új pontjainak koordináta-számításáról Geodézia terepgyakorlat számítási feladatok ismertetése 1. Dr. Busics György 1 Témák Cél, feladat Iránymérési
FIZIKA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ
Fizika középszint ÉRETTSÉGI VIZSGA 0. október 7. FIZIKA KÖZÉPSZINTŰ ÍRÁSBELI ÉRETTSÉGI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ NEMZETI ERŐFORRÁS MINISZTÉRIUM A dolgozatokat az útmutató utasításai szerint,
TANMENETJAVASLAT. Dr. Korányi Erzsébet MATEMATIKA. tankönyv ötödikeseknek. címû tankönyvéhez
TANMENETJAVASLAT Dr. Korányi Erzsébet MATEMATIKA tankönyv ötödikeseknek címû tankönyvéhez A heti 3 óra, évi 111 óra B heti 4 óra, évi 148 óra Javaslat témazáró dolgozatra: Dr. Korányi Erzsébet: Matematika
PISA2000. Nyilvánosságra hozott feladatok matematikából
PISA2000 Nyilvánosságra hozott feladatok matematikából Tartalom Tartalom 3 Almafák 8 Földrész területe 12 Háromszögek 14 Házak 16 Versenyautó sebessége Almafák M136 ALMAFÁK Egy gazda kertjében négyzetrács
Gyakorló feladatok a geometria témazáró dolgozathoz
Gyakorló feladatok a geometria témazáró dolgozathoz Elmélet 1. Mit értünk két pont, egy pont és egy egyenes, egy pont és egy sík, két metszı, két párhuzamos illetve két kitérı egyenes, egy egyenes és egy
Matematika. 1. évfolyam. I. félév
Matematika 1. évfolyam - Biztos számfogalom a 10-es számkörben - Egyjegyű szám fogalmának ismerete - Páros, páratlan fogalma - Sorszám helyes használata szóban - Növekvő, csökkenő számsorozatok felismerése
Környezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése
örnyezeti analitika laboratóriumi gyakorlat Számolási feladatok áttekintése I. A számolási feladatok megoldása során az oldatok koncentrációjának számításához alapvetıen a következı ismeretekre van szükség:
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam
Osztályozóvizsga és javítóvizsga témakörei Matematika 9. évfolyam 1. félév Gondolkozás, számolás - halmazok, műveletek halmazokkal, intervallumok - racionális számok, műveletek racionális számokkal, zárójel
Mértékhitelesítés. Hitelesített mérıeszközök használata. Alapmérıeszközök, hiteles anyagminták
8/1976. (IV. 27.) MT rendelet a mérésügyrıl A Minisztertanács a mérések pontossága és egységessége érdekében az alábbiakat rendeli: Mértékegységek 1. (1) Minden olyan mennyiség mérésére és értékének kifejezésére,
Feladatok MATEMATIKÁBÓL II.
Feladatok MATEMATIKÁBÓL a 12. évfolyam számára II. 1. Alakítsuk át a következő kifejezéseket úgy, hogy teljes négyzetek jelenjenek meg: a) x 2 2x + b) x 2 6x + 10 c) x 2 + x + 1 d) x 2 12x + 11 e) 2x 2
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 7 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Pótvizsga: beadandó feladatok 45 perces írásbeli szóbeli a megadott témakörökből
Pótvizsga anyaga 5. osztály (Iskola honlapján is megtalálható!) Természetes számok: 0123 (TK 4-49.oldal) - tízes számrendszer helyi értékei alaki érték valódi érték - becslés kerekítés - alapműveletek:
Az egységes mértékegységrendszer kialakítása és hazai bevezetésének akadémiai vonatkozásai
Az egységes mértékegységrendszer kialakítása és hazai bevezetésének akadémiai vonatkozásai Dr Ádám József az MTA rendes tagja BME Általános- és Felsőgeodézia Tanszék A méterrendszer bevezetésének kezdete
127/1991. (X. 9.) Korm. rendelet. a mérésügyrıl szóló törvény végrehajtásáról. (Tv. 2. -hoz) (Tv. 5. -hoz) (Tv. 6. -hoz)
A jogszabály mai napon hatályos állapota 2009-11-03 127/1991. (X. 9.) Korm. rendelet a mérésügyrıl szóló törvény végrehajtásáról A Kormány a mérésügyrıl szóló 1991. évi XLV. törvény (a továbbiakban: Tv.)
