Bevezetés az ökonometriába

Méret: px
Mutatás kezdődik a ... oldaltól:

Download "Bevezetés az ökonometriába"

Átírás

1 Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellspecifikáció, interakció Ferenci Tamás MSc 1 1 Statisztika Tanszék Budapesti Corvinus Egyetem Ötödik előadás, október 13.

2 Tartalom 1 Ismétlés Utóbbi előadások áttekintése 2 Háztartási Költségvetési Felvétel (HKF) 3

3 Utóbbi előadások áttekintése Előző részeink tartalmából Ismerkedés az ökonometriával, az ökonometriai modellezéssel Többváltozós lineáris regresszió alapjai, modelljellemzés Mintavételi vonatkozások: becslések és hipotézisvizsgálat Modelljellemzés

4 Háztartási Költségvetési Felvétel (HKF) A HKF-ről Durván: háztartásokra irányuló, költségvetésüket vizsgáló adatfelvétel (évtizedek óta készít a KSH ilyeneket) Pontos célsokaság: magánháztartásban élő magyar állampolgárok Pontos cél: a lakosság jövedelmeinek és kiadásainak, mind pénzbeli mind természetbeli vetületben való kimutatása Célsokaság lekérdezése (éves) és naplóvezetés (havi) is igen részletes adatok (főleg: jövedelmek (munka-, tőke- stb.), fogyasztott termékek és szolgáltatások stb.) Célsokasági HT-ok rotálása a mintában (egyharmad per év), érdekesség kedvéért a mintavétel típusa: véletlen, R, TL Súlyozás (a mintában tízezer körüli HT), kalibrálás

5 Háztartási Költségvetési Felvétel (HKF) Eredmény- és magyarázó változóink Ökonometriai feladatunk most a háztartások kiadásának modellezése lesz Eredményváltozó: a háztartás éves kiadása [eft] Ismét igen sok magyarázó változó (-jelölt) 1 Település: régió, város, vidék 2 Lakásjellemzők: méret, jelleg 3 Háztartásjellemzők 1 Méret: taglétszám, fogyasztási egység 2 Szerkezet: aktív, inaktív, eltartott, munkanélküli 3 Felszereletség: tartós fogyasztási cikkek 4 HT tagok demográfiai jellemzői 5 Jövedelmi, vagyoni jellemzők 6 Fogyasztási szokások

6 A modellspecifikációról általában Részben hasonló kérdések mint a modellszelekciónál, nincs éles elkülönítés De: a modellszelekciónál nem foglalkoztunk azzal, hogy a változó elhagyás/hozzávétel strukturálisan mit jelent, csak azzal, hogy milyen hatásai vannak ( fenomenologikus leírás) Most a másik felével foglalkozunk: a változó bevonás/elhagyás hogyan hat a modell belső struktúrájára További modellspecifikációs kérdések: a modell bonyolultságának egyéb meghatározói (a változók számán túl): változók közti interakciók és függvényforma-választás

7 Változó bevonásának hatása a modellre Vessük össze ezt a két (demonstráció kedvéért igen kicsi) modellt az esettanulmány feladatára: KiadEFt = 339, 746 (13,783) + 0, JovEFt (0, ) T = 8314 R 2 = 0, 5369 F (1, 8312) = 9637, 2 ˆσ = 662, 02 (standard errors in parentheses) KiadEFt = 283, 172 (16,988) + 0, (0, ) JovEFt + 34, 1727 TLetszam (6,0199) T = 8314 R 2 = 0, 5386 F (2, 8311) = 4852, 8 ˆσ = 660, 78 (standard errors in parentheses) Miért változott meg a jövedelem becsült koefficiense?

8 Változó bevonásának hatása a modellre Mondjuk, hogy a bővebb modell írja le a valóságos helyzetet (a gyakorlatban ezt persze soha nem tudhatjuk, filozófiai kérdés) Azaz a valós helyzet a második regresszió Az érdekes, hogy ez alapján előre meg tudjuk mondani, hogy az első regresszióban mi lesz a jövedelem együtthatója! (... és ebből persze a változás okát is rögtön le tudjuk olvasni) A jövedelem ugyanis nem csak a kiadásra hat sztochasztikusan, hanem a taglétszámra is: TLetszam = 1, , JovEFt (0,025067) (1,1807e 005) T = 8314 R 2 = 0, 2359 F (1, 8312) = 2566, 9 ˆσ = 1, 2040 (standard errors in parentheses)

9 Változó bevonásának hatása a modellre Ebből összerakhatjuk a szűkebb regresszióban a jövedelem együtthatóját: 0,637 = 0, , ,17 A bővebb modellben az együttható 0,617: ennyi a jövedelem közvetlen (direkt) hatása (ha egy egységgel nő stb.), és itt véget is ér a sztori, mert a bővebb modellben a taglétszámot állandó értéken tartjuk (v.ö. a c.p. feltevés) ezért nincs jelentősége a taglétszám és a jövedelem közti sztochasztikus kapcsolatnak A szűkebb modellben viszont a jövedelem egységnyi növekedése a taglétszámot is növeli tendenciájában, a növekvő taglétszám viszont (önmagában is!) növeli a kiadást, ez lesz az indirekt hatás Totális hatás = direkt hatás + indirekt hatás(ok)

10 Változó bevonásának hatása a modellre A szűkebb regresszióban nem tudjuk izolálni a taglétszám hatását: ha a jövedelem nő, az a bővebb modellben nem társul a taglétszám növekedésével (v.ö. a paraméter c.p. értelmezésével), a szűkebb modellben viszont igen (hiszen ott nem endogén változó a taglétszám) a szűkebb modellben a kihagyott változón keresztül terjedő hatások is beépülnek az együtthatóba A gyakorlatban persze nem tudhatjuk, hogy mi a kihagyott változó

11 A specifikációs torzítás iránya Ez a torzítás milyen irányban módosítja a becsült paramétert? Az indirekt hatástól függ, és nem tudható általánosságban: növelheti, csökkentheti (és változatlanul is hagyhatja) a becsült koefficienst!

