Bevezetés az ökonometriába

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezetés az ökonometriába"

Átírás

1 Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellspecifikáció, interakció Ferenci Tamás MSc 1 1 Statisztika Tanszék Budapesti Corvinus Egyetem Ötödik előadás, október 13.

2 Tartalom 1 Ismétlés Utóbbi előadások áttekintése 2 Háztartási Költségvetési Felvétel (HKF) 3

3 Utóbbi előadások áttekintése Előző részeink tartalmából Ismerkedés az ökonometriával, az ökonometriai modellezéssel Többváltozós lineáris regresszió alapjai, modelljellemzés Mintavételi vonatkozások: becslések és hipotézisvizsgálat Modelljellemzés

4 Háztartási Költségvetési Felvétel (HKF) A HKF-ről Durván: háztartásokra irányuló, költségvetésüket vizsgáló adatfelvétel (évtizedek óta készít a KSH ilyeneket) Pontos célsokaság: magánháztartásban élő magyar állampolgárok Pontos cél: a lakosság jövedelmeinek és kiadásainak, mind pénzbeli mind természetbeli vetületben való kimutatása Célsokaság lekérdezése (éves) és naplóvezetés (havi) is igen részletes adatok (főleg: jövedelmek (munka-, tőke- stb.), fogyasztott termékek és szolgáltatások stb.) Célsokasági HT-ok rotálása a mintában (egyharmad per év), érdekesség kedvéért a mintavétel típusa: véletlen, R, TL Súlyozás (a mintában tízezer körüli HT), kalibrálás

5 Háztartási Költségvetési Felvétel (HKF) Eredmény- és magyarázó változóink Ökonometriai feladatunk most a háztartások kiadásának modellezése lesz Eredményváltozó: a háztartás éves kiadása [eft] Ismét igen sok magyarázó változó (-jelölt) 1 Település: régió, város, vidék 2 Lakásjellemzők: méret, jelleg 3 Háztartásjellemzők 1 Méret: taglétszám, fogyasztási egység 2 Szerkezet: aktív, inaktív, eltartott, munkanélküli 3 Felszereletség: tartós fogyasztási cikkek 4 HT tagok demográfiai jellemzői 5 Jövedelmi, vagyoni jellemzők 6 Fogyasztási szokások

6 A modellspecifikációról általában Részben hasonló kérdések mint a modellszelekciónál, nincs éles elkülönítés De: a modellszelekciónál nem foglalkoztunk azzal, hogy a változó elhagyás/hozzávétel strukturálisan mit jelent, csak azzal, hogy milyen hatásai vannak ( fenomenologikus leírás) Most a másik felével foglalkozunk: a változó bevonás/elhagyás hogyan hat a modell belső struktúrájára További modellspecifikációs kérdések: a modell bonyolultságának egyéb meghatározói (a változók számán túl): változók közti interakciók és függvényforma-választás

7 Változó bevonásának hatása a modellre Vessük össze ezt a két (demonstráció kedvéért igen kicsi) modellt az esettanulmány feladatára: KiadEFt = 339, 746 (13,783) + 0, JovEFt (0, ) T = 8314 R 2 = 0, 5369 F (1, 8312) = 9637, 2 ˆσ = 662, 02 (standard errors in parentheses) KiadEFt = 283, 172 (16,988) + 0, (0, ) JovEFt + 34, 1727 TLetszam (6,0199) T = 8314 R 2 = 0, 5386 F (2, 8311) = 4852, 8 ˆσ = 660, 78 (standard errors in parentheses) Miért változott meg a jövedelem becsült koefficiense?

8 Változó bevonásának hatása a modellre Mondjuk, hogy a bővebb modell írja le a valóságos helyzetet (a gyakorlatban ezt persze soha nem tudhatjuk, filozófiai kérdés) Azaz a valós helyzet a második regresszió Az érdekes, hogy ez alapján előre meg tudjuk mondani, hogy az első regresszióban mi lesz a jövedelem együtthatója! (... és ebből persze a változás okát is rögtön le tudjuk olvasni) A jövedelem ugyanis nem csak a kiadásra hat sztochasztikusan, hanem a taglétszámra is: TLetszam = 1, , JovEFt (0,025067) (1,1807e 005) T = 8314 R 2 = 0, 2359 F (1, 8312) = 2566, 9 ˆσ = 1, 2040 (standard errors in parentheses)

9 Változó bevonásának hatása a modellre Ebből összerakhatjuk a szűkebb regresszióban a jövedelem együtthatóját: 0,637 = 0, , ,17 A bővebb modellben az együttható 0,617: ennyi a jövedelem közvetlen (direkt) hatása (ha egy egységgel nő stb.), és itt véget is ér a sztori, mert a bővebb modellben a taglétszámot állandó értéken tartjuk (v.ö. a c.p. feltevés) ezért nincs jelentősége a taglétszám és a jövedelem közti sztochasztikus kapcsolatnak A szűkebb modellben viszont a jövedelem egységnyi növekedése a taglétszámot is növeli tendenciájában, a növekvő taglétszám viszont (önmagában is!) növeli a kiadást, ez lesz az indirekt hatás Totális hatás = direkt hatás + indirekt hatás(ok)

10 Változó bevonásának hatása a modellre A szűkebb regresszióban nem tudjuk izolálni a taglétszám hatását: ha a jövedelem nő, az a bővebb modellben nem társul a taglétszám növekedésével (v.ö. a paraméter c.p. értelmezésével), a szűkebb modellben viszont igen (hiszen ott nem endogén változó a taglétszám) a szűkebb modellben a kihagyott változón keresztül terjedő hatások is beépülnek az együtthatóba A gyakorlatban persze nem tudhatjuk, hogy mi a kihagyott változó

11 A specifikációs torzítás iránya Ez a torzítás milyen irányban módosítja a becsült paramétert? Az indirekt hatástól függ, és nem tudható általánosságban: növelheti, csökkentheti (és változatlanul is hagyhatja) a becsült koefficienst!

