Bevezetés az ökonometriába

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezetés az ökonometriába"

Átírás

1 Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellspecifikáció, interakció Ferenci Tamás MSc 1 1 Statisztika Tanszék Budapesti Corvinus Egyetem Ötödik előadás, október 13.

2 Tartalom 1 Ismétlés Utóbbi előadások áttekintése 2 Háztartási Költségvetési Felvétel (HKF) 3

3 Utóbbi előadások áttekintése Előző részeink tartalmából Ismerkedés az ökonometriával, az ökonometriai modellezéssel Többváltozós lineáris regresszió alapjai, modelljellemzés Mintavételi vonatkozások: becslések és hipotézisvizsgálat Modelljellemzés

4 Háztartási Költségvetési Felvétel (HKF) A HKF-ről Durván: háztartásokra irányuló, költségvetésüket vizsgáló adatfelvétel (évtizedek óta készít a KSH ilyeneket) Pontos célsokaság: magánháztartásban élő magyar állampolgárok Pontos cél: a lakosság jövedelmeinek és kiadásainak, mind pénzbeli mind természetbeli vetületben való kimutatása Célsokaság lekérdezése (éves) és naplóvezetés (havi) is igen részletes adatok (főleg: jövedelmek (munka-, tőke- stb.), fogyasztott termékek és szolgáltatások stb.) Célsokasági HT-ok rotálása a mintában (egyharmad per év), érdekesség kedvéért a mintavétel típusa: véletlen, R, TL Súlyozás (a mintában tízezer körüli HT), kalibrálás

5 Háztartási Költségvetési Felvétel (HKF) Eredmény- és magyarázó változóink Ökonometriai feladatunk most a háztartások kiadásának modellezése lesz Eredményváltozó: a háztartás éves kiadása [eft] Ismét igen sok magyarázó változó (-jelölt) 1 Település: régió, város, vidék 2 Lakásjellemzők: méret, jelleg 3 Háztartásjellemzők 1 Méret: taglétszám, fogyasztási egység 2 Szerkezet: aktív, inaktív, eltartott, munkanélküli 3 Felszereletség: tartós fogyasztási cikkek 4 HT tagok demográfiai jellemzői 5 Jövedelmi, vagyoni jellemzők 6 Fogyasztási szokások

6 A modellspecifikációról általában Részben hasonló kérdések mint a modellszelekciónál, nincs éles elkülönítés De: a modellszelekciónál nem foglalkoztunk azzal, hogy a változó elhagyás/hozzávétel strukturálisan mit jelent, csak azzal, hogy milyen hatásai vannak ( fenomenologikus leírás) Most a másik felével foglalkozunk: a változó bevonás/elhagyás hogyan hat a modell belső struktúrájára További modellspecifikációs kérdések: a modell bonyolultságának egyéb meghatározói (a változók számán túl): változók közti interakciók és függvényforma-választás

7 Változó bevonásának hatása a modellre Vessük össze ezt a két (demonstráció kedvéért igen kicsi) modellt az esettanulmány feladatára: KiadEFt = 339, 746 (13,783) + 0, JovEFt (0, ) T = 8314 R 2 = 0, 5369 F (1, 8312) = 9637, 2 ˆσ = 662, 02 (standard errors in parentheses) KiadEFt = 283, 172 (16,988) + 0, (0, ) JovEFt + 34, 1727 TLetszam (6,0199) T = 8314 R 2 = 0, 5386 F (2, 8311) = 4852, 8 ˆσ = 660, 78 (standard errors in parentheses) Miért változott meg a jövedelem becsült koefficiense?

8 Változó bevonásának hatása a modellre Mondjuk, hogy a bővebb modell írja le a valóságos helyzetet (a gyakorlatban ezt persze soha nem tudhatjuk, filozófiai kérdés) Azaz a valós helyzet a második regresszió Az érdekes, hogy ez alapján előre meg tudjuk mondani, hogy az első regresszióban mi lesz a jövedelem együtthatója! (... és ebből persze a változás okát is rögtön le tudjuk olvasni) A jövedelem ugyanis nem csak a kiadásra hat sztochasztikusan, hanem a taglétszámra is: TLetszam = 1, , JovEFt (0,025067) (1,1807e 005) T = 8314 R 2 = 0, 2359 F (1, 8312) = 2566, 9 ˆσ = 1, 2040 (standard errors in parentheses)