12 A Lagrange Multiplikátor (LM)-próba A hipotézispár teljesen azonos alakú a Wald-F-teszttel: U : Ŷ = β 1 + β 2X β q 1X q 1 + β qx q + β q+1x q β q+mx q+m R : Ŷ = β 1 + β 2X β q 1X q 1 + β qx q és H 0 : β q+1 = β q+2 =... = β q+m = 0 A különbség a modellezés filozófiájában van (ld. később), a teszt tulajdonságai, alkalmazhatósága is eltérő Alapötlet: becsüljük meg a szűkebb modellt, és számítsuk ki ez alapján a becsült reziduumokat. Ha fennáll H 0, akkor ezek a reziduumok nem magyarázhatóak lényegesen sem a szűkebb modell változóival (OLS következménye), sem a vizsgált változókkal (H 0 következménye). Azaz: ha a becsült reziduumokat kiregresszáljuk az összes változóval, akkor sem tudjuk azt lényegesen magyarázni, ha fennáll a H 0.

13 Az próbafüggvénye Ezen intuitív indoklás után a próbafüggvény: n RûR X 2,X 3,...,X k χ 2 m Itt û R jelölés arra utal, hogy a szűkebb (R) modellből kapott reziduumokról van szó

14 Interakció Ismétlés Eddigi modellünkben a marginális hatások a többi változó szintjétől függetlenül állandóak voltak Hihető ez? 1 Ft pluszjövedelem taglétszámtól függetlenül azonos többletkiadást jelent...? Ha nem, akkor azt mondjuk, hogy a két változó között interakció van: az egyik marginális hatásának nagyságát befolyásolja a másik szintje A kapcsolat tehát a marginális hatás és a szint között van (nem marginális hatás és marginális hatás vagy szint és szint között!) Kézenfekvő indulás: az egyik változó szintje lineárisan hasson a másik marginális hatására; sokaságban felírva: (β J + β JT Tag) Jov, ahol β JT az interakció hatását kifejező (lineáris) együttható

15 Interakció Ismétlés Helyezzük ezt be a (sokasági) regresszióba: Y = β 0 + (β J + β JT Tag) Jov + β T Tag, azonban felbontva a zárójelet: Y = β 0 + β J Jov + β JT Tag Jov + β T Tag = = β 0 + β J Jov + (β T + β JT Jov) Tag Tehát az interakció szükségképp, automatikusan szimmetrikus : ha az egyik változó szintje hat a másik marginális hatására akkor szükségképp fordítva is: a másik szintje is hatni fog az előbbi marginális hatására Azaz egyszerre lesz igaz, hogy (β J + β JT Tag) Jov és (β T + β JT Jov) Tag: attól függően, hogy milyen szempontból nézzük (melyik marginális hatását vizsgáljuk, ezt még ld. később is)

16 Interakció Ismétlés A regresszióban így elég egyszerűen ennyit írni: β T Tag + β J Jov + β JT (Jov Tag).... mindkét másik szintjétől függő marginális hatás ebből kiadódik, függően attól, hogy hogyan bontjuk fel a zárójelet (melyik változót vizsgáljuk)

17 A marginális hatás fogalma Marginális hatás: a magyarázó változó kis növelésének hatására mekkora az eredményváltozó egységnyi magyarázóváltozó-növelésre jutó változása Tipikus egyszerűsítés: a magyarázó változó egységnyi növelésének hatására mennyit változik az eredményváltozó Feltettük, hogy az 1 egység kicsinek tekinthető; mértékegységgel nem kell törődni Idáig az i-edik magyarázó változó ilyen módon értelmezett marginális hatása és a β i számértéke gyakorlatilag szinonima volt

18 A marginális hatás precízebben Definíció alapján a marginális hatás: Y X j, ha X j kicsiny Ugye egyetemen vagyunk a marginális hatás Y X j A többváltozós lineáris regresszió eddigi (sokasági) modelljében Y = β 1 + β 2 X β k X k, ezért Y X j = X j [β 1 + β 2 X β j 1 X j 1 + β j X j + β j+1 X j β k X k ] = = β j...hát ezért tekinthettük eddig a marginális hatást és a becsült regressziós koefficienst szinonimának!

19 A marginális hatás interakciók esetén Ha azonban interakció van, például a l-edik és az m-edik tag között, akkor az l-edik marginális hatása: Y = [β 1 + β 2 X X l X l β l X l β m X m β k X k + β lm X l X m ] = = β l + β lm X m Így precíz az előbbi állításunk arról, hogy ha az egyik szerint vizsgáljuk a marginális hatást, akkor az a másik szintjétől fog függeni (gondoljuk hozzá a másik szerinti deriválást is!)

20 A linearitás újabb megsértése Eddig megnéztük, hogy mit jelent az, ha megsértjük a marginális hatás nem függ attól, hogy a többi magyarázó változót milyen szinten rögzítjük következményét a linearitásnak És ha a marginális hatás nem függ attól, hogy milyen szintről indulva növeljük a változót következményt szeretnénk oldani? A változó marginális hatása függ a saját szintjétől... hasonló az előző esethez, de nem egy másik változó szintje hat a marginális hatásra, hanem a sajátja mintha önmagával lenne interakcióban! És tényleg: β j X j helyett β j X j + β jj X j X j esetén a j-edik magyarázó változó marginális hatása: [... + βj X j + β jj Xj ] = β j + 2β jj X j X j

21 Grafikus magyarázat Ismétlés Szemléletesen az egy magyarázó változós esetben: x+10 2x^2-16x Szélsőértékhely nyilvánvaló (első derivált előjelet vált): β j + 2β jj X j = 0 X j = β j 2β jj

22 Záró gondolat az interakció, kvadratikus hatás témájához Ez már átvezet a függvényforma-választás kérdéséhez a modellspecifikáción belül Ilyen értelemben lényeges különbség van a kettő között: kvadratikus hatást feltételezve a modell továbbra is paramétereiben lineáris lesz (noha változóiban nem az), interakcióval már nem! Látni fogjuk: OLS-nek mindegy a változóban nemlinearitás Emiatt az igazi újdonság az interakció A kvadratikus hatást, és a többi változóban való nemlinearitást később részletesen tárgyaljuk

Ökonometria. Modellspecifikáció. Ferenci Tamás 1 Hatodik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Modellspecifikáció. Ferenci Tamás 1 Hatodik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Modellspecifikáció Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hatodik fejezet Tartalom 1 III. esettanulmány Háztartási Költségvetési Felvétel (HKF) 2 Specifikációs

Részletesebben

Ökonometria. Modellspecifikáció. Ferenci Tamás 1 Hatodik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Modellspecifikáció. Ferenci Tamás 1 Hatodik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Modellspecifikáció Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hatodik fejezet Tartalom III. esettanulmány 1 III. esettanulmány Háztartási Költségvetési Felvétel

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós regresszió: nemlineáris modellek Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik előadás, 2010. november 10.