12 A Lagrange Multiplikátor (LM)-próba A hipotézispár teljesen azonos alakú a Wald-F-teszttel: U : Ŷ = β 1 + β 2X β q 1X q 1 + β qx q + β q+1x q β q+mx q+m R : Ŷ = β 1 + β 2X β q 1X q 1 + β qx q és H 0 : β q+1 = β q+2 =... = β q+m = 0 A különbség a modellezés filozófiájában van (ld. később), a teszt tulajdonságai, alkalmazhatósága is eltérő Alapötlet: becsüljük meg a szűkebb modellt, és számítsuk ki ez alapján a becsült reziduumokat. Ha fennáll H 0, akkor ezek a reziduumok nem magyarázhatóak lényegesen sem a szűkebb modell változóival (OLS következménye), sem a vizsgált változókkal (H 0 következménye). Azaz: ha a becsült reziduumokat kiregresszáljuk az összes változóval, akkor sem tudjuk azt lényegesen magyarázni, ha fennáll a H 0.

13 Az próbafüggvénye Ezen intuitív indoklás után a próbafüggvény: n RûR X 2,X 3,...,X k χ 2 m Itt û R jelölés arra utal, hogy a szűkebb (R) modellből kapott reziduumokról van szó

14 Interakció Ismétlés Eddigi modellünkben a marginális hatások a többi változó szintjétől függetlenül állandóak voltak Hihető ez? 1 Ft pluszjövedelem taglétszámtól függetlenül azonos többletkiadást jelent...? Ha nem, akkor azt mondjuk, hogy a két változó között interakció van: az egyik marginális hatásának nagyságát befolyásolja a másik szintje A kapcsolat tehát a marginális hatás és a szint között van (nem marginális hatás és marginális hatás vagy szint és szint között!) Kézenfekvő indulás: az egyik változó szintje lineárisan hasson a másik marginális hatására; sokaságban felírva: (β J + β JT Tag) Jov, ahol β JT az interakció hatását kifejező (lineáris) együttható

15 Interakció Ismétlés Helyezzük ezt be a (sokasági) regresszióba: Y = β 0 + (β J + β JT Tag) Jov + β T Tag, azonban felbontva a zárójelet: Y = β 0 + β J Jov + β JT Tag Jov + β T Tag = = β 0 + β J Jov + (β T + β JT Jov) Tag Tehát az interakció szükségképp, automatikusan szimmetrikus : ha az egyik változó szintje hat a másik marginális hatására akkor szükségképp fordítva is: a másik szintje is hatni fog az előbbi marginális hatására Azaz egyszerre lesz igaz, hogy (β J + β JT Tag) Jov és (β T + β JT Jov) Tag: attól függően, hogy milyen szempontból nézzük (melyik marginális hatását vizsgáljuk, ezt még ld. később is)

16 Interakció Ismétlés A regresszióban így elég egyszerűen ennyit írni: β T Tag + β J Jov + β JT (Jov Tag).... mindkét másik szintjétől függő marginális hatás ebből kiadódik, függően attól, hogy hogyan bontjuk fel a zárójelet (melyik változót vizsgáljuk)

17 A marginális hatás fogalma Marginális hatás: a magyarázó változó kis növelésének hatására mekkora az eredményváltozó egységnyi magyarázóváltozó-növelésre jutó változása Tipikus egyszerűsítés: a magyarázó változó egységnyi növelésének hatására mennyit változik az eredményváltozó Feltettük, hogy az 1 egység kicsinek tekinthető; mértékegységgel nem kell törődni Idáig az i-edik magyarázó változó ilyen módon értelmezett marginális hatása és a β i számértéke gyakorlatilag szinonima volt

18 A marginális hatás precízebben Definíció alapján a marginális hatás: Y X j, ha X j kicsiny Ugye egyetemen vagyunk a marginális hatás Y X j A többváltozós lineáris regresszió eddigi (sokasági) modelljében Y = β 1 + β 2 X β k X k, ezért Y X j = X j [β 1 + β 2 X β j 1 X j 1 + β j X j + β j+1 X j β k X k ] = = β j...hát ezért tekinthettük eddig a marginális hatást és a becsült regressziós koefficienst szinonimának!

19 A marginális hatás interakciók esetén Ha azonban interakció van, például a l-edik és az m-edik tag között, akkor az l-edik marginális hatása: Y = [β 1 + β 2 X X l X l β l X l β m X m β k X k + β lm X l X m ] = = β l + β lm X m Így precíz az előbbi állításunk arról, hogy ha az egyik szerint vizsgáljuk a marginális hatást, akkor az a másik szintjétől fog függeni (gondoljuk hozzá a másik szerinti deriválást is!)

20 A linearitás újabb megsértése Eddig megnéztük, hogy mit jelent az, ha megsértjük a marginális hatás nem függ attól, hogy a többi magyarázó változót milyen szinten rögzítjük következményét a linearitásnak És ha a marginális hatás nem függ attól, hogy milyen szintről indulva növeljük a változót következményt szeretnénk oldani? A változó marginális hatása függ a saját szintjétől... hasonló az előző esethez, de nem egy másik változó szintje hat a marginális hatásra, hanem a sajátja mintha önmagával lenne interakcióban! És tényleg: β j X j helyett β j X j + β jj X j X j esetén a j-edik magyarázó változó marginális hatása: [... + βj X j + β jj Xj ] = β j + 2β jj X j X j

21 Grafikus magyarázat Ismétlés Szemléletesen az egy magyarázó változós esetben: x+10 2x^2-16x Szélsőértékhely nyilvánvaló (első derivált előjelet vált): β j + 2β jj X j = 0 X j = β j 2β jj

22 Záró gondolat az interakció, kvadratikus hatás témájához Ez már átvezet a függvényforma-választás kérdéséhez a modellspecifikáción belül Ilyen értelemben lényeges különbség van a kettő között: kvadratikus hatást feltételezve a modell továbbra is paramétereiben lineáris lesz (noha változóiban nem az), interakcióval már nem! Látni fogjuk: OLS-nek mindegy a változóban nemlinearitás Emiatt az igazi újdonság az interakció A kvadratikus hatást, és a többi változóban való nemlinearitást később részletesen tárgyaljuk

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA

Részletesebben

Melléklet 1. A knn-módszerhez használt változólista

Melléklet 1. A knn-módszerhez használt változólista Melléklet 1. A knn-módszerhez használt változólista 1. Régiók (1. Budapest, Pest megye, Dunántúl; 2. Dél-Magyarország; 3. Észak-Magyarország.) 2. Főállású-e az egyéni vállalkozó dummy (1 heti legalább

Részletesebben

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8.