9 Változó bevonásának hatása a modellre Ebből összerakhatjuk a szűkebb regresszióban a jövedelem együtthatóját: 0,637 = 0, , ,17 A bővebb modellben az együttható 0,617: ennyi a jövedelem közvetlen (direkt) hatása (ha egy egységgel nő stb.), és itt véget is ér a sztori, mert a bővebb modellben a taglétszámot állandó értéken tartjuk (v.ö. a c.p. feltevés) ezért nincs jelentősége a taglétszám és a jövedelem közti sztochasztikus kapcsolatnak A szűkebb modellben viszont a jövedelem egységnyi növekedése a taglétszámot is növeli tendenciájában, a növekvő taglétszám viszont (önmagában is!) növeli a kiadást, ez lesz az indirekt hatás Totális hatás = direkt hatás + indirekt hatás(ok)

10 Változó bevonásának hatása a modellre A szűkebb regresszióban nem tudjuk izolálni a taglétszám hatását: ha a jövedelem nő, az a bővebb modellben nem társul a taglétszám növekedésével (v.ö. a paraméter c.p. értelmezésével), a szűkebb modellben viszont igen (hiszen ott nem endogén változó a taglétszám) a szűkebb modellben a kihagyott változón keresztül terjedő hatások is beépülnek az együtthatóba A gyakorlatban persze nem tudhatjuk, hogy mi a kihagyott változó

11 A specifikációs torzítás iránya Ez a torzítás milyen irányban módosítja a becsült paramétert? Az indirekt hatástól függ, és nem tudható általánosságban: növelheti, csökkentheti (és változatlanul is hagyhatja) a becsült koefficienst!

12 A Lagrange Multiplikátor (LM)-próba A hipotézispár teljesen azonos alakú a Wald-F-teszttel: U : Ŷ = β 1 + β 2X β q 1X q 1 + β qx q + β q+1x q β q+mx q+m R : Ŷ = β 1 + β 2X β q 1X q 1 + β qx q és H 0 : β q+1 = β q+2 =... = β q+m = 0 A különbség a modellezés filozófiájában van (ld. később), a teszt tulajdonságai, alkalmazhatósága is eltérő Alapötlet: becsüljük meg a szűkebb modellt, és számítsuk ki ez alapján a becsült reziduumokat. Ha fennáll H 0, akkor ezek a reziduumok nem magyarázhatóak lényegesen sem a szűkebb modell változóival (OLS következménye), sem a vizsgált változókkal (H 0 következménye). Azaz: ha a becsült reziduumokat kiregresszáljuk az összes változóval, akkor sem tudjuk azt lényegesen magyarázni, ha fennáll a H 0.

13 Az próbafüggvénye Ezen intuitív indoklás után a próbafüggvény: n RûR X 2,X 3,...,X k χ 2 m Itt û R jelölés arra utal, hogy a szűkebb (R) modellből kapott reziduumokról van szó

14 Interakció Ismétlés Eddigi modellünkben a marginális hatások a többi változó szintjétől függetlenül állandóak voltak Hihető ez? 1 Ft pluszjövedelem taglétszámtól függetlenül azonos többletkiadást jelent...? Ha nem, akkor azt mondjuk, hogy a két változó között interakció van: az egyik marginális hatásának nagyságát befolyásolja a másik szintje A kapcsolat tehát a marginális hatás és a szint között van (nem marginális hatás és marginális hatás vagy szint és szint között!) Kézenfekvő indulás: az egyik változó szintje lineárisan hasson a másik marginális hatására; sokaságban felírva: (β J + β JT Tag) Jov, ahol β JT az interakció hatását kifejező (lineáris) együttható

15 Interakció Ismétlés Helyezzük ezt be a (sokasági) regresszióba: Y = β 0 + (β J + β JT Tag) Jov + β T Tag, azonban felbontva a zárójelet: Y = β 0 + β J Jov + β JT Tag Jov + β T Tag = = β 0 + β J Jov + (β T + β JT Jov) Tag Tehát az interakció szükségképp, automatikusan szimmetrikus : ha az egyik változó szintje hat a másik marginális hatására akkor szükségképp fordítva is: a másik szintje is hatni fog az előbbi marginális hatására Azaz egyszerre lesz igaz, hogy (β J + β JT Tag) Jov és (β T + β JT Jov) Tag: attól függően, hogy milyen szempontból nézzük (melyik marginális hatását vizsgáljuk, ezt még ld. később is)

16 Interakció Ismétlés A regresszióban így elég egyszerűen ennyit írni: β T Tag + β J Jov + β JT (Jov Tag).... mindkét másik szintjétől függő marginális hatás ebből kiadódik, függően attól, hogy hogyan bontjuk fel a zárójelet (melyik változót vizsgáljuk)