Részletesebben

1. Ismétlés Utóbbi előadások áttekintése IV. esettanulmány Uniós országok munkanélkülisége... 1

1. Ismétlés Utóbbi előadások áttekintése IV. esettanulmány Uniós országok munkanélkülisége... 1 Tartalom Tartalomjegyzék 1. Ismétlés 1 1.1. Utóbbi előadások áttekintése.................................. 1 2. IV. esettanulmány 1 2.1. Uniós országok munkanélkülisége................................

Részletesebben

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Dummy változók használata. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Hetedik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Dummy változók használata Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Hetedik fejezet Tartalom IV. esettanulmány 1 IV. esettanulmány Uniós országok munkanélkülisége

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése... 1

1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése... 1 Tartalom Tartalomjegyzék 1. II. esettanulmány 1 1.1. Szakágazati mélységű termelési függvény becslése....................... 1 2. Általánosítóképesség, túlilleszkedés 3 3. Modellszelekció 11 3.1. A modellszelekció

Részletesebben

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék

Ökonometria. Logisztikus regresszió. Ferenci Tamás 1 Nyolcadik fejezet. Budapesti Corvinus Egyetem. 1 Statisztika Tanszék Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Nyolcadik fejezet Tartalom V. esettanulmány 1 V. esettanulmány Csődelőrejelzés 2 Általános gondolatok 3 becslése

Részletesebben

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége

Statisztikai következtetések Nemlineáris regresszió Feladatok Vége [GVMGS11MNC] Gazdaságstatisztika 10. előadás: 9. Regressziószámítás II. Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet A standard lineáris modell

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: mintavételi vonatkozások és modelljellemzés Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Harmadik

Részletesebben

Korreláció és lineáris regresszió

Korreláció és lineáris regresszió Korreláció és lineáris regresszió Két folytonos változó közötti összefüggés vizsgálata Szűcs Mónika SZTE ÁOK-TTIK Orvosi Fizikai és Orvosi Informatikai Intézet Orvosi Fizika és Statisztika I. előadás 2016.11.02.

Részletesebben

Bevezetés az ökonometriába

Bevezetés az ökonometriába Bevezetés az ökonometriába Többváltozós lineáris regresszió: modellszelekció Ferenci Tamás MSc 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Negyedik előadás, 2010. október

Részletesebben

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető!

Módszertani Intézeti Tanszéki Osztály. A megoldás részletes mellékszámítások hiányában nem értékelhető! BGF KKK Módszertani Intézeti Tanszéki Osztály Budapest, 2012.. Név:... Neptun kód:... Érdemjegy:..... STATISZTIKA II. VIZSGADOLGOZAT Feladatok 1. 2. 3. 4. 5. 6. Összesen Szerezhető pontszám 21 20 7 22

Részletesebben

Melléklet 1. A knn-módszerhez használt változólista

Melléklet 1. A knn-módszerhez használt változólista Melléklet 1. A knn-módszerhez használt változólista 1. Régiók (1. Budapest, Pest megye, Dunántúl; 2. Dél-Magyarország; 3. Észak-Magyarország.) 2. Főállású-e az egyéni vállalkozó dummy (1 heti legalább

Részletesebben

Többváltozós lineáris regressziós modell feltételeinek

Többváltozós lineáris regressziós modell feltételeinek Többváltozós lineáris regressziós modell feltételeinek tesztelése I. - A hibatagra vonatkozó feltételek tesztelése - Petrovics Petra Doktorandusz Többváltozós lineáris regressziós modell x 1, x 2,, x p

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék ÖKONOMETRIA. Készítette: Elek Péter, Bíró Anikó. Szakmai felelős: Elek Péter. 2010. június ÖKONOMETRIA ÖKONOMETRIA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék, az MTA

Részletesebben

Többváltozós, valós értékű függvények

Többváltozós, valós értékű függvények Többváltozós függvények Többváltozós, valós értékű függvények Többváltozós függvények Definíció: többváltozós függvények Azokat a függvényeket, melyeknek az értelmezési tartománya R n egy részhalmaza,

Részletesebben

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió

Biometria az orvosi gyakorlatban. Korrelációszámítás, regresszió SZDT-08 p. 1/31 Biometria az orvosi gyakorlatban Korrelációszámítás, regresszió Werner Ágnes Villamosmérnöki és Információs Rendszerek Tanszék e-mail: werner.agnes@virt.uni-pannon.hu Korrelációszámítás

Részletesebben

ELTECON MA Keresztmetszeti és panel ökonometria tematika

ELTECON MA Keresztmetszeti és panel ökonometria tematika ELTECON MA Keresztmetszeti és panel ökonometria tematika Készítette: Elek Péter Oktató: Elek Péter Demonstrátor: Pál Jenő (PhD-hallgató, CEU) Időkeret: heti 3*90 perc szeminarizált formában, 13 héten keresztül

Részletesebben

Népességnövekedés Technikai haladás. 6. el adás. Solow-modell II. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem.