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8. A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi hiba számítása

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Pˆr( y = 1 x) ( g( ˆ β + x ˆ β ) ˆ 0 β j ) x j Marginális hatás egy megválasztott

Részletesebben

Két adatfelvétel: a szegény háztartások fogyasztási szokásai és a tulajdonosi jövedelmek szerkezete. Medgyesi Márton Tárki Zrt

Két adatfelvétel: a szegény háztartások fogyasztási szokásai és a tulajdonosi jövedelmek szerkezete. Medgyesi Márton Tárki Zrt Két adatfelvétel: a szegény háztartások fogyasztási szokásai és a tulajdonosi jövedelmek szerkezete Medgyesi Márton Tárki Zrt Vázlat 1.A szegény háztartások fogyasztási szokásai A kutatás célja Mintavétel

Részletesebben

Családi kohézió az idő szorításában A szülők és a gyermekek társas együttléte a mindennapok világában. Harcsa István (FETE) Monostori Judit (NKI)

Családi kohézió az idő szorításában A szülők és a gyermekek társas együttléte a mindennapok világában. Harcsa István (FETE) Monostori Judit (NKI) Családi kohézió az idő szorításában A szülők és a gyermekek társas együttléte a mindennapok világában Harcsa István (FETE) Monostori Judit (NKI) Kutatási kérdések Hogyan változott a szülők és a gyermekek

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

Tisztelt hallgatók! Farkas Péter egyetemi adjunktus, tananyagfejlesztõ, tutor (gyõri és pécsi csoport) egyetemi adjuntus, tutor (budapesti csoport)

Tisztelt hallgatók! Farkas Péter egyetemi adjunktus, tananyagfejlesztõ, tutor (gyõri és pécsi csoport) egyetemi adjuntus, tutor (budapesti csoport) Tisztelt hallgatók! E-LEARNING KÉZÉS Az alábbiakban a Gazdálkodási szakos, e-learning rendszerben mûködõ képzés tananyagához készült hibalistát olvashatja. A visszajelzések és az anyag folyamatos gondozása

Részletesebben

A beruházási kereslet és a rövid távú árupiaci egyensúly

A beruházási kereslet és a rövid távú árupiaci egyensúly 7. lecke A beruházási kereslet és a rövid távú árupiaci egyensúly A beruházás fogalma, tényadatok. A beruházási kereslet alakulásának elméleti magyarázatai: mikroökonómiai alapok, beruházás-gazdaságossági

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

Módszertani leírás. A felvételben használt fogalmak az ILO ajánlásait követik. Ennek megfelelően tartalmuk a következő:

Módszertani leírás. A felvételben használt fogalmak az ILO ajánlásait követik. Ennek megfelelően tartalmuk a következő: Módszertani leírás Bevezetés A Központi Statisztikai Hivatal a magánháztartásokban élők gazdasági aktivitásának foglalkoztatottságának és munkanélküliségének vizsgálatára 1992-ben vezette be a magánháztartásokra

Részletesebben

Nemzetgazdasági teljesítmény mutatói

Nemzetgazdasági teljesítmény mutatói Nemzetgazdasági teljesítmény mutatói A nemzetgazdasági össztermelés és a halmozódás problémája. A GDP pontos értelmezése, különbözõ megközelítései. A GDP nagysága és felhasználása Magyarországon. További

Részletesebben

Mérési adatok illesztése, korreláció, regresszió

Mérési adatok illesztése, korreláció, regresszió Mérési adatok illesztése, korreláció, regresszió Korreláció, regresszió Két változó mennyiség közötti kapcsolatot vizsgálunk. Kérdés: van-e kapcsolat két, ugyanabban az egyénben, állatban, kísérleti mintában,

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i

azonosságot minden 1 i, l n, 1 j k, indexre teljesítő együtthatókkal, amelyekre érvényes a = c (j) i,l l,i A Cochran Fisher tételről A matematikai statisztika egyik fontos eredménye a Cochran Fisher tétel, amely a variancia analízisben játszik fontos szerepet. Ugyanakkor ez a tétel lényegét tekintve valójában

Részletesebben

Az ingázás megtérülése Magyarországon

Az ingázás megtérülése Magyarországon Bartus Tamás Budapesti Corvinus Egyetem Szociológia és Társadalompolitika Intézet Áttekintés A munkanélküliségekben mutatkozó területi különbségek egyik magyarázata: a napi ingázás költségei magasabbak

Részletesebben

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j.

Fourier-sorok. néhány esetben eltérhetnek az előadáson alkalmazottaktól. Vizsgán. k=1. 1 k = j. Fourier-sorok Bevezetés. Az alábbi anyag a vizsgára való felkészülés segítése céljából készült. Az alkalmazott jelölések vagy bizonyítás részletek néhány esetben eltérhetnek az előadáson alkalmazottaktól.

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4..-08//A/KMR-009-004pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

Néhány adatsor a gyermekek helyzetéről

Néhány adatsor a gyermekek helyzetéről Néhány adatsor a gyermekek helyzetéről Az itt következő táblázatok néhány, a gyermekek illetve a gyermekes családok helyzetére vonatkozó információt közölnek. Az adatok az utóbbi évek egyik legaggasztóbb

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták.