Vízszintes kitűzések. 1-3. gyakorlat: Vízszintes kitűzések
Vízszintes kitűzések A vízszintes kitűzések végrehajtása során általában nem találkozunk bonyolult számítási feladatokkal. A kitűzési munka nehézségeit elsősorban a kedvezőtlen munkakörülmények okozzák,
Követelmény a 6. évfolyamon félévkor matematikából
Követelmény a 6. évfolyamon félévkor matematikából Gondolkodási és megismerési módszerek Halmazba rendezés adott tulajdonság alapján, részhalmaz felírása, felismerése. Két véges halmaz közös részének,
FÖLDMÉRÉSI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK A) KOMPETENCIÁK. 1. Szakmai nyelvhasználat
FÖLDMÉRÉSI ISMERETEK ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA I. RÉSZLETES ÉRETTSÉGI VIZSGAKÖVETELMÉNYEK A földmérési ismeretek ágazati szakmai érettségi vizsgatárgy részletes érettségi vizsgakövetelményei a XXXV.
Matematika. 1. osztály. 2. osztály
Matematika 1. osztály - képes halmazokat összehasonlítani az elemek száma szerint, halmazt alkotni; - képes állítások igazságtartalmának eldöntésére, állításokat megfogalmazni; - halmazok elemeit összehasonlítja,
CORONA MWI Rádiózható nedvesenfutó házi vízmérı
Alkalmazási terület: Családi házak, kisebb közösségek vízfogyasztásának mérésére. MID engedéllyel rendelkezı mérı: hidegvíz mérésére 50 C ig, 16 bar üzemi nyomásig. Jellemzık Az alkalmazott és a feldolgozott
Kalibrálás és mérési bizonytalanság. Drégelyi-Kiss Ágota I
Kalibrálás és mérési bizonytalanság Drégelyi-Kiss Ágota I. 120. dregelyi.agota@bgk.uni-obuda.hu Kalibrálás Azoknak a mőveleteknek az összessége, amelyekkel meghatározott feltételek mellett megállapítható
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria
MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK KÖZÉP SZINT Síkgeometria 1) Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) A háromszög köré írható kör középpontja mindig valamelyik súlyvonalra
A fejlesztés várt eredményei a 1. évfolyam végén
A tanuló legyen képes: A fejlesztés várt eredményei a 1. évfolyam végén - Halmazalkotásra, összehasonlításra az elemek száma szerint; - Állítások igazságtartalmának eldöntésére, állítások megfogalmazására;
1 m = 10 dm 1 dm 1 dm
Ho szúságmérés Hosszúságot kilométerrel, méterrel, deciméterrel, centiméterrel és milliméterrel mérhetünk. A mérés eredménye egy mennyiség 3 cm mérôszám mértékegység m = 0 dm dm dm cm dm dm = 0 cm cm dm
3. OSZTÁLY A TANANYAG ELRENDEZÉSE
Jelölések: 3. OSZTÁLY A TANANYAG ELRENDEZÉSE Piros főtéma Citromsárga segítő, eszköz Narancssárga előkészítő Kék önálló melléktéma Hét Gondolkodási és megismerési módszerek Problémamegoldások, modellek
SI kiegészítő egységei. Az SI-alapegységek meghatározásai
SI alapmértékegységek: Az alapmennyiség Az alapmértékegység Sorszáma neve jele neve jele I. Hosszúság l méter m II. Tömeg m kilogramm kg III. Idő t másodperc s IV. Áramerősség (elektromos) I amper A V.