Népességnövekedés Technikai haladás. 6. el adás. Solow-modell II. Kuncz Izabella. Makroökonómia Tanszék Budapesti Corvinus Egyetem. Solow-modell II. Makroökonómia Tanszék Budapesti Corvinus Egyetem Makroökonómia Jöv héten dolgozat!!! Reál GDP növekedési üteme (forrás: World Bank) Reál GDP növekedési üteme (forrás: World Bank) Mit tudunk

Részletesebben

Likelihood, deviancia, Akaike-féle információs kritérium

Likelihood, deviancia, Akaike-féle információs kritérium Többváltozós statisztika (SZIE ÁOTK, 2011. ősz) 1 Likelihood, deviancia, Akaike-féle információs kritérium Likelihood függvény Az adatokhoz paraméteres modellt illesztünk. A likelihood függvény a megfigyelt

Részletesebben

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 8. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 8. előadás Előadó: Dr. Ertsey Imre Minták alapján történő értékelések A statisztika foglalkozik. a tömegjelenségek vizsgálatával Bizonyos esetekben lehetetlen illetve célszerűtlen a teljes

Részletesebben

A rendszeres szociális segély jövedelmi célzása. Pénzügyminisztérium

A rendszeres szociális segély jövedelmi célzása. Pénzügyminisztérium A rendszeres szociális segély jövedelmi célzása Firle Réka Szabó Péter András Pénzügyminisztérium 2008. június 19. Az alacsony munkapiaci aktivitás okai és növelésének lehetségei. A be- és kiáramlást szabályozó

Részletesebben

KÖVETKEZTETŐ STATISZTIKA

KÖVETKEZTETŐ STATISZTIKA ÁVF GM szak 2010 ősz KÖVETKEZTETŐ STATISZTIKA A MINTAVÉTEL BECSLÉS A sokasági átlag becslése 2010 ősz Utoljára módosítva: 2010-09-07 ÁVF Oktató: Lipécz György 1 A becslés alapfeladata Pl. Hányan láttak

Részletesebben

Heckman modell. Szelekciós modellek alkalmazásai.

Heckman modell. Szelekciós modellek alkalmazásai. Heckman modell. Szelekciós modellek alkalmazásai. Mikroökonometria, 12. hét Bíró Anikó A tananyag a Gazdasági Versenyhivatal Versenykultúra Központja és a Tudás-Ökonómia Alapítvány támogatásával készült

Részletesebben

Matematikai statisztikai elemzések 6.

Matematikai statisztikai elemzések 6. Nyugat-magyarországi Egyetem Geoinformatikai Kara Prof. Dr. Závoti József Matematikai statisztikai elemzések 6. MSTE6 modul Regressziószámítás: kétváltozós lineáris és nemlineáris regresszió, többváltozós

Részletesebben

A Statisztika alapjai

A Statisztika alapjai A Statisztika alapjai BME A3c Magyar Róbert 2016.05.12. Mi az a Statisztika? A statisztika a valóság számszerű információinak megfigyelésére, összegzésére, elemzésére és modellezésére irányuló gyakorlati

Részletesebben

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre

Statisztika I. 11. előadás. Előadó: Dr. Ertsey Imre Statisztika I. 11. előadás Előadó: Dr. Ertsey Imre Összefüggés vizsgálatok A társadalmi gazdasági élet jelenségei kölcsönhatásban állnak, összefüggnek egymással. Statisztika alapvető feladata: - tényszerűségek

Részletesebben

Matematikai statisztika c. tárgy oktatásának célja és tematikája

Matematikai statisztika c. tárgy oktatásának célja és tematikája Matematikai statisztika c. tárgy oktatásának célja és tematikája 2015 Tematika Matematikai statisztika 1. Időkeret: 12 héten keresztül heti 3x50 perc (előadás és szeminárium) 2. Szükséges előismeretek:

Részletesebben

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június

GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó június GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén, az ELTE Közgazdaságtudományi Tanszék, az MTA Közgazdaságtudományi

Részletesebben

AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON

AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON AZ ÁTMENET GAZDASÁGTANA POLITIKAI GAZDASÁGTANI PILLANATKÉPEK MAGYARORSZÁGON Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati

Részletesebben

MIÉRT NEM VÁLASZOLUNK?

MIÉRT NEM VÁLASZOLUNK? MIÉRT VÁLASZOLUNK? TENDENCIÁK ÉS TÉNYEZŐK A KSH EGYIK LAKOSSÁGI FELVÉTELÉNEK TÜKRÉBEN HORVÁTH BEÁTA KSH beata.horvath@ksh.hu ÁTTEKINTŐ ELMÉLETI MEGKÖZELÍTÉS GYAKORLATI MEGKÖZELÍTÉS MILYENEK VAGYUNK MI

Részletesebben

Adatok statisztikai értékelésének főbb lehetőségei

Adatok statisztikai értékelésének főbb lehetőségei Adatok statisztikai értékelésének főbb lehetőségei 1. a. Egy- vagy kétváltozós eset b. Többváltozós eset 2. a. Becslési problémák, hipotézis vizsgálat b. Mintázatelemzés 3. Szint: a. Egyedi b. Populáció

Részletesebben

Validálás és bizonytalanságok a modellekben

Validálás és bizonytalanságok a modellekben Validálás és bizonytalanságok a modellekben Hálózattervezési Dr. Berki Zsolt Tel.: 06-20-3516879, E-mail: berki@fomterv.hu Miért modellezünk? Mert előírás Nem! "It is impossible to predict the future but

Részletesebben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben

Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztás, beruházás és rövid távú árupiaci egyensúly kétszektoros makromodellekben Fogyasztáselméletek 64.) Bock Gyula [2001]: Makroökonómia ok. TRI-MESTER, Tatabánya. 33. o. 1. 65.) Keynesi abszolút

Részletesebben

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése

Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Kétértékű függő változók: alkalmazások Mikroökonometria, 8. hét Bíró Anikó Probit, logit modellek együtthatók értelmezése Pˆr( y = 1 x) ( g( ˆ β + x ˆ β ) ˆ 0 β j ) x j Marginális hatás egy megválasztott

Részletesebben

Két adatfelvétel: a szegény háztartások fogyasztási szokásai és a tulajdonosi jövedelmek szerkezete. Medgyesi Márton Tárki Zrt

Két adatfelvétel: a szegény háztartások fogyasztási szokásai és a tulajdonosi jövedelmek szerkezete. Medgyesi Márton Tárki Zrt Két adatfelvétel: a szegény háztartások fogyasztási szokásai és a tulajdonosi jövedelmek szerkezete Medgyesi Márton Tárki Zrt Vázlat 1.A szegény háztartások fogyasztási szokásai A kutatás célja Mintavétel