1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták. 1.1: Egy felmérés során a BGF-ről frissen kikerült diplomások jövedelmét vizsgálták. a) Hozzon létre osztályközös gyakoriságot az alábbi osztályközökkel: - 100.000 100.000-150.000 150.000-200.000 200.000-250.000

Részletesebben

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények

Korreláció és Regresszió (folytatás) Logisztikus telítıdési függvény Több független változós regressziós függvények Korreláció és Regresszió (folytatás) 12. elıadás (23-24. lecke) Logisztikus telítıdési függvény Több független változós regressziós függvények 23. lecke A logisztikus telítıdési függvény Több független

Részletesebben

Koppány Krisztián, SZE Koppány Krisztián, SZE

Koppány Krisztián, SZE Koppány Krisztián, SZE 10. lecke Mi okozza a munkanélküliséget és az inflációt? munkanélküliség mérése. munkapiac modellje és a rövidebb oldal elve. munkanélküliség típusai. z infláció fogalma, mérése és mértéke. z infláció

Részletesebben

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában

Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Az Excel táblázatkezelő program használata a matematika és a statisztika tantárgyak oktatásában Hódiné Szél Margit SZTE MGK 1 A XXI. században az informatika rohamos terjedése miatt elengedhetetlen, hogy

Részletesebben

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás

1. szemináriumi. feladatok. két időszakos fogyasztás/ megtakarítás 1. szemináriumi feladatok két időszakos fogyasztás/ megtakarítás 1. feladat Az általunk vizsgál gazdaság csupán két időszakig működik. A gazdaságban egy reprezentatív fogyasztó hoz döntéseket. A fogyasztó

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

Mikroökonómia - Bevezetés, a piac

Mikroökonómia - Bevezetés, a piac Mikroökonómia szeminárium Bevezetés, a piac Budapesti Corvinus Egyetem Makroökonómia Tanszék 2011 szeptember 21. A témakör alapfogalmai Keresleti (kínálati) görbe - kereslet (kínálat) fogalma - kereslet

Részletesebben

III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra)

III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra) VÁLLALATI PÉNZÜGYEK III. A RÉSZVÉNYEK ÉRTÉKELÉSE (4 óra) Összeállította: Naár János okl. üzemgazdász, okl. közgazdász-tanár Részvény: olyan lejárat nélküli értékpapír, amely a társasági tagnak: 1) az alaptőke

Részletesebben

A villamosenergia-piaci liberalizáció és a magyarországi háztartások Egy kérdőíves felmérés eredményei Tóth András

A villamosenergia-piaci liberalizáció és a magyarországi háztartások Egy kérdőíves felmérés eredményei Tóth András A villamosenergia-piaci liberalizáció és a magyarországi háztartások Egy kérdőíves felmérés eredményei Tóth András Háztartások a magyar villamos energia piacon 2006. első negyedévében a Regionális Energiagazdasági

Részletesebben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 33. o. 1. feladat 65.) Keynesi

Részletesebben

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 2. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 2. előadás Előadó: Dr. Ertsey Imre Statisztikai sorok Meghatározott szempontok szerint kiválasztott két vagy több logikailag összetartozó statisztikai adat, statisztikai sort képez. általában

Részletesebben

7.2. A készségek és az oktatás jövedelemben megtérülő hozama

7.2. A készségek és az oktatás jövedelemben megtérülő hozama 7.2. A készségek és az oktatás jövedelemben megtérülő hozama A neoklasszikus közgazdasági elmélet szerint a termelés végső értékéhez jobban hozzájáruló egyének számára elvárt a magasabb kereset. Sőt, mi

Részletesebben

Gyermekek szegénységéről iskola kezdés előtt. Készítette: Korózs Lajos

Gyermekek szegénységéről iskola kezdés előtt. Készítette: Korózs Lajos Gyermekek szegénységéről iskola kezdés előtt Készítette: Korózs Lajos ELTE-kutatás eredménye Soha nem volt annyi szegény gyermek hazánkban mint most! A leghátrányosabb helyzetű térségekben a gyerekek 84

Részletesebben

Gazdálkodási modul. Gazdaságtudományi ismeretek I. Közgazdaságtan. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc

Gazdálkodási modul. Gazdaságtudományi ismeretek I. Közgazdaságtan. KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Gazdálkodási modul Gazdaságtudományi ismeretek I. Közgazdaságtan KÖRNYEZETGAZDÁLKODÁSI MÉRNÖKI MSc TERMÉSZETVÉDELMI MÉRNÖKI MSc Az állam szerepe a makrofolyamatok szabályozásában 17. lecke Az állami beavatkozás

Részletesebben

Mérési hibák 2006.10.04. 1

Mérési hibák 2006.10.04. 1 Mérési hibák 2006.10.04. 1 Mérés jel- és rendszerelméleti modellje Mérési hibák_labor/2 Mérési hibák mérési hiba: a meghatározandó értékre a mérés során kapott eredmény és ideális értéke közötti különbség

Részletesebben

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI

Bevezető Adatok rendezése Adatok jellemzése Időbeli elemzés. Gazdaságstatisztika KGK VMI Gazdaságstatisztika 2. előadás Egy ismérv szerinti rendezés Kóczy Á. László KGK VMI Áttekintés Gyakorisági sorok Grafikus ábrázolásuk Helyzetmutatók Szóródási mutatók Az aszimmetria mérőszámai Koncentráció

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma

Egyes logisztikai feladatok megoldása lineáris programozás segítségével. - bútorgyári termelési probléma - szállítási probléma Egyes logisztikai feladatok megoldása lineáris programozás segítségével - bútorgyári termelési probléma - szállítási probléma Egy bútorgyár polcot, asztalt és szekrényt gyárt faforgácslapból. A kereskedelemben

Részletesebben

Varianciaanalízis 4/24/12

Varianciaanalízis 4/24/12 1. Feladat Egy póker kártya keverő gép a kártyákat random módon választja ki. A vizsgálatban 1600 választott kártya színei az alábbi gyakorisággal fordultak elő. Vizsgáljuk meg, hogy a kártyák kiválasztása

Részletesebben

Személyes pénzügyek tervezése (Az életpálya pénzügyi tervezése) Kovács Norbert Gyõr, 2008.01.30.