FELADATOK A DINAMIKUS METEOROLÓGIÁBÓL 1. A 2 m-es szinten végzett standard meteorológiai mérések szerint a Földön valaha mért második legmagasabb hőmérséklet 57,8 C. Ezt San Luis-ban (Mexikó) 1933 augusztus
METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK
METEOROLÓGIAI MÉRÉSEK és MEGFIGYELÉSEK Földtudomány BSc Mészáros Róbert Eötvös Loránd Tudományegyetem Meteorológiai Tanszék MIÉRT MÉRÜNK? A meteorológiai mérések célja: 1. A légkör pillanatnyi állapotának
V átlag = (V 1 + V 2 +V 3 )/3. A szórás V = ((V átlag -V 1 ) 2 + ((V átlag -V 2 ) 2 ((V átlag -V 3 ) 2 ) 0,5 / 3
5. gyakorlat. Tömegmérés, térfogatmérés, pipettázás gyakorlása tömegméréssel kombinálva. A mérési eredmények megadása. Sóoldat sőrőségének meghatározása, koncentrációjának megadása a mért sőrőség alapján.
Értékes jegyek fogalma és használata. Forrás: Dr. Bajnóczy Gábor, BME, Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék
Értékes jegyek fogalma és használata Forrás: Dr. Bajnóczy Gábor, BME, Vegyészmérnöki és Biomérnöki Kar Kémiai és Környezeti Folyamatmérnöki Tanszék Értékes jegyek száma Az értékes jegyek számának meghatározását
TANMENET. Matematika
Bethlen Gábor Református Gimnázium és Szathmáry Kollégium 6800 Hódmezővásárhely, Szőnyi utca 2. Telefon: +36-62-241-703 www.bgrg.hu OM: 029736 TANMENET Matematika 2016/2017 5.A természettudományos képzés
Felső végükön egymásra támaszkodó szarugerendák egyensúlya
1 Felső végükön egymásra támaszkodó szarugerendák egyensúlya Az [ 1 ] példatárban találtunk egy érdekes feladatot, melynek egy változatát vizsgáljuk meg itt. A feladat Ehhez tekintsük az 1. ábrát! 1. ábra
10/10/2014 tema01_biolf_
1. Fizikai mennyiségek és mérésük Mérések és mértékegységek. Az SI-mértékrendszer, prefixumok. Alapvető mennyiségek mérése. a természet vizsgálata, számszerűsítés igénye modellek létrehozása: egyszerűsített
Osztályozóvizsga követelményei
Osztályozóvizsga követelményei Képzés típusa: Tantárgy: Nyolcosztályos gimnázium Matematika Évfolyam: 11 Emelt óraszámú csoport Emelt szintű csoport Vizsga típusa: Írásbeli Követelmények, témakörök: Gondolkodási
Méréstechnika. Hőmérséklet mérése
Méréstechnika Hőmérséklet mérése Hőmérséklet: A hőmérséklet a termikus kölcsönhatáshoz tartozó állapotjelző. A hőmérséklet azt jelzi, hogy egy test hőtartalma milyen szintű. Amennyiben két eltérő hőmérsékletű
Légköri termodinamika
Légköri termodinamika Termodinamika: a hőegyensúllyal, valamint a hőnek, és más energiafajtáknak kölcsönös átalakulásával foglalkozó tudományág. Meteorológiai vonatkozása ( a légkör termodinamikája): a
RÉGI TÉRKÉPEK DIGITÁLIS FELDOLGOZÁSA. Bartos-Elekes Zsombor BBTE Magyar Földrajzi Intézet, Kolozsvár
RÉGI TÉRKÉPEK DIGITÁLIS FELDOLGOZÁSA Bartos-Elekes Zsombor BBTE Magyar Földrajzi Intézet, Kolozsvár arcanum.hu (I., II., III. katonai felmérés) http://mapire.staatsarchiv.at/en/ (II. felm.) Románia Lambert
2. Geodéziai mérések muszerei és módszerei...2-2
2. Geodéziai mérések muszerei és módszerei...2-2 2.1. A mérés fogalma és a mértékegységek...2-2 2.1.1. A távolság egységei...2-2 2.1.2. A terület egységei...2-4 2.1.3. Szögmérés egységei...2-5 2.2. Pontjelölések...2-6
ÁGAZATI SZAKMAI ÉRETTSÉGI VIZSGA FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ
FÖLDMÉRÉS ISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA JAVÍTÁSI-ÉRTÉKELÉSI ÚTMUTATÓ A MINTAFELADATOKHOZ Elméleti szöveges feladatok 1. Sorolja fel a geodéziai célra szolgáló vetítéskor használható alapfelületeket
Radon a környezetünkben. Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158.