Részletesebben

Uniós források és hatásuk -- mennyiségek és mérési lehetőségek Major Klára. HÉTFA Kutatóintézet és Elemző Központ

Uniós források és hatásuk -- mennyiségek és mérési lehetőségek Major Klára. HÉTFA Kutatóintézet és Elemző Központ Uniós források és hatásuk -- mennyiségek és mérési lehetőségek Major Klára Uniós források elosztása HATÁSVIZSGÁLAT MÓDSZERTANI KIHÍVÁSAI Mi a hatásvizsgálat? Hatásvizsgálat: jellemzően olyan vizsgálatok,

Részletesebben

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált

Matematika. 4. konzultáció: Kétváltozós függvények szélsőértéke. Parciális függvény, parciális derivált Matematika 1 NYME KTK, Egyetemi kiegészítő alapképzés 2004/2005. tanév, I. évf. I.félév Budapest Előadó: Dr. Takách Géza NyME FMK Informatikai Intézet 9400 Sopron, Bajcsy Zs. u. 9. GT fszt. 3. (99) 518

Részletesebben

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8.

A társadalomkutatás módszerei I. Outline. A mintaválasztás A mintaválasztás célja. Notes. Notes. Notes. 13. hét. Daróczi Gergely. 2011. december 8. A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi hiba számítása

Részletesebben

Biometria gyakorló feladatok BsC hallgatók számára

Biometria gyakorló feladatok BsC hallgatók számára Biometria gyakorló feladatok BsC hallgatók számára 1. Egy üzem alkalmazottainak megoszlása az elért teljesítmény %-a szerint a következı: Norma teljesítmény % Dolgozók száma 60-80 30 81-90 70 91-100 90

Részletesebben

Ökonometria. Adminisztratív kérdések, bevezetés. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Első fejezet. Budapesti Corvinus Egyetem

Ökonometria. Adminisztratív kérdések, bevezetés. Ferenci Tamás 1 tamas.ferenci@medstat.hu. Első fejezet. Budapesti Corvinus Egyetem Adminisztratív kérdések, bevezetés Ferenci Tamás 1 tamas.ferenci@medstat.hu 1 Statisztika Tanszék Budapesti Corvinus Egyetem Első fejezet Tartalom Technikai kérdések 1 Technikai kérdések Adminisztratív

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 4 IV. MINTA, ALAPsTATIsZTIKÁK 1. MATEMATIKAI statisztika A matematikai statisztika alapfeladatát nagy általánosságban a következőképpen

Részletesebben

Online melléklet. Kertesi Gábor és Kézdi Gábor. c. tanulmányához

Online melléklet. Kertesi Gábor és Kézdi Gábor. c. tanulmányához Online melléklet Kertesi Gábor és Kézdi Gábor A roma és nem roma tanulók teszteredményei közti ekről és e ek okairól c. tanulmányához A1. A roma etnikai hovatartozás mérése A2. A mintaszelekcióból adódó

Részletesebben

Kutatásmódszertan és prezentációkészítés

Kutatásmódszertan és prezentációkészítés Kutatásmódszertan és prezentációkészítés 10. rész: Az adatelemzés alapjai Szerző: Kmetty Zoltán Lektor: Fokasz Nikosz Tizedik rész Az adatelemzés alapjai Tartalomjegyzék Bevezetés Leíró statisztikák I

Részletesebben

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban

9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA. 9.1 Metrika és topológia R k -ban 9. TÖBBVÁLTOZÓS FÜGGVÉNYEK DIFFERENCIÁLSZÁMITÁSA 9.1 Metrika és topológia R k -ban Definíció. A k-dimenziós euklideszi térnek nevezzük és R k val jelöljük a valós számokból alkotott k-tagú x = (x 1, x

Részletesebben

Matematikai geodéziai számítások 6.

Matematikai geodéziai számítások 6. Matematikai geodéziai számítások 6. Lineáris regresszió számítás elektronikus távmérőkre Dr. Bácsatyai, László Matematikai geodéziai számítások 6.: Lineáris regresszió számítás elektronikus távmérőkre

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.29. A statisztika típusai Leíró jellegű statisztika: összegzi egy adathalmaz jellemzőit. A középértéket jelemzi (medián, módus, átlag) Az adatok változékonyságát

Részletesebben

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK

KÖZGAZDASÁGI- MARKETING ALAPISMERETEK Név:... osztály:... ÉRETTSÉGI VIZSGA 2006. május 18. KÖZGAZDASÁGI- MARKETING ALAPISMERETEK KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA 2006. május 18. 14:00 Az írásbeli vizsga időtartama: 180 perc Pótlapok száma Tisztázati

Részletesebben

2. Lineáris regresszió Út a lineáris regresszióhoz Regresszió kétváltozós esetben Többváltozós lineáris regresszió...

2. Lineáris regresszió Út a lineáris regresszióhoz Regresszió kétváltozós esetben Többváltozós lineáris regresszió... Tartalom Tartalomjegyzék 1. Jelölési konvenciók 1 2. Lineáris regresszió 3 2.1. Út a lineáris regresszióhoz............................... 3 2.2. Regresszió kétváltozós esetben.............................

Részletesebben

Családi kohézió az idő szorításában A szülők és a gyermekek társas együttléte a mindennapok világában. Harcsa István (FETE) Monostori Judit (NKI)

Családi kohézió az idő szorításában A szülők és a gyermekek társas együttléte a mindennapok világában. Harcsa István (FETE) Monostori Judit (NKI) Családi kohézió az idő szorításában A szülők és a gyermekek társas együttléte a mindennapok világában Harcsa István (FETE) Monostori Judit (NKI) Kutatási kérdések Hogyan változott a szülők és a gyermekek

Részletesebben

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23

TARTALOMJEGYZÉK. 1. téma Átlagbecslés (Barna Katalin) téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 TARTALOMJEGYZÉK 1. téma Átlagbecslés (Barna Katalin).... 7 2. téma Hipotézisvizsgálatok (Nagy Mónika Zita)... 23 3. téma Összefüggések vizsgálata, korrelációanalízis (Dr. Molnár Tamás)... 73 4. téma Összefüggések