Személyes pénzügyek tervezése (Az életpálya pénzügyi tervezése) Kovács Norbert Gyõr, 2008.01.30. Személyes pénzügyek tervezése (Az életpálya pénzügyi tervezése) Kovács Norbert Gyõr, 2008.01.30. Az elõadás menete Mit értünk emberi életpálya alatt? Hogyan értelmezzük az emberi életpályát pénzügyi szemléletben?

Részletesebben

Egy fertőző gyermekbetegség alakulásának modellezése és elemzése

Egy fertőző gyermekbetegség alakulásának modellezése és elemzése Egy fertőző gyermekbetegség alakulásának modellezése és elemzése Tudományos Diákköri Konferencia Dolgozat Írta: Rózemberczki Benedek András Alkalmazott közgazdaságtan alapszak, 3. évfolyam Konzulens: Dr.

Részletesebben

Antal Gergő Környezettudomány MSc. Témavezető: Kovács József

Antal Gergő Környezettudomány MSc. Témavezető: Kovács József Antal Gergő Környezettudomány MSc. Témavezető: Kovács József Bevezetés A Föld teljes vízkészlete,35-,40 milliárd km3-t tesz ki Felszíni vizek ennek 0,0 %-át alkotják Jelentőségük: ivóvízkészlet, energiatermelés,

Részletesebben

(HL L 77., 1998.3.14., 3. o.)

(HL L 77., 1998.3.14., 3. o.) 1998R0577 HU 23.12.2007 004.001 1 Ez a dokumentum kizárólag tájékoztató jellegű, az intézmények semmiféle felelősséget nem vállalnak a tartalmáért B A TANÁCS 577/98/EK RENDELETE (1998. március 9.) a közösségi

Részletesebben

A hazai vállalkozások bankválasztása és az elmúlt hónapok pénzintézeti csődjei

A hazai vállalkozások bankválasztása és az elmúlt hónapok pénzintézeti csődjei A hazai vállalkozások bankválasztása és az elmúlt hónapok pénzintézeti csődjei 2015. június Elemzésünk azt vizsgálja, hogy a hazai vállalkozók milyen szempontokat tartanak fontosnak egy-egy bank megítélésénél

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 2 II. A valószínűségi VÁLTOZÓ És JELLEMZÉsE 1. Valószínűségi VÁLTOZÓ Definíció: Az leképezést valószínűségi változónak nevezzük, ha

Részletesebben

Statisztika 3. Dr Gősi Zsuzsanna Egyetemi adjunktus Koncentráció mérése Koncentráció általában a jelenségek tömörülését, összpontosulását értjük. Koncentráció meglétéről gyorsan tájékozódhatunk, ha sokaságot

Részletesebben

STATISZTIKA PÉLDATÁR

STATISZTIKA PÉLDATÁR STATISZTIKA PÉLDATÁR www.matektanitas.hu www.matektanitas.hu info@matektanitas.hu 1 Minden feladat csak szöveges válasszal együtt ad teljes értékű megoldást! Becslés 1. feladat Az alábbi táblázat megadja

Részletesebben

Szent István Egyetem Gazdasági és Társadalomtudományi Kar Pénzügyi és Számviteli Intézet. Beadandó feladat. Modern vállalati pénzügyek tárgyból

Szent István Egyetem Gazdasági és Társadalomtudományi Kar Pénzügyi és Számviteli Intézet. Beadandó feladat. Modern vállalati pénzügyek tárgyból Szent István Egyetem Gazdasági és Társadalomtudományi Kar Pénzügyi és Számviteli Intézet Beadandó feladat Modern vállalati pénzügyek tárgyból az alap levelező képzés Gazdasági agrármérnök V. évf. Pénzügy-számvitel

Részletesebben

Tisztelt Képviselő- testület!

Tisztelt Képviselő- testület! Előterjesztés munkaterv szerinti ülésre /Nyílt Nagykovácsi, 2011. szeptember 29. Előterjesztő:. Előadó: dr. Halmosi-Rokaj Odett igazgatási ov.. Melléklet: rendelet tervezet Véleményezi: Ügyrendi és Összeférhetetlenségi

Részletesebben

A LAKOSSÁG LAKÁSPIACI VÁRAKOZÁSAI 1

A LAKOSSÁG LAKÁSPIACI VÁRAKOZÁSAI 1 2002. ELSÕ ÉVFOLYAM 3. SZÁM 51 SKULTÉTY LÁSZLÓ A LAKOSSÁG LAKÁSPIACI VÁRAKOZÁSAI 1 Az utóbbi idõben erõsödött a háztartások lakásépítési, -vásárlási, valamint -felújítási hajlandósága. Azok a háztartások,

Részletesebben

MT-DP 2014/11 Élmények és tárgyak fogyasztásának kapcsolata a szubjektív jólléttel

MT-DP 2014/11 Élmények és tárgyak fogyasztásának kapcsolata a szubjektív jólléttel MŰHELYTANULMÁNYOK DISCUSSION PAPERS MT-DP 2014/11 Élmények és tárgyak fogyasztásának kapcsolata a szubjektív jólléttel HAJDU TAMÁS HAJDU GÁBOR MTA KÖZGAZDASÁG- ÉS REGIONÁLIS TUDOMÁNYI KUTATÓKÖZPONT KÖZGAZDASÁG-TUDOMÁNYI

Részletesebben

Mérés módja szerint: Időtáv szerint. A szegénység okai szerint

Mérés módja szerint: Időtáv szerint. A szegénység okai szerint Szegénység Fogalma: Az alacsony jövedelem és az ebből fakadó hátrányok HIÁNY (tárgyi, információs, pszichés, szociális következmények) Mérés módja szerint: Abszolút szegénység létminimum (35-45 e Ft) Relatív

Részletesebben

Egy makroszintű hitelkockázati modell romániai alkalmazása

Egy makroszintű hitelkockázati modell romániai alkalmazása 2008. HETEDIK ÉVFOLYAM 3. SZÁM 225 BENYOVSZKI ANNAMÁRIA PETRU TÜNDE PETRA Egy makroszintű hitelkockázati modell romániai alkalmazása Célunk egy makrogazdasági hitelkockázati modell felépítése, amely makrogazdasági