17 A marginális hatás fogalma Marginális hatás: a magyarázó változó kis növelésének hatására mekkora az eredményváltozó egységnyi magyarázóváltozó-növelésre jutó változása Tipikus egyszerűsítés: a magyarázó változó egységnyi növelésének hatására mennyit változik az eredményváltozó Feltettük, hogy az 1 egység kicsinek tekinthető; mértékegységgel nem kell törődni Idáig az i-edik magyarázó változó ilyen módon értelmezett marginális hatása és a β i számértéke gyakorlatilag szinonima volt

18 A marginális hatás precízebben Definíció alapján a marginális hatás: Y X j, ha X j kicsiny Ugye egyetemen vagyunk a marginális hatás Y X j A többváltozós lineáris regresszió eddigi (sokasági) modelljében Y = β 1 + β 2 X β k X k, ezért Y X j = X j [β 1 + β 2 X β j 1 X j 1 + β j X j + β j+1 X j β k X k ] = = β j...hát ezért tekinthettük eddig a marginális hatást és a becsült regressziós koefficienst szinonimának!

19 A marginális hatás interakciók esetén Ha azonban interakció van, például a l-edik és az m-edik tag között, akkor az l-edik marginális hatása: Y = [β 1 + β 2 X X l X l β l X l β m X m β k X k + β lm X l X m ] = = β l + β lm X m Így precíz az előbbi állításunk arról, hogy ha az egyik szerint vizsgáljuk a marginális hatást, akkor az a másik szintjétől fog függeni (gondoljuk hozzá a másik szerinti deriválást is!)

20 A linearitás újabb megsértése Eddig megnéztük, hogy mit jelent az, ha megsértjük a marginális hatás nem függ attól, hogy a többi magyarázó változót milyen szinten rögzítjük következményét a linearitásnak És ha a marginális hatás nem függ attól, hogy milyen szintről indulva növeljük a változót következményt szeretnénk oldani? A változó marginális hatása függ a saját szintjétől... hasonló az előző esethez, de nem egy másik változó szintje hat a marginális hatásra, hanem a sajátja mintha önmagával lenne interakcióban! És tényleg: β j X j helyett β j X j + β jj X j X j esetén a j-edik magyarázó változó marginális hatása: [... + βj X j + β jj Xj ] = β j + 2β jj X j X j

21 Grafikus magyarázat Ismétlés Szemléletesen az egy magyarázó változós esetben: x+10 2x^2-16x Szélsőértékhely nyilvánvaló (első derivált előjelet vált): β j + 2β jj X j = 0 X j = β j 2β jj

22 Záró gondolat az interakció, kvadratikus hatás témájához Ez már átvezet a függvényforma-választás kérdéséhez a modellspecifikáción belül Ilyen értelemben lényeges különbség van a kettő között: kvadratikus hatást feltételezve a modell továbbra is paramétereiben lineáris lesz (noha változóiban nem az), interakcióval már nem! Látni fogjuk: OLS-nek mindegy a változóban nemlinearitás Emiatt az igazi újdonság az interakció A kvadratikus hatást, és a többi változóban való nemlinearitást később részletesen tárgyaljuk

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése... 1

1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése... 1 Tartalom Tartalomjegyzék 1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése....................... 1 2. Általánosítóképesség, túlilleszkedés 3 3. Modellszelekció 11 3.1. A modellszelekció

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: mintavételi vonatkozások és modelljellemzés Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Harmadik

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október

Részletesebben

Melléklet 1. A knn-módszerhez használt változólista

Melléklet 1. A knn-módszerhez használt változólista Melléklet 1. A knn-módszerhez használt változólista 1. Régiók (1. Budapest, Pest megye, Dunántúl; 2. Dél-Magyarország; 3. Észak-Magyarország.) 2. Főállású-e az egyéni vállalkozó dummy (1 heti legalább

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

A rendszeres szociális segély jövedelmi célzása. Pénzügyminisztérium

A rendszeres szociális segély jövedelmi célzása. Pénzügyminisztérium A rendszeres szociális segély jövedelmi célzása Firle Réka Szabó Péter András Pénzügyminisztérium 2008. június 19. Az alacsony munkapiaci aktivitás okai és növelésének lehetségei. A be- és kiáramlást szabályozó

Részletesebben

Két adatfelvétel: a szegény háztartások fogyasztási szokásai és a tulajdonosi jövedelmek szerkezete. Medgyesi Márton Tárki Zrt

Két adatfelvétel: a szegény háztartások fogyasztási szokásai és a tulajdonosi jövedelmek szerkezete. Medgyesi Márton Tárki Zrt Két adatfelvétel: a szegény háztartások fogyasztási szokásai és a tulajdonosi jövedelmek szerkezete Medgyesi Márton Tárki Zrt Vázlat 1.A szegény háztartások fogyasztási szokásai A kutatás célja Mintavétel

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

MIÉRT NEM VÁLASZOLUNK?