Radon a környezetünkben Somlai János Pannon Egyetem Radiokémiai és Radioökológiai Intézet H-8201 Veszprém, Pf. 158. Természetes eredetőnek, a természetben eredetileg elıforduló formában lévı sugárzástól
Ultrahangos távolságmérő. Modell: JT-811. Használati útmutató
Ultrahangos távolságmérő Modell: JT-811 Használati útmutató I. Funkciók 1) A mérés angolszász/metrikus mértékegységekben 2) Lehetőség van a kezdeti mérési pont kiválasztására 3) Adatrögzítés/adatok előhívása
A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI
A FÖLDMINŐSÍTÉS GEOMETRIAI ALAPJAI Detrekői Ákos Keszthely, 2003. 12. 11. TARTALOM 1 Bevezetés 2 Milyen geometriai adatok szükségesek? 3 Néhány szó a referencia rendszerekről 4 Geometriai adatok forrásai
1. A négyzetgyökre vonatkozó azonosságok felhasználásával állítsd növekvő sorrendbe a következő számokat!
Matematika A 10. évfolyam Témazáró dolgozat 1. negyedév 1 A CSOPORT 1. A négyzetgyökre vonatkozó azonosságok felhasználásával állítsd növekvő sorrendbe a következő számokat! 8 ; 7 1 ; ; ; 1. Oldd meg a
Geodéziai számítások
Geodézia I. Geodéziai számítások Pontkapcsolások Gyenes Róbert 1 Pontkapcsolások Általános fogalom (1D, 2D, 3D, 1+2D) Egy vagy több ismeretlen pont helymeghatározó adatainak a meghatározása az ismert pontok
Mőködési elv alapján. Alkalmazás szerint. Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık. Manométerek Barométerek Vákuummérık
Nyomásm smérés Nyomásm smérés Mőködési elv alapján Folyadéktöltéső nyomásmérık Rugalmas alakváltozáson alapuló nyomásmérık Alkalmazás szerint Manométerek Barométerek Vákuummérık Nyomásm smérés Mérési módszer
Kutatói pályára felkészítı akadémiai ismeretek modul
Kutatói pályára felkészítı akadémiai ismeretek modul Környezetgazdálkodás Publikáció (szóbeli és írásbeli) készítés KÖRNYEZETGAZDÁLKODÁSI AGRÁRMÉRNÖK MSC A mértékegységek A matematikai- statisztikai értékelés
PRÓBAÉRETTSÉGI MATEMATIKA. 2003. május-június KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ. Vizsgafejlesztő Központ
PRÓBAÉRETTSÉGI 00. május-június MATEMATIKA KÖZÉPSZINT JAVÍTÁSI ÚTMUTATÓ Vizsgafejlesztő Központ Kedves Kolléga! Kérjük, hogy a dolgozatok javítását a javítási útmutató alapján végezze, a következők figyelembevételével.
Mikroszkóp vizsgálata Folyadék törésmutatójának mérése
KLASSZIKUS FIZIKA LABORATÓRIUM 8. MÉRÉS Mikroszkóp vizsgálata Folyadék törésmutatójának mérése Mérést végezte: Enyingi Vera Atala ENVSAAT.ELTE Mérés időpontja: 2011. október 12. Szerda délelőtti csoport
Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Trigonometria III.