Részletesebben

Az egyes adófajták elmélet és gyakorlat

Az egyes adófajták elmélet és gyakorlat Az egyes adófajták elmélet és gyakorlat I. rész: Az szja Személyi jövedelemadó Személyeket, és nem háztartásokat adóztat. Béradóként inkább bevételt, mintsem jövedelmet adóztat (bár vannak erős ellenpéldák

Részletesebben

A PAPÍRMENETES IRODA PARADOXONA- EGY BIZONYÍTÁSI KÍSÉRLET PAPERLESS OFFICE PARADOX

A PAPÍRMENETES IRODA PARADOXONA- EGY BIZONYÍTÁSI KÍSÉRLET PAPERLESS OFFICE PARADOX A PAPÍRMENETES IRODA PARADOXONA- EGY BIZONYÍTÁSI KÍSÉRLET PAPERLESS OFFICE PARADOX SZIGETI Cecília Széchenyi István Egyetem, Kautz Gyula Gazdaságtudományi Kar, 906 Győr, Egyetem tér 1. e-mail: szigetic@sze.hu

Részletesebben

CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15.

CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15. CEBS Consultative Paper 10 (folytatás) Krekó Béla PSZÁF, 2005. szeptember 15. 1 3.3.3 Minősítési rendszerek és a kockázatok számszerűsítése Minősítések hozzárendelése PD, LGD, CF meghatározása Közös vizsgálati

Részletesebben

a) 2630 md. USD b) 3119 md. USD c) 3389 md. USD d) 2800 md. USD b) Le kell vonni az értékcsökkenés nagyságát

a) 2630 md. USD b) 3119 md. USD c) 3389 md. USD d) 2800 md. USD b) Le kell vonni az értékcsökkenés nagyságát NEMZETGAZDASÁGI TELJESÍTMÉNY STATISZTIKAI MUTATÓSZÁMAI 1. Egy hipotetikus gazdaság alábbi adatait ismerjük Milliárd USD Fogyasztás 1925 Nettó export 44 Kamat fizetések 81 Személyi adók 500 Értékcsökkenés

Részletesebben

Miért betegebbek a szegény gyerekek?

Miért betegebbek a szegény gyerekek? KÖNYVEKRÕL, FOLYÓIRATOKRÓL MURAKÖZY BALÁZS Miért betegebbek a szegény gyerekek? Anne Case, Darren Lubotsky és Christina Paxson: Economic status and health in childhood: the origins of the gradient. American

Részletesebben

Munkaerő-piaci folyamatok (2007/2008)

Munkaerő-piaci folyamatok (2007/2008) Munkaerő-piaci folyamatok (2007/2008) Dr. Teperics Károly egyetemi adjunktus E-mail: teperics@puma.unideb.hu Foglalkoztatottság, gazdasági aktivitás 4. 208.700 fő van jelen a munkaerőpiacon (15-64) Aktivitási

Részletesebben

A szociális lakásügynökségek egy új közösségi bérlakás-rendszerben országos szakpolitikai javaslat főbb elemei

A szociális lakásügynökségek egy új közösségi bérlakás-rendszerben országos szakpolitikai javaslat főbb elemei A szociális lakásügynökségek egy új közösségi bérlakás-rendszerben országos szakpolitikai javaslat főbb elemei Open Society Foundations támogatásával, a Habitat for Humanity Magyarország és a Városkutatás

Részletesebben

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI

AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI MÓDSZERTANI TANULMÁNYOK AZ ÁLTALÁNOSÍTOTT LINEÁRIS MODELL ÉS BIZTOSÍTÁSI ALKALMAZÁSAI A biztosítási károk alakulásának modellezésére jól alkalmazható az általánosított lineáris modell, amely alkalmas arra,

Részletesebben

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba

Döntéselőkészítés. I. előadás. Döntéselőkészítés. Előadó: Dr. Égertné dr. Molnár Éva. Informatika Tanszék A 602 szoba I. előadás Előadó: Dr. Égertné dr. Molnár Éva Informatika Tanszék A 602 szoba Tárggyal kapcsolatos anyagok megtalálhatók: http://www.sze.hu/~egertne Konzultációs idő: (páros tan. hét) csütörtök 10-11 30

Részletesebben

NAP- ÉS SZÉLENERGIA POTENCIÁL BECSLÉS EGER TÉRSÉGÉBEN

NAP- ÉS SZÉLENERGIA POTENCIÁL BECSLÉS EGER TÉRSÉGÉBEN NAP- ÉS SZÉLENERGIA POTENCIÁL BECSLÉS EGER TÉRSÉGÉBEN Mika János 1, Csabai Edina 1, Molnár Zsófia 2, Nagy Zoltán 3, Pajtókné Tari Ilona 1, Rázsi András 1,2, Tóth-Tarjányi Zsuzsanna 3, Wantuchné Dobi Ildikó

Részletesebben

1. ábra: Az egészségi állapot szubjektív jellemzése (%) 38,9 37,5 10,6 9,7. Nagyon rossz Rossz Elfogadható Jó Nagyon jó

1. ábra: Az egészségi állapot szubjektív jellemzése (%) 38,9 37,5 10,6 9,7. Nagyon rossz Rossz Elfogadható Jó Nagyon jó Fábián Gergely: Az egészségügyi állapot jellemzői - 8 A nyíregyházi lakosok egészségi állapotának feltérképezéséhez elsőként az egészségi állapot szubjektív megítélését vizsgáltuk, mivel ennek nemzetközi

Részletesebben

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik)

H0 hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) 5.4: 3 különböző talpat hasonlítunk egymáshoz Varianciaanalízis. hipotézis: μ1 = μ2 = μ3 = μ (a különböző talpú cipők eladási ára megegyezik) hipotézis: Létezik olyan μi, amely nem egyenlő a többivel (Van