MIÉRT NEM VÁLASZOLUNK? MIÉRT VÁLASZOLUNK? TENDENCIÁK ÉS TÉNYEZŐK A KSH EGYIK LAKOSSÁGI FELVÉTELÉNEK TÜKRÉBEN HORVÁTH BEÁTA KSH beata.horvath@ksh.hu ÁTTEKINTŐ ELMÉLETI MEGKÖZELÍTÉS GYAKORLATI MEGKÖZELÍTÉS MILYENEK VAGYUNK MI

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Validálás és bizonytalanságok a modellekben

Validálás és bizonytalanságok a modellekben Validálás és bizonytalanságok a modellekben Hálózattervezési Dr. Berki Zsolt Tel.: 06-20-3516879, E-mail: berki@fomterv.hu Miért modellezünk? Mert előírás Nem! "It is impossible to predict the future but

Részletesebben

Családi kohézió az idő szorításában A szülők és a gyermekek társas együttléte a mindennapok világában. Harcsa István (FETE) Monostori Judit (NKI)

Családi kohézió az idő szorításában A szülők és a gyermekek társas együttléte a mindennapok világában. Harcsa István (FETE) Monostori Judit (NKI) Családi kohézió az idő szorításában A szülők és a gyermekek társas együttléte a mindennapok világában Harcsa István (FETE) Monostori Judit (NKI) Kutatási kérdések Hogyan változott a szülők és a gyermekek

Részletesebben

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Pˆr( y = 1 x) ( g( ˆ β + x ˆ β ) ˆ 0 β j ) x j Marginális hatás egy megválasztott

Részletesebben

Tisztelt hallgatók! Farkas Péter egyetemi adjunktus, tananyagfejlesztõ, tutor (gyõri és pécsi csoport) egyetemi adjuntus, tutor (budapesti csoport)

Tisztelt hallgatók! Farkas Péter egyetemi adjunktus, tananyagfejlesztõ, tutor (gyõri és pécsi csoport) egyetemi adjuntus, tutor (budapesti csoport) Tisztelt hallgatók! E-LEARNING KÉZÉS Az alábbiakban a Gazdálkodási szakos, e-learning rendszerben mûködõ képzés tananyagához készült hibalistát olvashatja. A visszajelzések és az anyag folyamatos gondozása

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop

Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop Prof. Dr. Szerb László egyetemi tanár Pécsi Tudományegyetem Közgazdaságtudományi Kar Helyzetkép

Részletesebben

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8.

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8. A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi hiba számítása

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

Ökonometria. Adminisztratív kérdések, bevezetés. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Első fejezet. Budapesti Corvinus Egyetem

Ökonometria. Adminisztratív kérdések, bevezetés. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Első fejezet. Budapesti Corvinus Egyetem Adminisztratív kérdések, bevezetés Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Első fejezet Tartalom Technikai kérdések 1 Technikai kérdések Adminisztratív

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 47 55 pont jeles 38 46 pont jó 29 37 pont közepes 20 28

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Tartalom. Pénzügytan I. Általános tudnivalók, ismétlés. 2010/2011 tanév őszi félév 1. Hét

Tartalom. Pénzügytan I. Általános tudnivalók, ismétlés. 2010/2011 tanév őszi félév 1. Hét Pénzügytan I. Általános tudnivalók, ismétlés 2010/2011 tanév őszi félév 1. Hét 2010.09.07. 1 Tóth Árpád Ig. 617 e-mail: totha@sze.hu gyakorlatok letölthetősége: www.sze.hu/~totha Pénzügytan I. (könyvtár)

Részletesebben

Nemzetgazdasági teljesítmény mutatói

Nemzetgazdasági teljesítmény mutatói Nemzetgazdasági teljesítmény mutatói A nemzetgazdasági össztermelés és a halmozódás problémája. A GDP pontos értelmezése, különbözõ megközelítései. A GDP nagysága és felhasználása Magyarországon. További

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

VÁLTOZÁSOK A SZEGÉNYSÉG STRUKTÚRÁJÁBAN

VÁLTOZÁSOK A SZEGÉNYSÉG STRUKTÚRÁJÁBAN Tematikus nap az egyenlőtlenség g vizsgálatáról, l, mérésérőlm Budapest,, 2011. január r 25. VÁLTOZÁSOK A SZEGÉNYSÉG STRUKTÚRÁJÁBAN Vastagh Zoltán Életszínvonal-statisztikai felvételek osztálya zoltan.vastagh@ksh.hu

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4..-08//A/KMR-009-004pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

A MIDAS_HU modell elemei és eredményei

A MIDAS_HU modell elemei és eredményei A MIDAS_HU modell elemei és eredményei Tóth Krisztián Országos Nyugdíjbiztosítási Főigazgatóság A MIDAS_HU mikroszimulációs nyugdíjmodell eredményei további tervek Workshop ONYF, 2015. május 28. MIDAS_HU

Részletesebben

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28.