Részletesebben

Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop

Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop Magyarország növekedési kilátásai A magyarországi vállalatok lehetőségei és problémái MTA KRTK KTI workshop Prof. Dr. Szerb László egyetemi tanár Pécsi Tudományegyetem Közgazdaságtudományi Kar Helyzetkép

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia. Szakmai felelős: Varga Júlia június

ELTE TáTK Közgazdaságtudományi Tanszék OKTATÁSGAZDASÁGTAN. Készítette: Varga Júlia. Szakmai felelős: Varga Júlia június OKTATÁSGAZDASÁGTAN OKTATÁSGAZDASÁGTAN Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék,

Részletesebben

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH

Az idősorok összetevői Trendszámítás Szezonalitás Prognosztika ZH Idősorok Idősor Statisztikai szempontból: az egyes időpontokhoz rendelt valószínűségi változók összessége. Speciális sztochasztikus kapcsolat; a magyarázóváltozó az idő Determinisztikus idősorelemzés esetén

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.08. Orvosi biometria (orvosi biostatisztika) Statisztika: tömegjelenségeket számadatokkal leíró tudomány. A statisztika elkészítésének menete: tanulmányok (kísérletek)

Részletesebben

Több valószínűségi változó együttes eloszlása, korreláció

Több valószínűségi változó együttes eloszlása, korreláció Tartalomjegzék Előszó... 6 I. Valószínűségelméleti és matematikai statisztikai alapok... 8 1. A szükséges valószínűségelméleti és matematikai statisztikai alapismeretek összefoglalása... 8 1.1. Alapfogalmak...

Részletesebben

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet

GVMST22GNC Statisztika II. Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet GVMST22GNC Statisztika II. 3. előadás: 8. Hipotézisvizsgálat Kóczy Á. László Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Hipotézisvizsgálat v becslés Becslés Ismeretlen paraméter Közeĺıtő

Részletesebben

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft

Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak1: b) Mo = 1857,143 eft A kocsma tipikus (leggyakoribb) havi bevétele 1.857.143 Ft. c) Q1 = 1575 eft Me = 2027,7778 eft Q3 = 2526,3158 eft Gyak2: b) X átlag = 35 Mo = 33,33 σ = 11,2909 A = 0,16 Az

Részletesebben

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió

6. Előadás. Megyesi László: Lineáris algebra, oldal. 6. előadás Bázis, dimenzió 6. Előadás Megyesi László: Lineáris algebra, 37. 41. oldal. Gondolkodnivalók Lineáris függetlenség 1. Gondolkodnivaló Legyen V valós számtest feletti vektortér. Igazolja, hogy ha a v 1, v 2,..., v n V

Részletesebben

GVMST22GNC Statisztika II.

GVMST22GNC Statisztika II. GVMST22GNC Statisztika II. 4. előadás: 9. Kétváltozós korreláció- és regressziószámítás Kóczy Á. László koczy.laszlo@kgk.uni-obuda.hu Keleti Károly Gazdasági Kar Vállalkozásmenedzsment Intézet Korrelációszámítás

Részletesebben

Méréselmélet MI BSc 1

Méréselmélet MI BSc 1 Mérés és s modellezés 2008.02.15. 1 Méréselmélet - bevezetés a mérnöki problémamegoldás menete 1. A probléma kitűzése 2. A hipotézis felállítása 3. Kísérlettervezés 4. Megfigyelések elvégzése 5. Adatok

Részletesebben

A PEDAGÓGIAI HOZZÁADOTT ÉRTÉK KONCEPCIÓJÁRÓL

A PEDAGÓGIAI HOZZÁADOTT ÉRTÉK KONCEPCIÓJÁRÓL A PEDAGÓGIAI HOZZÁADOTT ÉRTÉK KONCEPCIÓJÁRÓL SZÉLL KRISZTIÁN ELTE PPK Kazinczy utca 23 27. 2016. március 1. MI IS AZ A PHÉ? Nincs egységes definíció Gyökere: Közgazdaságtan? Elszámoltathatóság igényének

Részletesebben

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév)

2. Házi feladat és megoldása (DE, KTK, 2014/2015 tanév első félév) . Házi feladat és megoldása (DE, KTK, 4/5 tanév első félév) () Határozza meg a következő függvények (első) deriváltját: 3 + f() ctg, g() (3 )3 tg, h() cos( 3 + e ), i() lg(ln(e + 4 ln )), j() (3) ln, k()

Részletesebben

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( )

Alap-ötlet: Karl Friedrich Gauss ( ) valószínűségszámítási háttér: Andrej Markov ( ) Budapesti Műszaki és Gazdaságtudományi Egyetem Gépészmérnöki Kar Hidrodinamikai Rendszerek Tanszék, Budapest, Műegyetem rkp. 3. D ép. 334. Tel: 463-6-80 Fa: 463-30-9 http://www.vizgep.bme.hu Alap-ötlet:

Részletesebben

Tisztelt hallgatók! Farkas Péter egyetemi adjunktus, tananyagfejlesztõ, tutor (gyõri és pécsi csoport) egyetemi adjuntus, tutor (budapesti csoport)

Tisztelt hallgatók! Farkas Péter egyetemi adjunktus, tananyagfejlesztõ, tutor (gyõri és pécsi csoport) egyetemi adjuntus, tutor (budapesti csoport) Tisztelt hallgatók! E-LEARNING KÉZÉS Az alábbiakban a Gazdálkodási szakos, e-learning rendszerben mûködõ képzés tananyagához készült hibalistát olvashatja. A visszajelzések és az anyag folyamatos gondozása

Részletesebben

Néhány fontosabb folytonosidejű jel

Néhány fontosabb folytonosidejű jel Jelek és rendszerek MEMO_2 Néhány fontosabb folytonosidejű jel Ugrásfüggvény Bármely választással: Egységugrás vagy Heaviside-féle függvény Ideális kapcsoló. Signum függvény, előjel függvény. MEMO_2 1

Részletesebben

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28.