Részletesebben

Makroökonómia - 3. elıadás

Makroökonómia - 3. elıadás Makroökonómia - 3. elıadás A makrogazdaság árupiaci egyensúlya 1 IM Y A makrogazdaság összjövedelme TERMELÉS termékek, szolgáltatások Fogyasztási javak Termelési célú javak Jövıbeli termeléshez Jelen termelésben:

Részletesebben

Korreláció és Regresszió

Korreláció és Regresszió Korreláció és Regresszió 9. elıadás (17-18. lecke) Korrelációs együtthatók 17. lecke Áttekintés (korreláció és regresszió) A Pearson-féle korrelációs együttható Korreláció és Regresszió (témakörök) Kapcsolat

Részletesebben

A jól-lét mérése. Lorem Ipsum

A jól-lét mérése. Lorem Ipsum A jól-lét mérése Lorem Ipsum Dr. Koós Bálint Dr. Nagy Gábor: A jól-lét mérése és modellezési lehetőségei a hazai és nemzetközi szakirodalom és a most folyó TÁMOP kutatás tükrében TÁMOP 4.2.2.A-11/1/KONV

Részletesebben

[GVMGS11MNC] Gazdaságstatisztika

[GVMGS11MNC] Gazdaságstatisztika [GVMGS11MNC] Gazdaságstatisztika 5. előadás Érték-, ár-, és volumenindexek http://uni-obuda.hu/users/koczyl/gazdasagstatisztika.htm Kóczy Á. László KGK-VMI Az indexszám fogalma Gazdasági elemzésben fontos

Részletesebben

Statisztika oktatása és alkalmazása a mérnöki területen

Statisztika oktatása és alkalmazása a mérnöki területen Statisztika oktatása és alkalmazása a mérnöki területen 1,2 1:, Neumann János Informatikai Kar, Élettani Szabályozások Csoport 2: Budapesti Corvinus Egyetem, Statisztika Tanszék MTA Statisztikai Tudományos

Részletesebben

Létminimum, 2008. Tartalom. Internetes kiadvány www.ksh.hu Központi 2009. június Statisztikai Hivatal ISBN 978-963-235-249-7

Létminimum, 2008. Tartalom. Internetes kiadvány www.ksh.hu Központi 2009. június Statisztikai Hivatal ISBN 978-963-235-249-7 Internetes kiadvány www.ksh.hu Központi 2009. június Statisztikai Hivatal ISBN 978-963-235-249-7 Létminimum, 2008 Tartalom Létminimum, 2008...2 A létminimumértékek meghatározása...2 Létminimumértékek a

Részletesebben

Rendelet. Önkormányzati Rendeletek Tára. Dokumentumazonosító információk

Rendelet. Önkormányzati Rendeletek Tára. Dokumentumazonosító információk Rendelet Önkormányzati Rendeletek Tára Dokumentumazonosító információk Rendelet száma: 10/2008.(IX.16.) Rendelet típusa: Módosító Rendelet címe: A pénzbeli és természetbeni gyermekvédelmi ellátásokról

Részletesebben

Kiszorítás idősek és fiatalok között? Empirikus eredmények EU aggregált adatok alapján

Kiszorítás idősek és fiatalok között? Empirikus eredmények EU aggregált adatok alapján Empirikus eredmények EU aggregált adatok alapján MTA Közgazdaságtudományi Intézet, CEU Középeurópai Egyetem How could Hungary increase labour force participation? - záró konferencia, 2008 június 19. Hotel

Részletesebben

Az energiahatékonyság dilemmája visszapattanó hatás

Az energiahatékonyság dilemmája visszapattanó hatás Az energiahatékonyság dilemmája visszapattanó hatás Sebestyénné Szép Tekla Egyetemi tanársegéd Miskolci Egyetem, Gazdaságtudományi Kar, Világ- és Regionális Gazdaságtan Intézet MET VIII. Energia Műhely

Részletesebben

Alulírott kérem, hogy gyermekem, gyermekeim részére/részemre ( gyermekvédelmi kedvezményre

Alulírott kérem, hogy gyermekem, gyermekeim részére/részemre ( gyermekvédelmi kedvezményre 7. melléklet a 392/2013. (XI. 12.) Korm. rendelethez [ 3. számú melléklet a 149/1997. (IX. 10.) Korm. rendelethez TVÁNY a rendszeres gyermekvédelmi kedvezmény megállapításához és felülvizsgálatához a hátrányos,

Részletesebben

Pályázati kiírás 2014

Pályázati kiírás 2014 Pályázati kiírás 2014 Az alapítványhoz az alábbi szervezetek jogosultak benyújtani pályázatot: - A szociális törvény végrehajtási rendelete értelmében Családsegítő Szolgálat, - Magyarország helyi önkormányzatairól

Részletesebben

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok.

A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. ZÁRÓVIZSGA TÉMAKÖRÖK egyetemi szintű közgazdasági programozó matematikus szakon A) 1. Számsorozatok, számsorozat torlódási pontja, határértéke. Konvergencia kritériumok. 2. Függvények, függvények folytonossága.

Részletesebben

Matematikai statisztikai elemzések 5.

Matematikai statisztikai elemzések 5. Matematikai statisztikai elemzések 5. Kapcsolatvizsgálat: asszociáció, vegyes kapcsolat, korrelációszámítás. Varianciaanalízis Prof. Dr. Závoti, József Matematikai statisztikai elemzések 5.: Kapcsolatvizsgálat:

Részletesebben

10. A mai magyar társadalom helyzete. Kovács Ibolya szociálpolitikus

10. A mai magyar társadalom helyzete. Kovács Ibolya szociálpolitikus 10. A mai magyar társadalom helyzete Kovács Ibolya szociálpolitikus Népességi adatok Magyarország népessége 2014. január 1-jén 9 877 365 fő volt, amely 1981 óta a születések alacsony, és a halálozások

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben

A végeselem módszer alapjai. 2. Alapvető elemtípusok

A végeselem módszer alapjai. 2. Alapvető elemtípusok A végeselem módszer alapjai Előadás jegyzet Dr. Goda Tibor 2. Alapvető elemtípusok - A 3D-s szerkezeteket vagy szerkezeti elemeket gyakran egyszerűsített formában modellezzük rúd, gerenda, 2D-s elemek,