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. 1 A projekt céljai Az Unió ajánlatkérése és az ONYF pályázata a következő célokat tűzte ki: Preparation of

Részletesebben

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő

2. szemináriumi. feladatok. Fogyasztás/ megtakarítás Több időszak Több szereplő 2. szemináriumi feladatok Fogyasztás/ megtakarítás Több időszak Több szereplő 1. feladat Egy olyan gazdaságot vizsgálunk, ahol a fogyasztó exogén jövedelemfolyam és exogén kamat mellett hoz fogyasztási/megtakarítási

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az

Részletesebben

FEJLŐDÉSGAZDASÁGTAN. Készítette: Szilágyi Katalin. Szakmai felelős: Szilágyi Katalin. 2011. január

FEJLŐDÉSGAZDASÁGTAN. Készítette: Szilágyi Katalin. Szakmai felelős: Szilágyi Katalin. 2011. január FEJLŐDÉSGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 47 55 pont jeles 38 46 pont jó 29 37 pont közepes 20 28

Részletesebben

A beruházási kereslet és a rövid távú árupiaci egyensúly

A beruházási kereslet és a rövid távú árupiaci egyensúly 7. lecke A beruházási kereslet és a rövid távú árupiaci egyensúly A beruházás fogalma, tényadatok. A beruházási kereslet alakulásának elméleti magyarázatai: mikroökonómiai alapok, beruházás-gazdaságossági

Részletesebben

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o

ELLENÁLLÁSOK HŐMÉRSÉKLETFÜGGÉSE. Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o ELLENÁLLÁSO HŐMÉRSÉLETFÜGGÉSE Az ellenállások, de általában minden villamos vezetőanyag fajlagos ellenállása 20 o szobahőmérsékleten értelmezett. Ismeretfrissítésként tekintsük át az 1. táblázat adatait:

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Gyermekek szegénységéről iskola kezdés előtt. Készítette: Korózs Lajos

Gyermekek szegénységéről iskola kezdés előtt. Készítette: Korózs Lajos Gyermekek szegénységéről iskola kezdés előtt Készítette: Korózs Lajos ELTE-kutatás eredménye Soha nem volt annyi szegény gyermek hazánkban mint most! A leghátrányosabb helyzetű térségekben a gyerekek 84

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

A statisztika oktatásáról konkrétan

A statisztika oktatásáról konkrétan A világ statisztikája a statisztika világa ünnepi konferencia Esztergom, 2010.október 15. A statisztika oktatásáról konkrétan Dr. Varga Beatrix PhD. egyetemi docens MISKOLCI EGYETEM Üzleti Statisztika

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 3. hét A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALAPJAI. HASZNOSSÁG, PREFERENCIÁK Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely

Részletesebben

Személyes pénzügyek tervezése (Az életpálya pénzügyi tervezése) Kovács Norbert Gyõr, 2008.01.30.

Személyes pénzügyek tervezése (Az életpálya pénzügyi tervezése) Kovács Norbert Gyõr, 2008.01.30. Személyes pénzügyek tervezése (Az életpálya pénzügyi tervezése) Kovács Norbert Gyõr, 2008.01.30. Az elõadás menete Mit értünk emberi életpálya alatt? Hogyan értelmezzük az emberi életpályát pénzügyi szemléletben?

Részletesebben

Alulírott kérem, hogy gyermekem, gyermekeim részére/részemre ( gyermekvédelmi kedvezményre

Alulírott kérem, hogy gyermekem, gyermekeim részére/részemre ( gyermekvédelmi kedvezményre 7. melléklet a 392/2013. (XI. 12.) Korm. rendelethez [ 3. számú melléklet a 149/1997. (IX. 10.) Korm. rendelethez TVÁNY a rendszeres gyermekvédelmi kedvezmény megállapításához és felülvizsgálatához a hátrányos,

Részletesebben

7.2. A készségek és az oktatás jövedelemben megtérülő hozama

7.2. A készségek és az oktatás jövedelemben megtérülő hozama 7.2. A készségek és az oktatás jövedelemben megtérülő hozama A neoklasszikus közgazdasági elmélet szerint a termelés végső értékéhez jobban hozzájáruló egyének számára elvárt a magasabb kereset. Sőt, mi

Részletesebben

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II.