A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. A MIDAS_HU eredményeinek elemzése, továbbfejlesztési javaslatok HORVÁTH GYULA 2015. MÁJUS 28. 1 A projekt céljai Az Unió ajánlatkérése és az ONYF pályázata a következő célokat tűzte ki: Preparation of

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA

A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA A JÓLÉTI ÁLLAM KÖZGAZDASÁGTANA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TáTK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi Tanszék

Részletesebben

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI

FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI FEGYVERNEKI SÁNDOR, Valószínűség-sZÁMÍTÁs És MATEMATIKAI statisztika 3 III. VÉLETLEN VEKTOROK 1. A KÉTDIMENZIÓs VÉLETLEN VEKTOR Definíció: Az leképezést (kétdimenziós) véletlen vektornak nevezzük, ha Definíció:

Részletesebben

Irányításelmélet és technika II.

Irányításelmélet és technika II. Irányításelmélet és technika II. Legkisebb négyzetek módszere Magyar Attila Pannon Egyetem Műszaki Informatikai Kar Villamosmérnöki és Információs Rendszerek Tanszék amagyar@almos.vein.hu 200 november

Részletesebben

A fogyasztási kereslet elméletei

A fogyasztási kereslet elméletei 6. lecke A fogyasztási kereslet elméletei A GDP, a rendelkezésre álló jövedelem, a fogyasztás és a megtakarítás kapcsolata. Az abszolút jövedelem hipotézis és a keynesi fogyasztáselmélet. A permanens jövedelem

Részletesebben

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg

Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg LMeasurement.tex, March, 00 Mérés Általánosan, bármilyen mérés annyit jelent, mint meghatározni, hányszor van meg a mérendő mennyiségben egy másik, a mérendővel egynemű, önkényesen egységnek választott

Részletesebben

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1.

Statisztika I. 4. előadás Mintavétel. Kóczy Á. László KGK-VMI. Minta Mintavétel Feladatok. http://uni-obuda.hu/users/koczyl/statisztika1. Statisztika I. 4. előadás Mintavétel http://uni-obuda.hu/users/koczyl/statisztika1.htm Kóczy Á. László KGK-VMI koczy.laszlo@kgk.uni-obuda.hu Sokaság és minta Alap- és mintasokaság A mintasokaság az a részsokaság,

Részletesebben

1. A standard lineáris regressziós modell és feltevései

1. A standard lineáris regressziós modell és feltevései Tartalom Tartalomjegyzék 1. A standard lineáris regressziós modell és feltevései 1 1.1. A standard lineáris modell modellfeltevései..................... 1 1.2. A standard modellfeltevések értelme és jelentősége.................

Részletesebben

BEZZEG A MI IDŐNKBEN MÉG GENERÁCIÓS ÉRTÉKKÜLÖNBSÉGEK

BEZZEG A MI IDŐNKBEN MÉG GENERÁCIÓS ÉRTÉKKÜLÖNBSÉGEK BEZZEG A MI IDŐNKBEN MÉG GENERÁCIÓS ÉRTÉKKÜLÖNBSÉGEK Messing Vera Ságvári Bence Az öregedés káráról és hasznáról Társadalomtudományok a demográfiai öregedésről 2013 november 20. Az ESS kutatásról Az ESS-ről

Részletesebben

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János

Biomatematika 15. Szent István Egyetem Állatorvos-tudományi Kar. Fodor János Szent István Egyetem Állatorvos-tudományi Kar Biomatematikai és Számítástechnikai Tanszék Biomatematika 15. Nemparaméteres próbák Fodor János Copyright c Fodor.Janos@aotk.szie.hu Last Revision Date: November

Részletesebben

A TANÁROK TANÍTÁSSAL KAPCSOLATOS

A TANÁROK TANÍTÁSSAL KAPCSOLATOS A TANÁROK TANÍTÁSSAL KAPCSOLATOS BEÁLLÍTÓDÁSAI ÉS A TANULÓI EREDMÉNYESSÉG Széll Krisztián - Sági Matild XIII. Országos Neveléstudományi Konferencia Eszterházy Károly Főiskola Eger, 2013. november 8. KUTATÁSI

Részletesebben

Érzékenységvizsgálat

Érzékenységvizsgálat Érzékenységvizsgálat Alkalmazott operációkutatás 5. elıadás 008/009. tanév 008. október 0. Érzékenységvizsgálat x 0 A x b z= c T x max Kapacitások, együtthatók, célfüggvény együtthatók változnak => optimális

Részletesebben

First Prev Next Last Go Back Full Screen Close Quit. (Derivált)

First Prev Next Last Go Back Full Screen Close Quit. (Derivált) Valós függvények (3) (Derivált) . Legyen a belső pontja D f -nek. Ha létezik és véges a f(x) f(a) x a x a = f (a) () határérték, akkor f differenciálható a-ban. Az f (a) szám az f a-beli differenciálhányadosa.

Részletesebben

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény

Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény Kamatfüggő beruházási kereslet, árupiaci egyensúly, IS-függvény 84-85.) Bock Gyula [2001]: Makroökonómia feladatok. TRI-MESTER, Tatabánya. 38. o. 16-17. (Javasolt változtatások: 16. feladat: I( r) 500

Részletesebben

VÁROS- ÉS INGATLANGAZDASÁGTAN

VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN VÁROS- ÉS INGATLANGAZDASÁGTAN Készült a TÁMOP-4..-08//A/KMR-009-004pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

VÁLTOZÁSOK A SZEGÉNYSÉG STRUKTÚRÁJÁBAN

VÁLTOZÁSOK A SZEGÉNYSÉG STRUKTÚRÁJÁBAN Tematikus nap az egyenlőtlenség g vizsgálatáról, l, mérésérőlm Budapest,, 2011. január r 25. VÁLTOZÁSOK A SZEGÉNYSÉG STRUKTÚRÁJÁBAN Vastagh Zoltán Életszínvonal-statisztikai felvételek osztálya zoltan.vastagh@ksh.hu

Részletesebben

A MIDAS_HU modell elemei és eredményei

A MIDAS_HU modell elemei és eredményei A MIDAS_HU modell elemei és eredményei Tóth Krisztián Országos Nyugdíjbiztosítási Főigazgatóság A MIDAS_HU mikroszimulációs nyugdíjmodell eredményei további tervek Workshop ONYF, 2015. május 28. MIDAS_HU