Részletesebben

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság.

valós számot tartalmaz, mert az ilyen részhalmazon nem azonosság. 2. Közönséges differenciálegyenlet megoldása, megoldhatósága Definíció: Az y függvényt a valós számok H halmazán a közönséges differenciálegyenlet megoldásának nevezzük, ha az y = y(x) helyettesítést elvégezve

Részletesebben

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége

Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Posztanalitikai folyamatok az orvosi laboratóriumban, az eredményközlés felelőssége Autovalidálási folyamatok Lókiné Farkas Katalin Az autovalidálás elméleti alapjai Az előző eredménnyel való összehasonlítás

Részletesebben

SZOCIÁLIS JOG II - 2015

SZOCIÁLIS JOG II - 2015 SZOCIÁLIS JOG II - 2015 Országos Betegjogi, Ellátottjogi, Gyermekjogi és Dokumentációs Központ 2015. SZEPTEMBER 17. ELŐADÓ: DR. VERES GÁBOR TÁMOP 5.5.7-08/1-2008-0001 Betegjogi, ellátottjogi és gyermekjogi

Részletesebben

DE! Hol van az optimális tőkeszerkezet???

DE! Hol van az optimális tőkeszerkezet??? DE! Hol van az optimális tőkeszerkezet??? Adósság és/vagy saját tőke A tulajdonosi érték maximalizálása miatt elemezni kell: 1. A pénzügyi tőkeáttétel hatását a részvények hozamára és kockázatára; 2. A

Részletesebben

Több diszkrét kimenet multinomiális és feltételes logit modellek

Több diszkrét kimenet multinomiális és feltételes logit modellek Több diszkrét kimenet multinomiális és feltételes logit modellek Mikroökonometria, 9. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központa és a Tudás-Ökonómia Alapítvány támogatásával

Részletesebben

A lánc viszonyszám: A lánc viszonyszám számítási képlete:

A lánc viszonyszám: A lánc viszonyszám számítási képlete: A lánc viszonyszám: Az idősor minden egyes tagját a közvetlenül megelőzővel osztjuk, vagyis az idősor első évének, vagy időszakának láncviszonyszáma nem számítható. A lánc viszonyszám számítási képlete:

Részletesebben

AZ ADATÁLLOMÁNY ÉS A ROTÁCIÓS PANEL

AZ ADATÁLLOMÁNY ÉS A ROTÁCIÓS PANEL FÜGGELÉK MOLNÁR GYÖRGY AZ ADATÁLLOMÁNY ÉS A ROTÁCIÓS PANEL 1. A háztartási költségvetési felvétel néhány ellegzetessége A KSH minden évben valamivel több mint tízezer háztartás részvételével készíti el

Részletesebben

Fűtés módja:.. gázfűtés...távfűtés.villanyfűtés. vegyestüzelés (olaj, fa, szén,pb gáz)

Fűtés módja:.. gázfűtés...távfűtés.villanyfűtés. vegyestüzelés (olaj, fa, szén,pb gáz) KÉRELEM fűtéstámogatás megállapítására Személyi adatok: Kérelmező neve: Születési neve: Születési helye, ideje: Anyja születési neve: Társadalombiztosítási azonosító jele (TAJ száma): Lakóhely: Tartózkodási

Részletesebben

terepsegway e-qu a d lézerh a rc e-bi ke Normafa síház élmény túrák

terepsegway e-qu a d lézerh a rc e-bi ke Normafa síház élmény túrák - H - q ú í ú H - ú j M í ú H R Ú R I Z - ) j L E B ; 1 / ; 14 j H 7 F 1 J 1; 1 ú í ) - C R Ú R V B ÜD ) / F j H ú 18 1; 14 ú í 5 ) - 3 V ÚR - HRM B F - Ö - j H ) / F 18 F 1; 14 ú í 5 ) 3 H J ) H j H ú

Részletesebben

A könyvvizsgálat módszertana

A könyvvizsgálat módszertana A könyvvizsgálat módszertana Belső ellenőrzés és a könyvvizsgálat 2011 Deloitte Magyarország Tematika A belső ellenőrzési rendszer célja és típusai A belső ellenőrzési rendszer szerepe a könyvvizsgálat

Részletesebben

Endrôdi-Kovács Viktória - Hegedüs Krisztina

Endrôdi-Kovács Viktória - Hegedüs Krisztina Endrôdi-Kovács Viktória - Hegedüs Krisztina A közvetlen külföldi befektetések és a korrupció közötti kapcsolat A szerzôk tanulmányának középpontjában a közvetlen külföldi befektetések és a korrupció kapcsolata

Részletesebben

RENDSZERES SZOCIÁLIS SEGÉLY

RENDSZERES SZOCIÁLIS SEGÉLY RENDSZERES SZOCIÁLIS SEGÉLY KÉRELEM A kérelmező adatai: Neve:. Előző neve:. Születési helye:. Ideje:.. Anyja neve:... TAJ száma:.... Adóazonosító jele:.. Iskolai végzettsége(i):. Szakképzettsége(i):..

Részletesebben

Pénzügytan szigorlat

Pénzügytan szigorlat GF KVIFK Gazdaságtudományi Intézet Pénzügy szakcsoport Pénzügytan szigorlat 1 30,5 34 pont jeles 26,5 30 pont jó 22,5 26 pont közepes 18,5 22 pont elégséges 18 pont elégtelen Név: Elért pont: soport: Érdemjegy:

Részletesebben

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban

Keresleti és kínálati függvény. Minden piacnak van egy keresleti és egy kínálati oldala, amelyeket a normatív közgazdaságtanban tehát attól függ, hogy x milyen értéket vesz fel. A függvényeket a közgazdaságtanban is a jól ismert derékszögû koordináta-rendszerben ábrázoljuk, ahol a változók nevének megfelelõen általában a vízszintes

Részletesebben