Brósch Zoltán (Debreceni Egyetem Kossuth Lajos Gyakorló Gimnáziuma) Sorozatok II. Sorozatok II. DEFINÍCIÓ: (Mértani sorozat) Az (a n ) valós számsorozatot mértani sorozatnak nevezzük, ha van olyan valós szám, amellyel a sorozat bármely tagját megszorozva a következő tagot kapjuk. Jelöléssel:

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 5. előadás Érték-, ár-, és volumenindexek http://uni-obuda.hu/users/koczyl/gazdasagstatisztika.htm Kóczy Á. László KGK-VMI Az indexszám fogalma Gazdasági elemzésben fontos

Részletesebben

Havi elemzés az infláció alakulásáról. 2014. február

Havi elemzés az infláció alakulásáról. 2014. február Havi elemzés az infláció alakulásáról 2014. február 1 A jegybanktörvény (a Magyar Nemzeti Bankról szóló, 2013. évi CXXXIX. tv.) 3. (1) az árstabilitás elérését és fenntartását jelöli meg a Magyar Nemzeti

Részletesebben

S atisztika 2. előadás

S atisztika 2. előadás Statisztika 2. előadás 4. lépés Terepmunka vagy adatgyűjtés Kutatási módszerek osztályozása Kutatási módszer Feltáró kutatás Következtető kutatás Leíró kutatás Ok-okozati kutatás Keresztmetszeti kutatás

Részletesebben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 33. o. 1. feladat 65.) Keynesi

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium F Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 43 50 pont jeles 35 42 pont jó 27 34 pont közepes 19 26

Részletesebben

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás 1. szemináriumi feladatok két időszakos fogyasztás/ megtakarítás 1. feladat Az általunk vizsgál gazdaság csupán két időszakig működik. A gazdaságban egy reprezentatív fogyasztó hoz döntéseket. A fogyasztó

Részletesebben

Havi elemzés az infláció alakulásáról. 2014. augusztus

Havi elemzés az infláció alakulásáról. 2014. augusztus Havi elemzés az infláció alakulásáról 2014. augusztus 1 A jegybanktörvény (a Magyar Nemzeti Bankról szóló, 2013. évi CXXXIX. tv.) 3. (1) az árstabilitás elérését és fenntartását jelöli meg a Magyar Nemzeti

Részletesebben

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László

Általános statisztika II. Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Általános statisztika II Kriszt, Éva Varga, Edit Kenyeres, Erika Korpás, Attiláné Csernyák, László Publication

Részletesebben

AZ EURÓÁRFOLYAM VÁLTOZÁSÁNAK HATÁSA NYUGAT- MAGYARORSZÁG KERESKEDELMI SZÁLLÁSHELYEINEK SZÁLLÁSDÍJ-BEVÉTELEIRE, VENDÉGFORGALMÁRA 2000 ÉS 2010 KÖZÖTT

AZ EURÓÁRFOLYAM VÁLTOZÁSÁNAK HATÁSA NYUGAT- MAGYARORSZÁG KERESKEDELMI SZÁLLÁSHELYEINEK SZÁLLÁSDÍJ-BEVÉTELEIRE, VENDÉGFORGALMÁRA 2000 ÉS 2010 KÖZÖTT AZ EURÓÁRFOLYAM VÁLTOZÁSÁNAK HATÁSA NYUGAT- MAGYARORSZÁG KERESKEDELMI SZÁLLÁSHELYEINEK SZÁLLÁSDÍJ-BEVÉTELEIRE, VENDÉGFORGALMÁRA 2000 ÉS 2010 KÖZÖTT Készítette: Vályi Réka Neptun-kód: qk266b 2011 1 Az elemzés

Részletesebben

Hosszú élettartamú fényforrások megbízhatóságának vizsgálata Tóth Zoltán. 1. Bevezetés

Hosszú élettartamú fényforrások megbízhatóságának vizsgálata Tóth Zoltán. 1. Bevezetés Tóth Zoltán A cikk bemutatja, hogy tipikusan milyen formában adják meg a gyártók az élettartamgörbéket, ezek különböző fajtáit, hogyan kell értelmezni őket. Kitér néhány felhasználási területetre, például

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART ))

Döntési fák. (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Döntési fák (Klasszifikációs és regressziós fák: (Classification And Regression Trees: CART )) Rekurzív osztályozó módszer, Klasszifikációs és regressziós fák folytonos, kategóriás, illetve túlélés adatok