Részletesebben

Mesterséges Intelligencia MI

Mesterséges Intelligencia MI Mesterséges Intelligencia MI Racionalitás: a hasznosság és a döntés Dobrowiecki Tadeusz Eredics Péter, és mások BME I.E. 437, 463-28-99 dobrowiecki@mit.bme.hu, http://www.mit.bme.hu/general/staff/tade

Részletesebben

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június

ELTE TáTK Közgazdaságtudományi Tanszék GAZDASÁGSTATISZTIKA. Készítette: Bíró Anikó. Szakmai felelős: Bíró Anikó. 2010. június GAZDASÁGSTATISZTIKA GAZDASÁGSTATISZTIKA Készült a TÁMOP-4.1.2-08/2/A/KMR-2009-0041pályázati projekt keretében Tartalomfejlesztés az ELTE TátK Közgazdaságtudományi Tanszékén az ELTE Közgazdaságtudományi

Részletesebben

III. Kvantitatív változók kapcsolata (korreláció, regresszió)

III. Kvantitatív változók kapcsolata (korreláció, regresszió) III. Kvantitatív változók kapcsolata (korreláció, regresszió) Tartalom Változók kapcsolata Kétdimenziós minta (pontdiagram) Regressziós előrejelzés (predikció) Korreláció Tanuló Kétdimenziós minta Tanulással

Részletesebben

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 4. hét A KERESLETELMÉLET ALKALMAZÁSAI

Közgazdaságtan 1. ELTE TáTK Közgazdaságtudományi Tanszék. 4. hét A KERESLETELMÉLET ALKALMAZÁSAI KÖZGAZDASÁGTAN I. ELTE TáTK Közgazdaságtudományi Tanszék Közgazdaságtan 1. A KERESLETELMÉLET ALKALMAZÁSAI Bíró Anikó, K hegyi Gergely, Major Klára Szakmai felel s: K hegyi Gergely 2010. június Vázlat

Részletesebben

Vállalkozási finanszírozás kollokvium

Vállalkozási finanszírozás kollokvium Harsányi János Főiskola Gazdaságtudományok tanszék Vállalkozási finanszírozás kollokvium Név: soport: Tagozat: Elért pont: Érdemjegy: Javította: 47 55 pont jeles 38 46 pont jó 29 37 pont közepes 20 28

Részletesebben

[Biomatematika 2] Orvosi biometria

[Biomatematika 2] Orvosi biometria [Biomatematika 2] Orvosi biometria 2016.02.15. Esemény Egy kísérlet vagy megfigyelés (vagy mérés) lehetséges eredményeinek összessége (halmaza) alkotja az eseményteret. Esemény: az eseménytér részhalmazai.

Részletesebben

Tartalom. Pénzügytan I. Általános tudnivalók, ismétlés. 2010/2011 tanév őszi félév 1. Hét

Tartalom. Pénzügytan I. Általános tudnivalók, ismétlés. 2010/2011 tanév őszi félév 1. Hét Pénzügytan I. Általános tudnivalók, ismétlés 2010/2011 tanév őszi félév 1. Hét 2010.09.07. 1 Tóth Árpád Ig. 617 e-mail: totha@sze.hu gyakorlatok letölthetősége: www.sze.hu/~totha Pénzügytan I. (könyvtár)

Részletesebben

A statisztika oktatásáról konkrétan

A statisztika oktatásáról konkrétan A világ statisztikája a statisztika világa ünnepi konferencia Esztergom, 2010.október 15. A statisztika oktatásáról konkrétan Dr. Varga Beatrix PhD. egyetemi docens MISKOLCI EGYETEM Üzleti Statisztika

Részletesebben

1. A vállalat. 1.1 Termelés

1. A vállalat. 1.1 Termelés II. RÉSZ 69 1. A vállalat Korábbi fejezetekben már szóba került az, hogy különböző gazdasági szereplők tevékenykednek. Ezek közül az előző részben azt vizsgáltuk meg, hogy egy fogyasztó hogyan hozza meg

Részletesebben

E-tananyag Matematika 9. évfolyam 2014. Függvények

E-tananyag Matematika 9. évfolyam 2014. Függvények Függvények Függvények értelmezése Legyen adott az A és B két nem üres halmaz. Az A halmaz minden egyes eleméhez rendeljük hozzá a B halmaz egy-egy elemét. Ez a hozzárendelés egyértelmű, és ezt a hozzárendelést

Részletesebben

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés

TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI. 1. Bevezetés TERMÉKTERVEZÉS NUMERIKUS MÓDSZEREI Dr. Goda Tibor egyetemi docens Gép- és Terméktervezés Tanszék 1. Bevezetés 1.1. A végeselem módszer alapjai - diszkretizáció, - szerkezet felbontása kicsi szabályos elemekre

Részletesebben

A társadalomkutatás módszerei I.

A társadalomkutatás módszerei I. A társadalomkutatás módszerei I. 13. hét Daróczi Gergely Budapesti Corvinus Egyetem 2011. december 8. Outline 1 A mintaválasztás célja 2 Alapfogalmak 3 Mintavételi eljárások 4 További fogalmak 5 Mintavételi

Részletesebben

Mikroökonómia előadás. Dr. Kertész Krisztián Fogadóóra: minden szerdán között Helyszín: 311-es szoba

Mikroökonómia előadás. Dr. Kertész Krisztián   Fogadóóra: minden szerdán között Helyszín: 311-es szoba Mikroökonómia előadás Dr. Kertész Krisztián e-mail: k.krisztian@efp.hu Fogadóóra: minden szerdán 10.15 11.45. között Helyszín: 311-es szoba Irodalom Tankönyv: Jack Hirshleifer Amihai Glazer David Hirshleifer:

Részletesebben

Készítette: Fegyverneki Sándor

Készítette: Fegyverneki Sándor VALÓSZÍNŰSÉGSZÁMÍTÁS Összefoglaló segédlet Készítette: Fegyverneki Sándor Miskolci Egyetem, 2001. i JELÖLÉSEK: N a természetes számok halmaza (pozitív egészek) R a valós számok halmaza R 2 {(x, y) x, y

Részletesebben