Trigonometria III. TÉTEL: (Szinusz - tétel) Bármely háromszögben az oldalak és a velük szemközti szögek szinuszainak aránya egyenlő. Jelöléssel: a: b: c = sin α : sin β : sin γ. Megjegyzés: A szinusz -
CORONA MCI rádiózható nedvesenfutó mérıkapszulás házi vízmérı
Alkalmazási terület: Családi házak, kisebb közösségek vízfogyasztásának mérésére. MID engedéllyel rendelkezı mérı: hidegvíz mérésére 50 C ig, 16 bar üzemi nyomásig. Jellemzık Az alkalmazott és a feldolgozott
Kisérettségi feladatsorok matematikából
Kisérettségi feladatsorok matematikából. feladatsor I. rész. Döntse el, hogy a következő állítások közül melyik igaz és melyik hamis! a) Ha két egész szám összege páratlan, akkor a szorzatuk páros. b)
Bevezetés a geodéziába
Bevezetés a geodéziába 1 Geodézia Definíció: a földmérés a Föld alakjának és méreteinek, a Föld fizikai felszínén, ill. a felszín alatt lévő természetes és mesterséges alakzatok geometriai méreteinek és
A kivitelezés geodéziai munkái II. Magasépítés
A kivitelezés geodéziai munkái II. Magasépítés Építésirányítási feladatok Kitűzési terv: a tervezési térkép másolatán Az elkészítése a tervező felelőssége Nehézségek: Gyakorlatban a geodéta bogarássza
} számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! A = { } 1 pont. B = { } 1 pont. x =
. Az { a n } számtani sorozat első tagja és differenciája is 4. Adja meg a sorozat 26. tagját! a = 26 2. Az A és B halmazokról tudjuk, hogy A B = {;2;3;4;5;6}, A \ B = {;4} és A B = {2;5}. Sorolja fel
Dr. Walter Bitterlich
Dr. Walter Bitterlich 1908.02.19. 2008.02.09. Ha a távolság- vagy magasságmérés lejtıs terepen történik, az adott hajlásszögnek megfelelıen elvégzett automatikus korrekció igen nagy elıny! 20 m-es
I. A gyökvonás. cd c) 6 d) 2 xx. 2 c) Szakaszvizsgára gyakorló feladatok 10. évfolyam. Kedves 10. osztályos diákok!
Kedves 10. osztályos diákok! Szakaszvizsgára gyakorló feladatok 10. évfolyam Közeleg a szakaszvizsga időpontja, amelyre 019. április 1-én kerül sor. A könnyebb felkészülés érdekében adjuk közre ezt a feladatsort,
Matematikai geodéziai számítások 9.
Nyugat-magyarországi Egyetem Geoinformatikai Kara Dr Bácsatyai László Matematikai geodéziai számítások 9 MGS9 modul Szabad álláspont kiegyenlítése SZÉKESFEHÉRVÁR 2010 Jelen szellemi terméket a szerzői
Matematikai geodéziai számítások 5.
Matematikai geodéziai számítások 5 Hibaterjedési feladatok Dr Bácsatyai László Matematikai geodéziai számítások 5: Hibaterjedési feladatok Dr Bácsatyai László Lektor: Dr Benedek Judit Ez a modul a TÁMOP
Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó
Radon-koncentráció relatív meghatározása Készítette: Papp Ildikó Elméleti bevezetés PANNONPALATINUS regisztrációs code PR/B10PI0221T0010NF101 A radon a 238 U bomlási sorának tagja, a periódusos rendszer
A MEGFIGYELÉSEKRŐL ÁLTALÁBAN
A MEGFIGYELÉSEKRŐL ÁLTALÁBAN 73 MEGFIGYELÉSEK Filozófiai megközelítés Értelmes tevékenység Eredménye lehet Ahhoz, hogy megfigyelésekről beszélhessünk, fel kell tenni, hogy a világ objektíve létezik; a