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI

4. Fuzzy relációk. Gépi intelligencia I. Fodor János NIMGI1MIEM BMF NIK IMRI 4. Fuzzy relációk Gépi intelligencia I. Fodor János BMF NIK IMRI NIMGI1MIEM Tartalomjegyzék I 1 Klasszikus relációk Halmazok Descartes-szorzata Relációk 2 Fuzzy relációk Fuzzy relációk véges alaphalmazok

Részletesebben

Idősoros elemzés minta

Idősoros elemzés minta Idősoros elemzés minta Ferenci Tamás, tamas.ferenci@medstat.hu A felhasznált adatbázisról Elemzésemhez a francia frank árfolyamának 1986.01.03. és 1993.12.31. közötti értékeit használtam fel, mely idősorban

Részletesebben

AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON

AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén

Részletesebben

Does pension policy make older women work more?

Does pension policy make older women work more? Does pension policy make older women work more? The effect of increasing the retirement age on the labour market position of ageing women in Hungary Cseres-Gergely Zsombor MTA KRTK Közgazdaságtudományi

Részletesebben

55 345 01 0010 55 01 Európai Uniós üzleti

55 345 01 0010 55 01 Európai Uniós üzleti A 10/2007 (II. 27.) SzMM rendelettel módosított 1/2006 (II. 17.) OM rendelet Országos Képzési Jegyzékről és az Országos Képzési Jegyzékbe történő felvétel és törlés eljárási rendjéről alapján. Szakképesítés,

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

módszertana Miben más és mivel foglalkozik a Mit tanultunk mikroökonómiából? és mivel foglalkozik a makroökonómia? Miért

módszertana Miben más és mivel foglalkozik a Mit tanultunk mikroökonómiából? és mivel foglalkozik a makroökonómia? Miért A makroökonómia tárgya és módszertana Mit tanultunk mikroökonómiából? Miben más és mivel foglalkozik a makroökonómia? Miért van külön makroökonómia? A makroökonómia módszertana. Miért fontos a makroökonómia

Részletesebben

A LED világítás jövője Becslések három öt évre előre

A LED világítás jövője Becslések három öt évre előre A LED világítás jövője Becslések három öt évre előre Budapest, 2010. december Készítette: Vass László a VTT és az Óbudai egyetem 2011 februári LED-es világítástechnikai szimpóziumára. Bevezető: Általános

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit

Határozatlan integrál (2) First Prev Next Last Go Back Full Screen Close Quit Határozatlan integrál () First Prev Next Last Go Back Full Screen Close Quit 1. Az összetett függvények integrálására szolgáló egyik módszer a helyettesítéssel való integrálás. Az idevonatkozó tétel pontos

Részletesebben

Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás

Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás Statisztikai programcsomagok gyakorlat Pót zárthelyi dolgozat megoldás A feladatok megoldásához használandó adatállományok: potzh és potolando (weboldalon találhatók) Az állományok kiterjesztése sas7bdat,

Részletesebben

Segítség az outputok értelmezéséhez

Segítség az outputok értelmezéséhez Tanulni: 10.1-10.3, 10.5, 11.10. Hf: A honlapra feltett falco_exp.zip-ben lévő exploratív elemzések áttanulmányozása, érdekességek, észrevételek kigyűjtése. Segítség az outputok értelmezéséhez Leiro: Leíró

Részletesebben

Módszertani leírás. A felvételben használt fogalmak az ILO ajánlásait követik. Ennek megfelelően tartalmuk a következő:

Módszertani leírás. A felvételben használt fogalmak az ILO ajánlásait követik. Ennek megfelelően tartalmuk a következő: Módszertani leírás Bevezetés A Központi Statisztikai Hivatal a magánháztartásokban élők gazdasági aktivitásának foglalkoztatottságának és munkanélküliségének vizsgálatára 1992-ben vezette be a magánháztartásokra

Részletesebben

TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS

TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS Miskolci Egyetem GAZDASÁGTUDOMÁNYI KAR Üzleti Információgazdálkodási és Módszertani Intézet TÖBBVÁLTOZÓS KORRELÁCIÓ- ÉS REGRESSZIÓSZÁMÍTÁS Oktatási segédlet Készítette: Domán Csaba egyetemi tanársegéd

Részletesebben

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység

KÖZPONTI STATISZTIKAI HIVATAL. Szóbeli vizsgatevékenység KÖZPONTI STATISZTIKAI HIVATAL A vizsgarészhez rendelt követelménymodul azonosító száma, megnevezése: 2144-06 Statisztikai szervezői és elemzési feladatok A vizsgarészhez rendelt vizsgafeladat megnevezése:

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június

KÖZGAZDASÁGTAN I. Készítette: Bíró Anikó, K hegyi Gergely, Major Klára. Szakmai felel s: K hegyi Gergely. 2010. június KÖZGAZDASÁGTAN I. Készült a TÁMOP-4.1.2-08/2/a/KMR-2009-0041 pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék az MTA Közgazdaságtudományi

Részletesebben

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre

Statisztika I. 13. előadás Idősorok elemzése. Előadó: Dr. Ertsey Imre Statisztika I. 13. előadás Idősorok elemzése Előadó: Dr. Ertse Imre A társadalmi - gazdasági jelenségek időbeli alakulásának törvénszerűségeit kell vizsgálni a változás, a fejlődés tendenciáját. Ezek a

Részletesebben

Kutatói pályára felkészítı modul

Kutatói pályára felkészítı modul Kutatói pályára felkészítı modul Kutatói pályára felkészítı kutatási ismeretek modul Tudomáyos kutatási alapayag feldolgozása, elemzési ismeretek KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI

Részletesebben

Koppány Krisztián, SZE Koppány Krisztián, SZE

Koppány Krisztián, SZE Koppány Krisztián, SZE 10. lecke Mi okozza a munkanélküliséget és az inflációt? munkanélküliség mérése. munkapiac modellje és a rövidebb oldal elve. munkanélküliség típusai. z infláció fogalma, mérése és mértéke. z infláció

Részletesebben

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7.

Idősoros elemzés. Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. Idősoros elemzés Ferenci Tamás, ft604@hszk.bme.hu 2009. január 7. A felhasznált adatbázisról Elemzésemhez a tanszéki honlapon rendelkezésre bocsátott TimeSeries.xls idősoros adatgyűjtemény egyik idősorát,

Részletesebben

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók

Matematikai alapok és valószínőségszámítás. Középértékek és szóródási mutatók Matematikai alapok és valószínőségszámítás Középértékek és szóródási mutatók Középértékek A leíró statisztikák talán leggyakrabban használt csoportját a középértékek jelentik. Legkönnyebben mint az adathalmaz

Részletesebben

Herczeg Bálint. Az iskola méretének hatása az iskola hozzáadott értékére. 2015 November 9.

Herczeg Bálint. Az iskola méretének hatása az iskola hozzáadott értékére. 2015 November 9. Herczeg Bálint Az iskola méretének hatása az iskola hozzáadott értékére 1 2015 November 9. Az iskola méretének hatása az iskola hozzáadott értékére HÉTFA Mûhelytanulmányok 2015/11 Budapest ISSN 2062-378X

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Az idősorelemzés alapjai Gánics Gergely 1 gergely.ganics@freemail.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Tizenegyedik előadas Tartalom Stacionaritás kérdései 1 Stacionaritás kérdései 2 3 (Nem)stacionaritás

Részletesebben

egyenlőtlenségnek kell teljesülnie.

egyenlőtlenségnek kell teljesülnie. MATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Abszolútértékes és gyökös kifejezések A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval

Részletesebben

A hazai jövedelmi egyenlőtlenségek főbb jellemzői az elmúlt évtizedekben (módszertani tanulságok)

A hazai jövedelmi egyenlőtlenségek főbb jellemzői az elmúlt évtizedekben (módszertani tanulságok) A hazai jövedelmi egyenlőtlenségek főbb jellemzői az elmúlt évtizedekben (módszertani tanulságok) Éltető Ödön Havasi Éva Az 1963-88 években végrehajtott jövedelmi felvételek főbb jellemzői A minták területi

Részletesebben

1. Technikai kérdések 1 1.1. Adminisztratív ügyek... 1 1.2. Tudnivalók a félévről... 3

1. Technikai kérdések 1 1.1. Adminisztratív ügyek... 1 1.2. Tudnivalók a félévről... 3 Tartalom Tartalomjegyzék 1. Technikai kérdések 1 1.1. Adminisztratív ügyek....................................... 1 1.2. Tudnivalók a félévről....................................... 3 2. Bevezetés, alapgondolatok

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

Mit nevezünk nehézségi erőnek?

Mit nevezünk nehézségi erőnek? Mit nevezünk nehézségi erőnek? Azt az erőt, amelynek hatására a szabadon eső testek g (gravitációs) gyorsulással esnek a vonzó test centruma felé, nevezzük nehézségi erőnek. F neh = m g Mi a súly? Azt

Részletesebben

Az ingázás megtérülése Magyarországon

Az ingázás megtérülése Magyarországon Bartus Tamás Budapesti Corvinus Egyetem Szociológia és Társadalompolitika Intézet Áttekintés A munkanélküliségekben mutatkozó területi különbségek egyik magyarázata: a napi ingázás költségei magasabbak

Részletesebben